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In this paper we study a set of vocal command signals recorded in a noisy environment. We describe and use Fang’s

segmentation algorithml[®! to isolate near phonemes. A piecewise constant time-frequency spectrum for the near phonems

is then computed using the smooth cosine4 orthonormal basis!®7:8:13] defined over the segmented time axis. This paper

proposes a criterion to distinguish phonemes using this smooth local spectrum.
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1. Introduction

A signal can be decomposed into a linear combina-
tion of elementary waveforms, where each waveform is
essentially supported by a rectangle R = [a, b] x [, 8] in
the time-frequency plane. One now has available a large
selection of waveforms or time-frequency atoms (for
example, windowed Fourier functions, Malvar—Wilson
bases!®"#| and wavelet packets®!”). Since the choice
of time-frequency atoms is not unique, the decomposi-

tion can be adapted to the analysed signal.

Speech signals may be regarded as a sequence of over-
lapping phonemes, and one goal of time-frequency rep-
resentation is to isolate and analyze these phonemes.
The windowed Fourier representation has played a ma-
jor role in speech processing!™*?!, and more recently,
other representations based on wavelets have been used
with varying success, depending on the objective of the
analysis.

The local trigonometric Best Basis of Coifman and
Wickerhauser!! is a fast algorithm that computes a local
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spectrum based on a dyadic segmentation of the time
axis in O(NlogN) operations, where N is the number
of sample points. We used this algorithm in a previ-
ous paper!™® for speech signal analysis and segmentation
and it proved to be successful for speech compression.
It is not, however, well suited for isolating phonemes,
since there is no reason for phonemes to “begin” and

“end” at dyadic points.

In this paper we use Fang’s segmentation algorithm
to segment the time axis. The purpose of this algorithm
is to isolate the phonemes. The algorithm is based on
the measurement of an instantaneous frequency, and it
places segmentation points where it detects a change
in this instantaneous frequency. Thus it tends to iso-
late phonemes. Since at best we can only expect these
point to be approximate, we say that the segments con-
tain near phonemes.

We use a local trigonometric basis to compute the
(piecewise constant) spectra of these near phonemes.
The algorithm takes O(N?) operations, and this anal-
ysis is useful for synthesis, compression, and classifica-
tion.



2. Fang’s segmentation algorithm

A segmentation of a sampled signal is a strictly in-
creasing sequence of integers, which are the initial in-
dices of each segment. Fang’s segmentation algorithm
computes the local maxima of a frequency change func-
tion; this function is the average of an instantaneous

frequency change function.
2.1. Instantaneous frequency change function

This function can be obtained using the spectrum
computed with either the block or the smooth dct}
transform. In this paper we use the smooth dctj trans-
form.

This function is the difference between the flatness of
the spectrum over [j — ¢, j +£] with (£ > 0) and the flat-
ness of the combined spectra over [j — £, j] and [4, j + £].
This flatness can be measured with one of the following

cost functions

n—1
/\(3;075517"'7'%.”) = lekl (21)
k=0

or
n—1
M@0, @1,y 2n) = = 3 |zaPlog(zil?).  (2:2)
k=0

Let A;, Bj, and C; denote the dct4 spectrum over
[i — 4,41, [j,j + £ and [j — £,j + £]. Then

TFJ(5) = MCj) = (AM(45) + A(Bj)),  (23)

where j € {n +¢,...,N —n — £}, is the instantaneous
frequency change function. This function oscillates even
when the signal is periodic, as shown in Fig.1. The IF'C
function is shown in the bottom. The filtered version
of this function is plotted in the middle.

Figure 1. IFC and AFC frequency change functions

2.2. Segmentation algorithm

This algorithm consists of the following five steps:

1. Compute IFC(j) for j €/ +n,N — £ —n[= I as
follows:

Consider IFC(j) = 0 Vj € I and compute C}, the
det/ transform of the signal over [j — ¢, j + £], and
B;, the dct4 transform of signal over [j, j+£]. Then

IFC(j) = IFC(5) + A(C}) — M\(B;),

and
IFC(j + () = IFC(j + £) — A(B;),
since Aj-i-f = Bj.

2. Filter IFC(j)jer to obtain an averaged frequency
change function AFC(j);er as follows:

If H and G denote a biorthogonal lowpass filter and
its dual, then

AFC = GYHYIFC),
where H* = HHH ... H.

3. Find the local mazxima by detecting zero crossings
of the adjacent differences of AFC(j)jer.

4. Squelch the local maxima above some threshold.

5. Improvement
We consider only the local maxima of AF'C such
that its second derivative is lower than a given neg-
ative threshold. This condition eliminates those
maxima, that are too flat.

There are three parameters to set:

1) the adjacent window overlap 7,

2) the window size £,

3) the number d of iterations of the lowpass filter H.
In particular, we use this algorithm with = 16,
{ = 256, and d = 9 to obtain a near phoneme seg-
mentation of noisy vocal signals recorded in flight.

A wvocal command signals recorded in a noisy environ-
ment was segmented using this algorithm. Fig. 2 and
Fig. 3 show this signal at the top, the IFC function at
the bottom, the AFC function in the middle and the
segmentation with vertical lines at the AFC local max-

ima:
O=ag<a1<...<as=N.

This is a non dyadic segmentation that tends to isolate
near phonemes.
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Figure 3. vocal signal segmentation

3. Block and smooth dct4 transform
The block dct4 spectrum of a signal S over a seg-
mented time axis,
0=ay<a;<...<as=N,
is the set of coefficients
D;={d;r:0<k<{} (3.1)

in the decomposition

St =Y dixdikt),
ogjfiN

where
djr = (S, X1; Pj.k)
is the block dct/ transform,

T 1

V2
\/77(:05 |€j|(k+ 5)(t—aj)

is the cosine4 function, and xy, (¢) is the indicator func-

dik =

tion of I;, which is 1 in I; = [a;,a;41] and 0 outside.

We are going to describe the smooth dct4 transform
algorithm that computes the smooth local spectrum of
a sampled signal {f(j)}o<j<n over a segmented time
axis:

O=ag<a1 <...<as=N.
We consider the following functions and sets:

e the raising function

0 t €] — o0, —1]
r(t) = { sin[f(1 +sin §t)] ¢ € [-1,1]
1 t€[1,00]

e the following orthogonal window

((t - aj))r((aj+1 - t))
n n

over I; = [aj,aj41], where t € Z +1/2,

0<n<¥/2 and ¢; = (aj41 — a;) (n is the adja-

cent window overlap).

wi(t)=r (3.2)

o b;(t) = "5

o OF =laj,a; +1l, 07 =la; —n,q[.
We use the folding!'*! operator
bj(t)f(t)+b;(2a;—t) f(2a;—1) if t €OF,
bj(2a; ) F(£)=b; () f(2a;—t) if t €0
and its adjoint, the unfolding** operator:

U gty — { BT =b;(20;—0)(20;=1) if 1 €OF,
J bj(2a;—t) f(t)+b;(t) f(2a;—1) if t €05 .

that verify U;U; = U;U; = id, to compute the folded
function

U f(t) ={

Faja500 = x5;UUj f

and to compute the given orthogonal window (3.2). This
window is equal to the rectangular window xr; unfolded
at a; and at Aj41:

w;(t) = UjUj 1 x1;- (33)

Otherwise, given a time axis segmentation

z=J 5

j€z
with I; = [aj,a;41), such that ing(aj+1 —a;) > 0 the
JE
associated orthonormal trigonometric basis
{5kt ez o<kt

where

;i x(t) = w;i(t)gje(t) (3.4)

consists of orthogonal windows w;(t) modulated by the
cosinej functions as is shown in Fig. 4. The smooth
spectrum of f over I = [aj,a;41] is the set of coefficients

Cj:{Cj,k:0§k<£j}
of the signal decomposition:

f(t) = Z ik Wik(t),
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Figure 4. Lapped orthogonal basis function
where
ik = (f, ¥ik) = (f,w;gsk)

is the smooth dct4 transform.

(3.5)

Since

ik = U7 UL 1 X1, 95,k) = (Faja5015 9h.k)s

the smooth dct4 transform c;, = (f, ¥, 1) is equal to
the block dctj transform of the folded signal:

Cjk = <Faj ,aj+1agj,k)' (36)

4. Smooth spectrum near phonemes

In a previous paper!*®l, speech signals were analyzed
using the orthonormal trigonometric Best Basis of Coif-
man and Wickerhauser, based on a split and merg!*®
algorithm. Since phoneme length is not necessarily
dyadic, we have used Fang’s segmentation algorithm
and then compute the smooth dct4 transform over the
segmented signal. Fig. 5 and Fig. 6 show the smooth
local spectrum, in absolute value, over the segmented

signal. The coefficients of this spectrum are defined in

(3.5) and (3.6) over each interval [a;,a;t1].

5. Classification

In this paper we have studied a set of vocal command
signals recorded in a noisy environment. We first seg-
ment each signal into near phonemes and then compute
either the block or the smooth local spectrum.

We use the frequency center of mass to distinguish some
unvoiced phonemes like /s/ from voiced phonemes like

vowels.

We use the spectrum envelope to compare!® voiced
segments. This spectrum envelope is a cubic interpo-
lation function defined over a set of local maxima ex-

tracted from the computed spectrum. We consider a

Li eraged enveiop ot/en o |

averaged envelop of /a/!
‘averaged envelop of /e/' ——---—
E 7

Figure 6. Smooth local spectrum near phonemes

Figure 7. Averaged envelope

training set for each vowel and we compute an averaged
spectrum envelope for each one.

We use this averaged spectrum envelope, to distinguish
voiced phonemes. For instance, to recognize a given
vowel among /a/, /e/, and /i/, we compare the spec-
trum envelope f of the given vowel with each averaged
spectrum envelope g, for z € {a, e, i} using the following

function denoted by cos:

PN oY R
(9:) = =Ty, 2]

We compute cos(f, g;) for = € {a,e,i} and we consider
that the given vowel is near the training set of /a/ when
cos(f,ga) > cos(f,gz) for z € {e,i}.

Phonemes /a/, /e/ and /i/ are compared in Fig. §&;
the axis show the values of cos(f,g.), cos(f,g.) and

cos(f, i)-

We used Fang’s segmentation algorithm combined
with the smooth dct4 transform successfully to classify

several phonemes.
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