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**Historical Note. This article discusses results obtained in the Summer of 1989 and first presented at a
short wavelets conference at CNRS/Marseille in November, 1989. It was originally intended for publication
in the Proceedings of the Conference on Wavelets and Applications, Marseille, 1989 (edited by Y. Meyer;
published by Masson, Paris, 1992). However, that volume is restricted to results presented at the big meeting
in May, 1989, and the short November conference issued no proceedings.

Although it has been available in electronic form since 1990, there has been a continuing demand for
paper copies of this article. The authors felt that it should be published, despite having been superceded by
more recent work, because the original article has some historical and tutorial value.

0. INTRODUCTION

We describe some new algorithms for signal processing and data compression based on a collection of
orthogonal functions which we shall call wavelet packets. Wavelet packets generalize the compactly supported
wavelets of Daubechies and Meyer described in [D]. The algorithms we describe combine the projection of a
sequence onto wavelet packet components, the selection of an optimal orthonormal basis subset, some linear
or quasilinear processing of the coefficients, and then reconstruction of the transformed sequence.

The present algorithms were inspired by a subband expansion described by Nicolas. Quake obtained
graphs of wavelet packets, some of which are included in the appendix to this paper. Coifman and Meyer
[CM] obtained analytic formulas for generating wavelet packets. Wickerhauser employed wavelet packets to
compress speech signals in [W1], pictures in [W2], and certain matrices in [W3]. Coifman and Wickerhauser
described in [CW] the general relationship between a wavelet packet’s index and its principal frequency.

The projection of a vector in RV onto wavelet packet components has complexity O(N log N), much like
the discrete fast Fourier transform (or FFT). Significant differences from FFT are that it is a real-valued
algorithm, and that it produces a tree of Nlog N coefficients. These correspond to windowed spectral
transforms at all dyadic window widths, using smooth windows. From them we may select more than 2V
orthogonal representations. It is also possible to conjugate the wavelet packet algorithm by FFT and obtain
all the dyadic windowed Fourier transforms for a vector at once. These windows will have different shapes
at each scale, which is known to be necessary for orthogonality.

We describe the notion of a best basis, introduced in [W1] and [CW]. We mention some measures of
information, notably Shannon-Weaver entropy, which we can minimize over a collection of bases. Some of
these describe quite generally the complexity of transmitting a sequence, or of numerical operations involving
it. We can optimize the basis with respect to which we perform a particular operation. In some cases, this
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can drastically reduce the number of computations or transmitted bits needed for a given degree of accuracy.
The search for a minimum will have complexity 0(N log V).

1. WAVELET PACKET ANALYSIS

Roughly speaking, a wavelet packet 1 is a square integrable modulated wave form with mean 0, well
localized in both position and frequency. It may be assigned three parameters: frequency, scale, and position.
The first and third may be taken to be the centers of mass of |1/|? and |z@|2, where 1) is the Fourier transform
of 4. The second might be taken to be a characteristic width of [¢|2, or equivalently the uncertainty in the
position. By Heisenberg’s principle, it is also the reciprocal of the uncertainty in the frequency.

Examples of modulated waveforms are easy to construct. Let ¢ be any “sufficiently nice” function with
mean 0, and define the modulation, dilation, and translation operators by ure(t) = efté(t), ds¢(t) =
s1/2¢(st), and T,6(t) = ¢(t — p), respectively. Then the collection of dilated, translated, and modulated
¢’s forms a family of wavelet packets with parameters f, s, p. These transformations conserve energy, so the
waveforms can be normalized to be unit vectors in L?. The component of a function = at f,s,p is the inner
product of x with the modulated wave form whose parameters are f,s,p. If it is large, we may conclude
that x has considerable energy near frequency f, position p, and scale s.

Definition of Wavelet Packets. We introduce a new class of orthonormal bases of L?(R™) by constructing
a “library” of modulated wave forms out of which various bases can be extracted. In particular, the wavelet
basis, the Walsh functions, and rapidly oscillating “wavelet packet” bases are obtained.

We’ll use the notation and terminology of [D], whose results we shall assume.

We are given an exact quadrature mirror filter h(n) satisfying the conditions of Theorem (3.6) in [D], p.
964, i.e.

> h(n—2k)h(n—20) = 6ke , Y h(n) =2
We let g = hy1(—1)% and define the operations F; on (2(Z) into “¢?(2Z)"
(1.0) Fo{si}(i) =2 sihiai
Fi{sp}(i) =2 Z SkGk—2i-
The map F(sg) = Fo(sk) @ Fi(sk) € (2(2Z) @ (?(2Z) is orthogonal and
(1.1) FiFo+FiF =1
We now define the following sequence of functions.

{ Wan(z) = V23 bW, (22 — k)
Wans1(z) = V23 kW (20 — k)

Clearly the function Wy(z) can be identified with the function ¢ in [D] and W; with the function 1.
Let us define mq (&) = % S hpe € and

(1.2)

L 1 ,
mi(§) = —e“mo(§ +7) = =3 Tgne
Remark. The quadrature mirror condition on the operation F = (Fy, F}) is equivalent to the unitarity of

the matrix
o[ m©  m©
mo(§+m) mi(§+m)
Taking Fourier transform of (1.2) when n =0 we get

Wo(€) = mo(£/2)Wo(£/2)



i.e.,

ﬁ (€/2)
and

Wl(f) = ml(f/Q)Wo(é/Q) = m1(§/2)m0(§/4)m0(§/23) T

More generally, the relations (1.2) are equivalent to

(13) Wa(€) = [T me, €/2)

o0
andn= > ¢;2"1 (¢, =0or 1).
j=1
We can rewrite (1.1) as follows.

(1.4) Wan (2 —£) = V2 hj_aiWn (22 — j) = Fo{Wa (22 — 5)}(¥)
Wani1(z =€) = V2 gj-2Wa(22 = j) = FL{Wa (20 = j)}(0)

where W), (22 — j) is viewed as a sequence in j for (z,n) fixed. Using (1.1) we find:

(1.5) W, (z—j) = \/iz hj—2:Wan (g - Z) + g5 2iWant1 (g - l) .
In the case n = 0 we obtain:
(1.6) Wo(r — k) = \/52 hi—2:Wo (g - Z) + gr—2iW1 (g - l)

from which we deduce the usual decomposition of a function f in the space Qg (Vg in [D]) i.e., a function f
of the form

fla) =" S§Wo(z — k)
= \/_Z Z ekhk 2:)Wo (— — z) + \/—Z nggk_%)wl (; — 7)
=Y EFO(S,C)(i)WO (5 - 7) +y %Fl(sk)(i)Wl (g - 7)

More generally, if we define

(1.7) Q= {f:f = wWalz-k)}.

We find

(1.8) f(aj) = Z \}iFo(ka')Wgn (- ) + Z —Fl W2n+1 (; Z)
" V3[(20) =h+g h € Qan g € Doy

We now prove



Theorem (1.1). The functions W,,(x — k) form an orthonormal basis of L*(R.).

Proof. We proceed by induction on n, assuming that W,,(z — k) form an orthonormal set of functions and,
proving that, Wa, (z — k), Wap11(z — k) form an orthonormal set.
By assumption ||[v2f(22)[|2 = S w? if f € Q, from the quadrature mirror condition on (Fp, Fy) we get

S W= Folwr) (i) + Filwe) ().

Since Fy(wg)(i) = pi, Fo(wk)(i) = v; can be chosen as two arbitrary sequences of ¢? (arising from w =
Fyu; + Ffv;) it follows that

J I aWanl =)+ Y itWansaa = D = 3 w2 + Y 02

which is equivalent to Wy, (z — i), Wa, 1 (2 — j) being an orthonormal set of functions. O

Let us now define § f = v/2f(2z). Formula (1.8) shows that 69, = Qa, & Q2,1 as an orthogonal sum or,

(1.9) 80 — Qo =0y
5200 — Q0 = 601 = Qo B Q3
8300 — 62Q0 = 6 & 603 = Uy O Q5 D Qs D Q7 or
Q0 — 100 = Qo1 B Qor14q -+ B Qo4

and
FU=QEUD DU,

More generally, we let Wy, = 68T1Qq — 68Qy = 6*Q; = §¥W,. Therefore we have

Proposition (1.1).
Wk - 6kW]_ == QQk @ sz+1 ED e @ szjtlfl.

Alternatively, the functions
Wo(z —7)  je€Z2¥<n< 2k

form an orthonormal basis of W.

Since the spaces W), are mutually orthogonal and span L?(R) see [D], it follows that W,(z — j) are
complete.

Numerical expansion of functions in wavelet packet bases. Earlier [CW] we introduced an index-
ing notation for wavelet packets which we shall use here as well. Order the frequency, scale, and posi-
tion parameters as (f,s,p), and set wgo(t) = 2L/2W(25t) for some fixed integer L. Define recursively
Way,0,0(t) = Fowyo,0(t) and wasi100(t) = Frwysoo(t), for f =0,1,.... The integer f’ is approximately the
center of energy of Wy o0, where f’ is the Gray code image of f. The position is set to p by the equation
wy0,,(t) = Tpwyo,0(t) = wsoo(t—p), and the scale to s by wy s ,(t) = dp—swy 0, (t) = 2752wy 0,0(275t — p).

We may approximate a uniformly continuous function # € L?(R) in the uniform norm topology to arbitary
accuracy by sums of orthogonal compactly supported bumps. We have

sup |z(t) — 2~ g (@, wo,0,p)Wo,0,p(t)| — 0 as L — cc.
t
P

Conversely, for sufficiently large L, the evaluations :r(pQ_L ) approximate well the (% sequence of inner prod-
ucts a2, = 25/2(x,wg 0.p)-



Suppose in addition that € L?(R"™) has d uniformly continuous derivatives, for d > 0. If ¢ € L?>(R)
satisfies the conditions

/ o(t)dt =1, / t"p(t)dt =0 if 0 <m < d, and / tdo(t) dt < oo,
R R R

then Taylor’s theorem implies that the discrete values x(k27") are very good approximations to the inner
products (z, ¢_, ) for k € Z™ and v € N, where ¢_, j(t) = 27V¢(27 "t — k). We obtain an estimate for the
rate of convergence of evaluations to inner products:

sup [(2, ¢—x) — 2(t)] < C277,
te]u!k

where I, , = x [[;—,[27"ki, 277 (k;+1)[, and 0 < C < oo may be chosen independently of v and k. For ¢ one
may use wpgg- The vanishing moment properties are obtained with appropriate quadrature mirror filters.

In numerical applications there is a limit to precision, say e. This determines a minimum grid size
dependent on the smoothness of z and the number of vanishing moments of ¢. To this precision, the inner
products (x,wp ;) may be replaced by evaluations of z. From these the other wavelet packet coefficients
(x,wy s p) are computed recursively for s > 0, f > 0, and integer p. By transposition,

(@, wap,s11,p) = D by, w5 2p15)
i

(@, wa11,611p) = Y G5{, Wy s 2p15)
7

These recurrences also have periodized analogs. The parameter ranges then become 0 < f < 2%, and
0<p<2l=s for0<s<L.

Library of rapidly constructible functions. Wavelet packets form a library of functions. There are
infinitely many of them in the continuum limit, but their approximations by vectors in RY form a set of
Nlog N vectors. The vectors are arranged in a homogeneous tree, with any two disjoint maximal subtrees
spanning orthogonal subspaces. A useful picture of the tree of wavelet packet coefficients is that of a
rectangle of coefficients. The row number within the rectangle indexes the scale of the wavelet packets
listed therein. The column number indexes both the frequency and position parameters. We may choose
to group the wavelet packets either by frequency or by position. The first method leads to more efficient
implementations, but the second yields a more intuitive picture. Grouping by position fills each row of the
rectangle with adjacent windowed spectral transforms, with the window size determined by the row number
and the window position corresponding to the location of the group. The frequency parameter increases
within the group.

We will describe an algorithm to produce a rectangle in which coefficients are grouped by frequency,
since this is simpler and since the transformation to the other form is evident. For definiteness, consider
a function defined at 8 points {1,...,2s}, i.e., a vector in R®. We may develop the (periodized) wavelet
packet coefficients of this function by filling out the following rectangle:

! T2 T3 Ly L5 Le Z7 Zg
S1 52 S3 S4 dy dy d3 dy
881 EED) d81 d82 Sdl Sdg dd1 dd2
5881 | dss sds;y | ddsy ssdy | dsd; sddy | ddd;

Figure 1. A rectangle of wavelet packet coefficients.

Each row is computed from the row above it by one application of either Fyy or F}, which we think of as
“summing” (s) or “differencing” (d) operations, respectively. Thus, for example the subblock {ss1, ss2} is ob-
tained by convolution-decimation of {s1, 2, s3, 54} with Fy, while {ds1, dsa} comes from similar convolution-

. . . . 1 1 1 1
decimation with Fj. In the simplest case, where we use the Haar filters h = {%, ﬁ} and g = {ﬁ’ _E}’

5



V2
two daughter s and d subblocks on the n + 1st row are determined by their mutual parent on the nth row,

which conversely is determined by them through the adjoint anticonvolution.

Reconstructing the nth row from the n + 1st row consists of applying Fjy to the left daughter and Fy to
the right daughter, then summing the images into the parent. In this manner, we generated the graphs of
the functions which are included in the appendix. We used a rectangle of size 1024 x 10 to obtain 1024-point
approximations. We filled the rectangle with 0’s except for a single 1, then applied the deconvolutions Fg
and F7 up to 10 times in various orders, so as to generate a vector of length 1024. This vector approximates
one of the 10240 wavelet packets in R'9?*. The details of this reconstruction determine the frequency, scale,
and location parameters.

we have in particular ss; = —=(s; + s32), 852 = %(53 +84), dsy = %(81 —89), and dsg = %(53 —84). The

From this rectangle, we may choose subsets of N coefficients which correspond to orthonormal bases for
R”. For example, the subset corresponding to the labelled boxes in Figure 2 is the wavelet basis.

dy da ds dy

dSl d82
5881 | dssi | | |

Figure 2. The wavelet basis.

Figures 3 and 4 give other orthonormal basis subsets.

581 5859 dSl dSQ Sd1 Sdg dd1 dd2

Figure 3. A subband basis.

S1 52 53 S4

dd; ddy
| ssdy | dsdy |

Figure 4. An orthonormal basis subset.

The boxes of coefficients in the rectangle have a natural binary tree structure. Each box is a direct sum
of its two children. Call a subset of the rectangle a graph if it contains only whole boxes and each column
of the rectangle has exactly one element. We have the following:

Proposition. Every graph is an orthonormal basis subset.

The number of graphs may be counted by induction. If N = 2%, let A} be the number of graphs in the
coefficient rectangle of N columns and L rows. Then Ag = 1 and we have the relation Ay = 1+ A% which
implies that Ay, > 22" = 2N,

Influence of the QMFs. Since wavelet packets are limits of repeated convolutions by perfect reconstruction
quadrature mirror filters, the choice of filter influences their various properties, including smoothness and
number of vanishing moments. Good filters exist with only a few coefficients, i.e., less than 25. Dual pairs of
filters may be found in which the coefficients are dyadic rationals, making convolution on binary computers
very fast. Longer filters have more degrees of freedom, and may be optimized for smoothness, number of



vanishing moments, attenuation of certain frequencies, or other useful properties. The cost is computational
complexity, which grows with filter length.

Orthogonal projection and reconstruction from partial or redundant coefficients. The maps
E5Fy and FyYFy are orthogonal projections. Iteration of these projections divides the original Hilbert space
into a tree of orthogonal subspaces generalizing multiresolution approximations. This is easiest to describe
in the periodic case, where we can count dimensions. A vector in R injects into the space RV198 N of
wavelet packet components. From a basis subset of just N of these components, the vector with those
components may be constructed by the adjoint anticonvolutions. If we reconstruct from only a part of the
basis subset, say N’ of them, we obtain an orthogonal projection onto an N’ dimensional subspace of RY,
Thus, given any a priori knowledge of the importance of certain wavelet packet coefficients in a signal, we
have a least-squares projection algorithm from a given signal onto these coefficients. Counting operations
shows that the complexity is O(N log N).

The reconstruction algorithm also provides a projection of RV 198N onto a rank-N subspace. We consider
RN19eN to be an ordered stack of log N rows, each holding the wavelet packet coefficients at a particular
scale. We reconstruct a vector by summing the reconstructions from each of the rows, then rescaling by the
factor (log N)~1. Finally, we reexpand the vector into its N log N wavelet packet coefficients. It is easily
seen that this is an orthogonal projection, and that it may be computed in O(N log N) operations.

Analytic interpretation. Although approximations by vectors in RY will always be used for numerical
algorithms, the analytic properties of wavelet packets derive from properties of the continuum limits of the
filter convolutions. We shall use here the notation defined above for the wavelet packet wy s ,(t).

For each f, the Fourier transform 1y, is a smooth, rapidly decreasing function with a principal bump
near f’. The relation between f and f’ is explained below. In general, there will be at least O(log f) auxiliary
bumps of lower energy near other frequencies. By orthogonality, the collection {|w 0l : f € Z} forms a
partition of unity in the frequency variable.

The center of energy of wy oo is at f’, where f — f’ is a permutation of the integers defined by the
following recurrence: f' = fif f =0or f =1, and

f +k, if f/ is even,

@f+8) = { P (—k), if fis odd.

This permutation is the Gray code transformation, which may be described by f; = fi,; + f; (mod 2),
where f; is the jth binary digit of f. By interchanging filters p and ¢ appropriately, successive convolutions
will find inner products of a vector with wy¢ o, which are arranged monotonically by “main” frequency.

Wavelet packets generalize discrete compactly supported wavelets. The wavelet packet wi 9,0 may be used
as a “mother wavelet” 1. Dyadic dilations and integer translations of 1) form an orthonormal basis of L2,
which is also an unconditional basis of the common function spaces, as described in [M]. This basis is part
of the rectangle or tree above. Explicitly, for a periodic vector of length 2%, it is the set {warn p_rp 1 0 <
n < L,0<p<2" Ly Uu{woe}. Alternatively, it is the set of coefficients in the rectangle of Figure 1 which
consist of a single leading d followed by only s’s, together with the lower left-hand corner coefficient which
consists of L s’s.

The multiresolution or wavelet decomposition is a particular descending chain of maximal subtrees in
our picture. Let V; be (wosp,p € Z), namely the linear span of the integer translates of wgso. Then
the recurrence relation among the w’s gives that Vi, C Vi_1, and the two-sided chain of subspaces is a
multiresolution decomposition of L? based on the bump function ¢. The quotient Wy = V.- N'V,_; is the
linear span (w1 s, p € Z). The collection {Wy, s € Z} is just a single basis subset. The other subspaces in
the tree of wavelet packet coefficients constitute a refinement of this decomposition.

2. ALGORITHMS FFOrR COMPRESSION

Let = be a vector in RN with coordinates determined up to some fixed precision. We wish to represent
x with fewer coefficients, as a linear combination of elements of our wavelet packet library. We will discard
components with negligibly small amplitude by some criterion, and we will try to arrange that the resulting
approximation differs minimally from the original.



This procedure is an orthogonal projection of x onto a lower dimensional subspace, and is therefore linear.
The choice of subspace will contain some of the information lost by the projection. Any choice of library
will result in some improvement in the efficiency of the representation. We can adjust our library, however,
to take advantage of a priori knowledge about the signal, such as its bandwidth, or the relative importance
of certain frequencies.

For a given library, we seek the most efficient representation of z by trying to minimize the information
content of the representation. There are several ways to measure this, depending upon the application: we
list a few below.

Measures of information. Define an additive measure of information on [? to be a functional M satisfying
M(x x y) = M(x) + M(y), and M(0) = 0. Here [2 x [2 = [?; any fixed isomorphism will do. Any such
measure may be minimized over a family of orthogonal bases of R C i2. Furthermore, since RY factors into
a cartesian product of N one-dimensional spaces, we see that evaluating an additive measure of information
requires O(NN) operations. Three useful examples of M are listed below.
* Entropy. The Shannon-Weaver entropy of a sequence z = {z;} is H(z) = — Zj pjlog p;, where p; = ll\iﬂr]\\‘_z
This is not an additive measure of information. However, the [?log[? “norm” A(z) = —>_ ; 2] log |z |?
is. The relation H(z) = ||z|~2A(x) + log||z||* insures that minimizing the latter minimizes the former.
For this entropy, exp H(z) is related to the number of coefficients needed to represent the signal to a fixed
accuracy.
Number above a threshold. Set an arbitrary threshold € and count the elements in the sequence z whose
absolute value exceeds e. This is an additive measure of information. It gives the number of coefficients
needed to transmit the signal to accuracy e.
* Bit counts. Choose an arbitrary € > 0 and count the (binary) digits in [|z;|/€]. Summing over j gives an
additive measure of information. It corresponds to the number of bits needed to transmit the signal to
accuracy e.

Choosing a basis. We search through the family of bases to find the one that minimizes the additive
measure of information. Since the measure is additive across cartesian products of subspaces, we can examine
orthogonal subspaces independently, minimize locally, then recombine the minimal pieces into a best basis
for the whole space. In the wavelet packet case, these decompositions are organized as a homogeneous tree
in which a node is the cartesian product of its children. There the search for a global minimum for any M is
a sequence of comparisons beween a node and its children, followed by a depth-first search of the tree for the
nodes which beat all basis subsets of their descendents. For any M, in a homogeneous tree with N nodes,
minimizing takes O(N log N) operations.
* Best level. Define level m of the representation of x to be the collection of wavelet packet coefficients of
x obtained by applying exactly m convolutions of p and ¢, in all possible orders. It is easy to see that
a level is a basis set. For expansions down to L levels, choose that m for which M is minimal. This is
a generalization of traditional subband coding, which would always choose the bottom or Lth level after
deciding (in advance) what the optimal filter and number of levels should be. Since subband coding works
so well, we expect good results even with this simple algorithm.
* Restricted best basis. Given the complete rectangle of wavelet packet coefficients down to some level,
exclude certain coefficients for statistical or other reasons. For example, wavelet packets whose main
frequencies are above the Nyquist frequency may be ignored. Search the remaining coefficients for the
basis subset minimizing M on their span.
Best basis. Search the entire collection of basis subsets for the one in which z has an M-minimal repre-
sentation.
* Best basis in the time domain. We can conjugate the wavelet packet algorithm by the discrete FFT
to obtain an order N log N time-domain algorithm. This is exactly analogous to finding the windowed
Fourier transforms at all dyadic scales, with the windows being the scaled bump functions wg, 4,0 translated
appropriately.
Best basis in both time and frequency. Nothing prevents us from searching both the time and frequency
domains for the M-minimizing representation. The transmission cost is one extra bit to distinguish
between the two methods. The encoding time is tripled, and the decoding time is at most doubled.



Discarding negligible coefficients. Several methods exist for deciding which coefficients in an optimal
basis are negligible. Of course, this decision is intimately related to the choice of information measure M.

*

*

Absolute cutoff. Fix e > 0, and treat as negligible any coefficient ¢ with |¢| < e. The number of these will
be maximized if we use “number of coefficients above a threshold” for the measure of information.
Relative energy. Fix 0 < e < 1, and discard any coefficient ¢ for which |c[? < ¢[|z||?. One may also use
weights, and local or windowed measures of energy.

Entropy criterion. Since exp H(z) is a measure of the number of coefficients needed to determine the
signal, we may define the average energy of a significant coefficient to be ||x||? exp —H(x). This has the
convenient form exp(—\(z)/||z||?) in terms of the [?log? norm A\. We may choose 0 < ¢ < 1, and declare
negligible any coefficient ¢ for which |c|? < eexp(—A(x)/||z||?). The appropriate entropy to use is the
minimum achieved by a basis selection using M = . This will maximize the cutoff energy and therefore
minimize the number of retained coefficients for each e.

Decreasing rearrangements and fized percentages. If we are allowed to retain only a fixed fraction of the
bits in the original signal, we may sort the coefficients of any optimal representation in decreasing order
of absolute value and then keep only as many of the largest as we can afford, discarding the rest. An
optimal basis for this method is one in which a decreasing rearrangement decreases at the maximal rate.
Observe that Shannon-Weaver entropy, and every additive measure of information, is invariant under
rearrangements.

3. SOME RESULTS

Various combinations of the above techniques have been applied to acoustic signals including speech and

music, seismic data, fluid velocity measurements, and digitized pictures. In addition, some pseudodifferential
operators written as matrices were “compressed” by finding their sparsest matrix representations.

Acoustic signals. Speech signals were recorded and compressed by various methods. As described in [W1],
the sound quality degrades gracefully down to bit rates around 1 kbps.

*

Best level with many samples. We start with speech sampled at 22050 8-bit linear samples per second, or
176.4 kbps. We construct the best-level representation from among 15 levels of a 32768 sample segment,
using the threshold criterion. At 14 kbps, distortion is essentially undetectable.

Best basis with many samples. Again starting with 176.4 kbps sampling, with phrases of 32768 8-bit
samples, the best basis representation by the entropy method allows us to discard all but 4.5 kbps with
good quality, although there is some distortion. No filtering or other spectrum modification was done.
Best basis with few samples. Using 8012 samples per second and recording 8-bit u-law samples with a
standard CODEC gives an initial rate of 64.1 kbps. Using 256 sample windows and the best basis by the
entropy criterion, this reduces to 14 kbps with very good quality and 4 kbps with reasonable quality.
Dependence upon filter length. Longer filters give better compression with less distortion. This is partic-
ularly noticeable in the best level experiments.

Preliminary results using L? distortion estimates suggest that best-basis compression algorithms are com-

petitive with the state of the art in signal processing. Further experiments, for example to quantify the
subjective distortion, are needed to judge the practical value of the method.

Pictures. We prepared a digitized ray-traced image rich with textures and varying scales. The resolution
was 256 x 256 pixels, with 8 bits of gray level per pixel. The picture was expanded in coefficients with respect
to two-dimensional tensor-product wavelet packets.

*

Best basis, keep specified fraction. After choosing the best basis by the entropy criterion, the coefficients
were sorted in decreasing order of absolute value. The picture was reconstructed from a specified fraction
of the largest coefficients. Distortion was unnoticeable above 1 bit per pixel, becoming objectionable
around 0.4 bits per pixel.

Dependence upon filter length. Longer filters give better results, particularly at features with sharp curved
boundaries. The low resolution contributed to poor results at low bit rates.

Visibility criterion. We used the luminance visibility table of the draft JPEG picture compression stan-
dard. Wavelet packet amplitudes with a given frequency were weighted by the visibility coefficients of this
table, which is intended to be used with block discrete cosine transforms. This weighting ignores scale,



but even so it improves the subjective distortion at high compression ratios. The results suggest further
experiments to determine the actual visibility of wavelet packets.

Flow velocity. One-dimensional data from a hot wire velocity probe was expressed in the best basis and
reconstructed from a small number of the largest coefficients. Major features of the signal could be recognized
at compression ratios of 50 to 700. Selecting wavelet packet coefficients by frequency resulted in incremental
reconstructions showing features at different scales.

Turbulence pictures. Gray scale digitized photos of turbulent flow were treated as the pictures above. By
reconstructing pictures from certain ranges of coefficients, particular features are isolated. These features
may be isolated by scale, frequency, and position, the three indices of wavelet packet coefficients.

4. COMPARISON WITH PREVIOUS RESULTS

Wavelet methods. Wavelet packet coefficients represent signals at least as efficiently as wavelet coeffi-
cients. The search for the best wavelet packet basis includes the wavelet basis. However, the wavelet packet
algorithm has complexity O(N log N) versus O(N) for wavelets. Certain operators, i.e., those with smooth
but oscillatory kernels, will not compress in the wavelet representation. Likewise, smooth oscillatory signals
like speech or music will compress significantly better in the wavelet packet basis.

Sub-band coding methods. With perfect reconstruction filters, this is a special case of wavelet packet
methods, in which we always choose the bottom level. The best-level wavelet packet algorithm must be
at least as good, although experiments with speech suggest that 2 or 3 of the levels will be chosen quite
consistently.
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