Accelerating Monte Carlo simulations of radiation therapy dose
distributions using wavelet threshold de-noising

Joseph O. Deasy?
Department of Radiation Oncology, Mallinckrodt Institute of Radiology, Washington University School of
Medicine, St. Louis, Missouri 63110

M. Victor Wickerhauser
Department of Mathematics, Washington University, St. Louis, Missouri 63110

Mathieu Picard
Ecole Polytechnique, Palaiseau, France

(Received 30 August 2001; accepted for publication 15 July 2002; published 30 September 2002

The Monte Carlo dose calculation method works by simulating individual energetic photons or
electrons as they traverse a digital representation of the patient anatomy. However, Monte Carlo
results fluctuate until a large number of particles are simulated. We propose wavelet threshold
de-noising as a postprocessing step to accelerate convergence of Monte Carlo dose calculations. A
sampled rough functiofsuch as Monte Carlo noisgives wavelet transform coefficients which are
more nearly equal in amplitude than those of a sampled smooth function. Wavelet hard-threshold
de-noising sets to zero those wavelet coefficients which fall below a threshold; the image is then
reconstructed. We implemented the computationally efficient 9,7-biorthogonal filters in the C lan-
guage. Transform results were averaged over transform origin selections to reduce artifacts. A
method for selecting best threshold values is described. The algorithm requires about 336 floating
point arithmetic operations per dose grid point. We applied wavelet threshold de-noising to two
two-dimensional dose distributions: a dose distribution generated by 10 MeV electrons incident on
a water phantom with a step-heterogeneity, and a slice from a lung heterogeneity phantom. Dose
distributions were simulated using the Integrated Tiger Series Monte Carlo code. We studied thresh-
old selection, resulting dose image smoothness, and resulting dose image accuracy as a function of
the number of source particles. For both phantoms, with a suitable value of the threshold parameter,
voxel-to-voxel noise was suppressed with little introduction of bias. The roughness of wavelet
de-noised dose distributioriaccording to a Laplacian metjigvas nearly independent of the num-

ber of source electrons, though the accuracy of the de-noised dose image improved with increasing
numbers of source electrons. We conclude that wavelet shrinkage de-noising is a promising method
for effectively accelerating Monte Carlo dose calculations by factors of 2 or more20@
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[. INTRODUCTION Several manufacturers of radiation therapy treatment
planning systems have recently announced plans to develop
Radiation therapy utilizes directed beams of radiation to steryC-based dose calculation algorithms. However, MC algo-
ilize tumor cells via DNA damage. Accurate pretreatmentrithms are typically much slower than the currently available
patient-specific dose calculations are essential tools for optput less-accurate algorithms. MC run-times are determined
mizing radiotherapy field shapes and intensities to maximizgy the need to produce smooth averages of the energy depo-
the probability of sterilizing the tumor while minimizing nor-  sjtion events for treatment plan evaluation. In this article, we
mal tissue damage. Monte Cari®IC) dose calculation show how MC calculations can be effectively accelerated
methods, which can accurately model radiation fields in theising a wavelet threshold de-noising-based algorithm. This is
presence of complex anatomy, treatment aids, and radiatiog general technique which can potentially be applied to any
source geometries, are clearly the most general and accuraC dose calculation algorithm.
class of dose calculation engines developed to tiath1C De-noising of MC electron beam dose distributions has
methods for photon beams work by tracing the paths opreviously been discussed using digital filtering technidues.
source photons, scattered photons, and secondary electrolise basic rationale for de-noising is that radiation transport
through computed-tomography-derived patient anatomy reps essentially a diffusive process which can be said to operate
resentations according to known scattering and energy depaen sharp imagesfield shapeg thereby producing dose im-
sition probabilities. The energy deposition events are binnedges[two-dimensional(2D) dose cross sections from full
into cuboid voxels, the energy deposited per unit mass beinthree-dimensional3D) distribution§ which are smoother.
taken as the estimate of the dose which would be depositetherefore a postcalculation method of removing statistical
under actual irradiation conditions. “noise” from dose images, but without introducing unac-
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Source 0.2 cm on each side. The dose distribution was padded with
T zeros before wavelet de-noising to avoid edge distortions.
Air
% 100 cm B. Wavelet de-noising

To reduce Monte Carlo noise fluctuations, we use a modi-
fied wavelet thresholdde-noising algorithh with the so-
called 9,7-biorthogonal filters. We suppose that the simulated

water| 11 ¢ dose distributiord consists of two partg)=s+n, wheresis
l‘ 10cm 'L the smooth function we would obtain in the limit by running
the simulation forever, andis the rough function giving the
water error in our short simulation. The datarepresent the dose
sums, giving an array of values that is then linearly trans-

formed into its discrete wavelet coefficients, which we call
Fic. 1. The digital electron beam step-heterogeneity phantom used as inpl\W(d) = W(S+ n) = W(S) + W(n)

to the ITS MC calculations. Source electrons of energy 10 MeV are trans- .
ported through air to the water surface and form a 10-cm-diam radiation A key property of the wavelet transform is that a Samp|Ed

field. Dose is scored in a plane transverse to the beam axis, in voxels dough functionn gives valuesi/(n) which are more nearly
cross section 0.2 cm0.2 cm and thickness 0.1 mm, at a depth of 2.55 cm. equal in amplitude than those of a sampled smooth function

s. If nis relatively small compared tg then any sufficiently
small wavelet coefficient is more likely be part ofthans.

By picking a positive threshold and settingw(d);=0 if
|W(d);|<e, we preferentially attenuate time or noise com-
onent ofd. The array reconstructed from the surviving co-
fficients is therefore a closer approximationstthan was

ceptably large biagdefined as deviation from the true dase

is feasible and desirable. The potential of producing clini-
cally usable dose distributions, i.e., with low enough noise
with much shorter calculation times, makes MC de-noisin

attractive for clinical implementation. d=s+n. For the key property to hold, it is necessary that

we app_ly_ wavelet threshol_d de—nq|§|ng tegh_nlqugs to thqhe wavelet transform use a wavelet that is about as smooth
MC de-noising problem. Unlike traditional digital filtering ass. and thus smoother than

techniques, wavelets adapt to the sharpness of local features
and are potentially less likely to introduce unacceptable dish
tortions of the true underlying dose distribution.

"Various wavelet bases can be used. We present results
ere using the so-called 9,7-biorthogonal filters. The bior-
thogonal family has attractive computational proper{iis-
cussed in the followingwhich makes it very efficient to

IIl. METHODS implement. The 9,7-biorthogonal filter was chosen as the ba-
A. Monte Carlo simulations sis of the JPEG2000 image compression standard for con-

We used Monte Carlo simulations produced with the ITStH1OUS value still image¥. As one might expect, compres-
sion and de-noising performance are intimately related, as

(Integrated Tiger Systenpackagel. Two-dimensional slices both depend on separating essential image features from

of dose are extracted from the resulting 3D dose d|str|but|on§mall rough details. “Spin-cycling,” which is not in the
for de-noising.

. JPEG2000 standard, refers to choosing nine different
Two test geometries are used here, one for electron beam

tests and one for photon beam tests. A “step-heterogeneit nearest-neighbor points in the image as computational cen-

Y, .
phantom, with a 1-cm-thick slab of water on the surface of a:[ers for the wavelet transform, and averaging the restits

water mediunm(shown in Fig. 2 was simulated with 10 MeV IS not the same as averaging dose dlstrlbub!oﬁsehmmary
L tests(not shown indicated that the use of spin-cyclifigsed
electrons started from a source 100 cm in air from the sur; e .
: . for all results presented in this papeeduces small artifacts
face of the phantom. The source particles are emitted uni-
L . ) introduced by the wavelet transform.
formly over a truncated cone resulting in a circular field of
diameter 10 cm at the phantom surface. Dose was scored in o o
voxels which are 0.2 cm wide in the scoring plan and 0.1 cmC' Approximations of dose distributions
thick in the depth direction, at a depth of 2.55 cm. Monte Carlo radiotherapy simulations produce sampled
To test the use of de-noising with photon beams, a chaldose distributions on a regular grid. A simulated two-
lenging lung-like test phantofris used which consists of: dimensional slice of a three-dimensional dose distribution on
slabs of wate(depth 0—3 cm aluminum(3-5 cm), homo- an MXN grid is given by a non-negative functiof
geneous lung-like medigo—12 cm), and wate12—32 cm.  =f(m,n), where G<=m<M and 0<n<N are integer indi-
The 6 MV spectrum specified for this tBstas used by the ces. Such functions may be approximated by distributions
ITS code. The beam was collimated to 5xmcm by an  ¢(x,y) defined on a continuumx,y<1 as a superposi-
upstream lead collimator. Photons, scattered photons, artibn of basic distributionsb,,,,= ¢mn(X,y) concentrated near

secondary electrons were transported through vacuum to thiien/M,n/N), given by

phantom surface. Secondary electrons were transported until M=1 N—1
kinetic energy dropped below 100 keV, Wher_eupon_energy B(Xy)= E E £(m,N) b (X,Y).
was deposited on the spot. Dose was scored in cubic voxels m=0 N=0
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1 r r T T T TasLE |. 9,7-biorthogonal analysis filtets, gand their inverse, or synthesis
filtersh’, g'.
0.8}
, k h(k)=(-1)*g’ (k) k g(k)=—(=1)*n"(k)
0.6} 1 4,4 0.037 828455506 99 —4, 2 0.064 538 882 628 938
! —3,3 —0.02384946501938 —3,1 —0.040689 417 609 558
0.4l -2,2 —0.11062440441842 —-2,0 —0.418092 273222212
-1,1 0.377 40285561265 -1 0.788 485 616 405 664
02 0 0.852 698 679 009 40
o) TPATE & Pt o NN 4 S R
02 Hereh=h(n) andg=g(n) are the filter sequences defining
e the 9,7-biorthogonal wavelets. Table | gives their values. The
04 index range$—4,4] and[ —4,2] have 9 and 7 indices, respec-

0 20 40 60 80 100 120 tively. Before summing, we extend the original signab a

Fic. 2. 9,7-biorthogonal wavelets. Examples of 9,7-biorthogonal symmetriqonger signalx by WhoIe-sampIe symmetric reflecticas de-
wavelets on 120 gridpoints. The wavelets differ in their central location andfined by

width.
x(k) if 0sk<K
X(k)= .
. . , . X(2K—2—-k) if Ksk<2K-1.
The representeg will be as smooth as its basic densities, o o
regardless of, so for this work we chose 9,7-biorthogonal X is thenextended periodicallpy definingX(k+[2K—2])

basic densities, with two continuous derivatives, that are “al-=X(k) for all integer indices k. The result is
most” confined to the unit square. (2K —2)-periodic and symmetric with respect to reflection

about indices 0 an& — 1, with X(k) =x(k) for the original
indicesk=0, 1,...,K—1. The output sequende(k) is also
D. Efficient coding of fluctuations as wavelets (2K —2)-periodic and defined at all integeksbut because

Regions of nearly constant dosage might span many griH“e filters are symme_tric_, a complete set of _output values may
points, with relatively small fluctuations on various scales %€ found at just the indices 0, 1,K~1. This allows com-

The amplitude and scale of each fluctuation can be used feHtation ofF in about & operations. _
decide what is noise and what is signal. As described in Ref. 12, the lifting scheme reorganizes the

We modeled fluctuations by almost independent waveésOmputation of to save operations. Witkextended (X as
functions of different sizes and positions. By approximating€fore.F is computed sequentially in p!ace as follovibe
the original dose distribution as a superposition of biorthogoSYMpPO! “—" means “takes the value off.
nal filters, we can use the fagliscrete wavelet transform 1. X(K)«—X(k) + a[ X(k—1)+X(k+1)], for all oddk
algorithm* with 9,7-biorthogonal symmetric wavelets, for in the range &<k<K,
computing the scale and amplitude of fluctuations. A repre- 2. X(k) < X(k) + B[ X(k—1)+X(k+1)], for all evenk
sentative few of these are graphed on the same axis in Fig. i the range 8=k<K,

For computational efficiency, we used théfting 3. X(K)«—X(K)+ y[X(k—=1)+X(k+1)], for all oddk
schemé? To reduce the bias arising from the arbitrary in the range 8ck<K,
choice of grid origin, we averaged the results of de-noising 4. X(K)«—X(k) + 8[ X(k—1)+X(k+1)], for all evenk
the original image and the eight images shifted by one gridn the range 8=k<K,
point: left, right, up, down, and four diagonal shifts. This is 5. F(k)«X(k)/¢, for all oddk in the range 8<k<K,
referred to here as “spin-cycling.” 6. F(k)—¢X(k), for all evenk in the range 6<k<K.

The coefficientdw,,7,6,} are given in Table Il. The result-
E. Discrete wavelet transforms ing sequencé is the same as the one defined by Hg, but

For two-dimensional and three-dimensional arrays, thé"f takes only K operations to compute, less intermediate

transform is applied separately along each dimension, sgiorage, and fewer data exchanges.
only the one-dimensional transform will be descriBédet
x=x(k), O=<k<K be the array ofK values to be trans-

T IIl. Lifting coefficients for 9,7-biorthogonal analysis filters.
formed. We generate a new arfay F(k), 0<k<K, by the ABLE g g y

following rule: Coefficient Value
4 _ _ a —1.586 134 342 059 92
2 h(n)X(k—=n), if k is even B —0.052 980 118 572 96
n=-4
_ y 0.882 911 075530 93
F(k)= 2 _ _ : (1) 5 0.443 506 852 043 97
> g(n)X(k—=1—n), if k is odd L 1.149 604 398 860 24
n=—4
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To invert F, we use{—a,—B8,—v,— 6, 1/} and apply the
operations in reverse order:

1. Y(K)—Y(K)/¢,
<K,

2. Y(K)+—Y(k),

for all evenk in the range 6k

for all oddk in the range 8<k<K,

3.Y(K)—Y(K)—d[Y(k—=1)+Y(k+1)], forall evenk
in the range k<K,
4. Y(K)—=Y(k)—y[Y(k—=1)+Y(k+1)], for all oddk

in the range &ck<K,

5. F Y{K)«—Y(K)—B[Y(k—1)+Y(k+1)], for all
evenk in the range k<K,
6. F 1(K)—Y(k)— e[ Y(k—1)+Y(k+1)], for all odd
k in the range 8<k<K.
The analog of Eq(1) for F~tis
Fln)= > h(2k—n)Y(2k)
keKo(n)
+ > g (2k—n)Y(2k+1), ()
keKy(n)

whereY is the same extension gfasX is of x. The inverse
filters h’, g’ are given in Table I. The index ranges are
Ko(n)={k:—4=<2k—n<2} and K;(n)={k:—4<2k—n
<4}, forn=0,1,..K—-1.

Each even-indexed elemeR{2k) is a weighted average
of x over nine grid points neark? with the weights being the
filter coefficients.

To compute a one-dimensional wavelet transform on
signalx, we applyF, retain the odd-indexed values, extract
the even-indexed values to another array of about half th
length, call that new array, and repeat untik contains just
a single number:

1. Letj=1.

2. Computey(k)=F(k), k=0,1,...K—1.

3. Extract Dj(k)=y(2k+1) for all indices k with O
<2k+1<K.

4. Replacex(k)=y(2k) for all indices k with 0<2k
<K.

5. ReplaceK—K/2 if K is even, orK—(K+1)/2 if K is
odd. This the number of elements writtenxat step 4.

6. If K>1, then incremenj«+j+1 and go to step 2.
Otherwise, stop.

At the termination of the above-given algorithm, the discrete
wavelet transform of the original signal is stored in the arrays

D;,D5,....Dy, plusy(0). Thevalues inD; are the ampli-
tudes of fluctuations of the signal at scales bfy#id points;
y(0) contains the average value of the sigidak thedepth
of the wavelet transform, the maximum value jofn the

above-given algorithm, and is the least integer such tHat 2

=K.

As mentioned, 9,7-biorthogonal wavelets can be applied
in a fully 3D manner. We are only reporting here, however,

Deasy, Wickerhauser, and Picard: Accelerating Monte Carlo simulations

2369

F. Approximation and de-noising

We define thahresholding function ¥ T [x] for a func-
tion x on M by lettinga=max{|x(m)|:me M} and then setting

0 if [x(m)|<ea

T =

otherwise.

Let € be a fixed positive parameter, leeM be the origin
in the gridM, and letr e M be some fixed grid point. Des-
ignate the wavelet transform df by W(f)={W(f),:m
e M}, with W(f ), being the single average coefficient, pre-
viously calledy(0). We perform the following algorithm:

1. Translate the functiohto f,, so thatf (0)=f(r).

2. Compute the wavelet transforyp—W(f,).

3. Apply e-thresholdingz, (m)«< T(y,(m)) for all m#0.
4. Compute the inverse wavelet transfoxm—W~1(z,).
5. Translate the functior, to X, so thatx(r)=x,(0).

We now letO be the origin ofM and its nearest neighbors,
and then average together all tk's obtained for different
choices ofr e O (“spin-cycling”). In the one-dimensional
case,0={—1,0,+1}, while in the two-dimensional case
is the nine-point set produced by permuting such offsets in
both directions, resulting in eight nearest neighbors and the
center point. Denote b¥(f,e) the average of the's pro-
duced by all the shifts of the originél

Suppose thad=s+n is an approximation to the true
dose distributiors. We may assume thatis known because
we have run a Monte Carlo simulation long enough to ap-

aoroximate it adequately, referred to as the “target.” We mea-

sure rms error as the square root of the mean difference
Qetween the dose values and the taftmt noise dose val-
ues, including only those voxels where the target dose value
is greater than 50% of the maximum target dose. Variance
error is defined as the square of the rms error. Dose values
are variance stabilize@inade closer to normally distributed

by taking the square root before wavelet de-noising and
squaring after de-noising, as explained in Ref. 6. This gives
an estimator fos from E(/d, €)2. The threshold that mini-
mizes the rms erroflE(\/d,e)?—s| for each of the short
segmentsl that comprise the long run is found by exhaustive
search, as further discussed in the following. Exhaustive
search is necessary due to multiple local minima. The aver-
age of these thresholds is an estimator for the best threshold
to use for all MC simulations with similar noise and image
characteristics.

Estimating noise reduction is not straightforward, because
de-noising introduces nonrandom err@&s. The standard
deviation of voxels between batches is a misleading mea-
surement of noise due to variations in bias. To quantify noise
reduction, we use the local second derivatikaplacian of

an imageg, computed using the five-point formula:

A(X,y)=9(x—1y)+g(x+1y)+g(x,y—1)
+g(X,y+ 1)_4g(X,y)

on the application to 3D dose distributions of a slice-by-sliceWe define “roughness” as the square root of the median of

2D approach.
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Fic. 3. Error vs threshold. The change in the rms error between a de-noiseflg. 4. Threshold determination. Best threshaldsalues according to the
image of 4 mil source electrons and the target image as the thre&fatd  minimum rms error criteria, determined by exhaustive search. The 192 mil

changed. source electron image is used as the reference. Eight simulations were run
for increasing numbers of source electrons. The solid line connects the mean
values of the best thresholds.

50% maximum dose cutoff. The median operator makes our
roughness metric nearly independent of the large values of
the Laplacian which occur near edges or other regions of h€ standard deviation of un-de-noised dose voxels greater
high second-derivative. Roughness is useful because it meH1an 50% of the maximum dose voxel was 2.7%. The thresh-
sureslocal roughness of the image, which is important for 0/d was 0.0839. The low noise target result used 192 mil
dose visualization. This differs from the rms error metric,SoUrce electrons. Figure 6 shows the mean interbatch voxel
which includes the effect of voxel-to-voxel fluctuations andStandard deviation of dose for voxels above 50% maximum
bias introduced by the de-noising procedure. Roughness [@0Se, determined from eight de-noised runs, and the ratio of
not a dose accuracy measure, but is introduced primarily tg'€an interbatch dose variance for the raw and de-noised MC
demonstrate the effect of wavelet de-noising, as further distesults. When the standard error of the de-noised MC is 1%,
cussed in the following. de-noising reduces variance by a factor of 8.5-9.5. Because
variance is reduced in a non-de-noised MC run inversely
proportional to the run time, it would require 8.5-9.5 as
many source particles without de-noising to achieve the
The total number of arithmetic operations required to ap-same interbatch consistency. However, this is not the same as
ply this de-noising algorithm in 2-D, including spin-cycling,
is about 336 operationémultiplications or additions per
dose grid point. For a typical three-dimensional dose distri-
bution of size less than 500 000 voxels, the total number of
operations required for de-noisingvithout counting input/
output operationswill be less than 200 mil arithmetic op-
erations. Given that current desktop computers are capable o]

G. Computational efficiency

0.4
several hundred million arithmetic operations per second, de- 02
noising computation time for this algorithm is expected to be ‘
neglible in a clinical setting. 8
H. Results
0.04
Figure 3 shows the improvement in the rms difference 002
between a de-noised image of 4 mil source electrons and the
target image as the threshalé) is changed, showing mul- 0
tiple local minima. In Fig. 4, we plot best thresholdsnd -0.02
the rms error compared to a target with 192 mil source elec- P

trons. With more source electrons, the MC simulation be-
comes less noisy, weaker features in the signal become stac. 5. Electron beam de-noising. De-noising of the electron beam dose
tistically significant, and the best threshold decreases. distribution with 4 mil source electronga) the low-noise 192 mil source
The r It of de-noisin f th lectron m i ri_ele_ctron _result(_b) the hlgh‘-n0|se 4 mil source electron restitt) theT de-
. € ?SUt 0. de-nois g of the .eeCt 0 pea. dose dist noised high-noise result with a best threshold of 0.0839,(dnthe differ-
bution with 4 mil source electrons is shown in Fig. 5. A color

’ ) i - i . ence of the de-noised and low-noise dose distributions. The dose distribu-
version is available via the EPAPS link to this document. tions were scaled such that the maximum low noise dose value is one.
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Fic. 6. Dose calculation noise reduction using de-noising. The solid curve
(left axig) gives the mean standard deviation of dose for voxels above 50%-IG. 8. Roughness of de-noised electron beam images. Roughness is plotted
maximum dose, determined from eight runs. The dashed ¢tighe axis is for raw images(solid line) and de-noised imagdslashed ling The value
the ratio of dose variance for the raw and de-noised MC results. Again, théor the 192 million source electron target image is shown as a dotted line.
mean variance is for the same voxels and the same eight runs. When ttfecording to this metric, even the de-noised 2 mil source electron image is
standard error is 1%perhaps the magnitude needed for clinical reyidven less rough than the target image. However, de-noised dosimetric accuracy
the ratio of the variances is 8.5—-9.5. This represents a computational accglecreases with decreasing source electrons.
eration of the same magnitude to reduce noise to a clinically acceptable
level.

image(open squares, as a ratiéll results are averages over
all voxels greater than 50% maximum dose, for eight MC
an improvement in dose accuracy. The ratio of variance erromuns, with 2, 4, 8, or 16 mil source electrons.
for the de-noised and un-de-noised slice dose distributions, The roughness metric for the electron beam phantom is
for 4 mil source electrons, is 4.96. plotted in Fig. 8. Roughness is defined primarily to under-
Figure 7 plots three different performance metrics for MCstand the effect of wavelet de-noising. We note that the
de-noising applied to the electron beam phanté@:mean roughness of the de-noised imagasing decreasing thresh-
interbatch variance between batches of dose valopen  olds) is nearly constant, independent of the number of source
circles, plotted as the ratio of values for the raw and de-<lectrons, and that it is similar to the target image roughness.
noised results (b) the mean squared error with respect to theLow-pass filtering techniques would typically result in
“true” (low-noisg@ image (closed circles, also plotted as a roughness values which decrease with the number of source
ratio), and (c) the maximum dose deviation from the true electrons. However, as the number of source electrons in-
creases the de-noised image more closely approaches the true
image.
De-noising performance for the lung-like photon beam
- phantom is also encouraging. We applied 2D de-noising in

9 m‘*x\ Interbateh variance ratio planes which contain the beam axis. The midplane dose dis-
o 8 "‘*u-___ tribution is shown in Fig. 9(a) low noise(3.25 bil source
7‘5 N e photons, (b) high noise(250 mil source photons(c) de-
g e noised high noise, an¢t) low noise minus de-noised. An
3

average best threshold of 0.032 75 was used. The mean stan-
dard deviation of voxels from one batch to the next was
2.4% of the dose maximum for the high noise runs, 0.66%
for the low noise target, and 1.19% for the de-noised high
noise run. The effective acceleration measured by reductions

Variance error ratio

= - == B e e oL I . . . .

z St < in rms fluctuations is therefore 4.0 for this example. The
" Max error ratio roughness metric is more representative of the differences in
o1 T - : - - - A image smoothness: roughness was 0.048 for the high noise

Source electrons (millions) image, 0.018 for the low noise image, and 0.0096 for the

. _ _ de-noised image. The effective acceleration in terms of the
Fic. 7. De-noising performance, as measured by three different metrics:

mean variance of dose values between batéhgsn circley mean squared variance error ratio is 1.97.

difference with the “true” (low-noise image (closed circley maximum

deviation from the true imagéopen squarés All points are ratios:(raw I1l. DISCUSSION

image/(de-noised image All results are averages over all voxels greater . -

than 50% maximum, for eight MC runs, with 2, 4, 8, or 16 mil source 1 n€ Monte Carlo method for treatment planning is itself a

electrons. statistical estimation technique, with random and systematic
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statistical fluctuations of the same sign over a shared neigh-
borhood of voxels. Clearly, the choice of de-noising planes
affects noise removal in such “clumps.” More importantly,
such clumps, when they do occur, are unlikely to be com-
pletely smoothed out by, say, doubling the number of Monte
Carlo histories. New histories are unlikely to introduce sta-
tistical fluctuations which would have a structure which just
so happens to be the same in shape but the opposite in mag-

4 8 12 16 20 4 8 12 16 20
depth (cm) depth (cm)

o 0.04 nitude as the original “clump.” Hence, “clumping” is an
0.02 occasional hazard of MC-based treatment planning, and is
0 not particularly a de-noising problem per se.
i i B Wavelet de-noising, or other de-noising techniques, could
4 8 H2 HE o0 4 8 12 16 20 potentially substantially reduce the cost and increase the ef-
depififersy depth (cm) 004 ficiency of MC-based radiation therapy treatment planning.

This efficiency gain could produce both lower operating
Fic. 9. De-noising of the photon beam phantom dose for a beam-aligne€0Sts and, perhaps more importantly, more time for potential

midplane:(a) low-noise(3.25 bil source photons(b) high-noise(250 mil improvements of the treatment p|an or other important clini-
source photons (c) de-noised high-noise, an@) low-noise minus de- cal activities

noised. The dose distributions were scaled such that the maximum low noisé™ . . .
dose value is one. A color version is available via the EPAPS link to this  Different metrics emphasize different aspects of de-

document® noising. Accuracy is easy to measure in a mean-square sense
(variance error;, but could be significantly affected by high-
frequency rolloff of voxels near steep gradients. De-noising
error components due to unknowns or errors in incidenpr smoothing methods typically perform worst near edges or
phase space specifications, computed tomography voxel vatiscontinuities, effectively introducing small geometric dis-
ues, material properties, etc. Because transport diffusiotortions. Wavelet de-noising appears superior to frequency-
makes true dose distributions more smooth than MC voxelbased de-noising in this resp&dtpwever, bias is still intro-
to-voxel statistical fluctuations, de-noising of voxel sums ofduced preferentially near edgésee Fig. 9. Such slight
energy deposition events is superior to using the raw sumgeometric distortions may not be significant in treatment
De-noising of MC generated data, which can potentially beplanning, as other geometric uncertainties may dominate.
accomplished in a variety of ways, is a natural last step for The results show that the proposed wavelet threshold de-
the MC dose calculation technique, and represents a newoising algorithm with spin-cycling decreases the computa-
type of variance reduction method. tional time needed to compute smooth, low-noise MC dose
As shown in Fig. 7, wavelet de-noising improves both thedistributions. We conclude that de-noising of MC-generated
rms dose deviation and the maximum dose deviation frontlata based on wavelet threshold de-noising could potentially
the “true” dose distribution. However, extensive dosimetric provide significant efficiency gains for clinical radiotherapy
analysis of clinical examples will be required to determinetreatment planning. However, clinical validation will require
the MC noise level which must be attained prior to de-much more extensive testing with a range of dose distribu-
noising to yield acceptable clinical accuracy with the leastiions based on individual patient anatomy as represented by
run time. Relatively smooth de-noised dose distributions cagomputed tomography scans. The computationally efficient
be obtained even with rather large initial dose standard dewavelet de-noising algorithm investigated here, based on the
viations. This is reflected in the small and nearly constan®,7-biorthogonal filters, including a computationally efficient
roughness values plotted in Fig. 8. Wavelet de-noising ofifting scheme and spin-cycling, is attractive for further clini-
high-noise images is of course not perfectly accurate, and igal testing, or as a basis for further algorithm improvements.
most likely to disagree with target doses in regions of rapid
dose variation, as shown in Figs. 5 and 9. However, com-
pared to conventional digital filtering techniqu?eﬁ;e fast ACKNOWLEDGMENT
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