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The Monte Carlo dose calculation method works by simulating individual energetic photons or
electrons as they traverse a digital representation of the patient anatomy. However, Monte Carlo
results fluctuate until a large number of particles are simulated. We propose wavelet threshold
de-noising as a postprocessing step to accelerate convergence of Monte Carlo dose calculations. A
sampled rough function~such as Monte Carlo noise! gives wavelet transform coefficients which are
more nearly equal in amplitude than those of a sampled smooth function. Wavelet hard-threshold
de-noising sets to zero those wavelet coefficients which fall below a threshold; the image is then
reconstructed. We implemented the computationally efficient 9,7-biorthogonal filters in the C lan-
guage. Transform results were averaged over transform origin selections to reduce artifacts. A
method for selecting best threshold values is described. The algorithm requires about 336 floating
point arithmetic operations per dose grid point. We applied wavelet threshold de-noising to two
two-dimensional dose distributions: a dose distribution generated by 10 MeV electrons incident on
a water phantom with a step-heterogeneity, and a slice from a lung heterogeneity phantom. Dose
distributions were simulated using the Integrated Tiger Series Monte Carlo code. We studied thresh-
old selection, resulting dose image smoothness, and resulting dose image accuracy as a function of
the number of source particles. For both phantoms, with a suitable value of the threshold parameter,
voxel-to-voxel noise was suppressed with little introduction of bias. The roughness of wavelet
de-noised dose distributions~according to a Laplacian metric! was nearly independent of the num-
ber of source electrons, though the accuracy of the de-noised dose image improved with increasing
numbers of source electrons. We conclude that wavelet shrinkage de-noising is a promising method
for effectively accelerating Monte Carlo dose calculations by factors of 2 or more. ©2002
American Association of Physicists in Medicine.@DOI: 10.1118/1.1508112#
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I. INTRODUCTION

Radiation therapy utilizes directed beams of radiation to s
ilize tumor cells via DNA damage. Accurate pretreatme
patient-specific dose calculations are essential tools for o
mizing radiotherapy field shapes and intensities to maxim
the probability of sterilizing the tumor while minimizing nor
mal tissue damage. Monte Carlo~MC! dose calculation
methods, which can accurately model radiation fields in
presence of complex anatomy, treatment aids, and radia
source geometries, are clearly the most general and acc
class of dose calculation engines developed to date.1–5 MC
methods for photon beams work by tracing the paths
source photons, scattered photons, and secondary elec
through computed-tomography-derived patient anatomy
resentations according to known scattering and energy d
sition probabilities. The energy deposition events are bin
into cuboid voxels, the energy deposited per unit mass be
taken as the estimate of the dose which would be depos
under actual irradiation conditions.
2366 Med. Phys. 29 „10…, October 2002 0094-2405 Õ2002Õ29
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Several manufacturers of radiation therapy treatm
planning systems have recently announced plans to dev
MC-based dose calculation algorithms. However, MC alg
rithms are typically much slower than the currently availab
but less-accurate algorithms. MC run-times are determi
by the need to produce smooth averages of the energy d
sition events for treatment plan evaluation. In this article,
show how MC calculations can be effectively accelera
using a wavelet threshold de-noising-based algorithm. Th
a general technique which can potentially be applied to
MC dose calculation algorithm.

De-noising of MC electron beam dose distributions h
previously been discussed using digital filtering technique6

The basic rationale for de-noising is that radiation transp
is essentially a diffusive process which can be said to ope
on sharp images~field shapes!, thereby producing dose im
ages @two-dimensional~2D! dose cross sections from fu
three-dimensional~3D! distributions# which are smoother.
Therefore a postcalculation method of removing statisti
‘‘noise’’ from dose images, but without introducing una
2366„10…Õ2366Õ8Õ$19.00 © 2002 Am. Assoc. Phys. Med.
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ceptably large bias~defined as deviation from the true dose!,
is feasible and desirable. The potential of producing cli
cally usable dose distributions, i.e., with low enough noi
with much shorter calculation times, makes MC de-nois
attractive for clinical implementation.

We apply wavelet threshold de-noising techniques to
MC de-noising problem. Unlike traditional digital filterin
techniques, wavelets adapt to the sharpness of local feat
and are potentially less likely to introduce unacceptable
tortions of the true underlying dose distribution.

II. METHODS

A. Monte Carlo simulations

We used Monte Carlo simulations produced with the I
~Integrated Tiger System! package.7 Two-dimensional slices
of dose are extracted from the resulting 3D dose distributi
for de-noising.

Two test geometries are used here, one for electron b
tests and one for photon beam tests. A ‘‘step-heterogene
phantom, with a 1-cm-thick slab of water on the surface o
water medium~shown in Fig. 1! was simulated with 10 MeV
electrons started from a source 100 cm in air from the s
face of the phantom. The source particles are emitted
formly over a truncated cone resulting in a circular field
diameter 10 cm at the phantom surface. Dose was score
voxels which are 0.2 cm wide in the scoring plan and 0.1
thick in the depth direction, at a depth of 2.55 cm.

To test the use of de-noising with photon beams, a ch
lenging lung-like test phantom8 is used which consists of
slabs of water~depth 0–3 cm!, aluminum~3–5 cm!, homo-
geneous lung-like media~5–12 cm!, and water~12–32 cm!.
The 6 MV spectrum specified for this test8 was used by the
ITS code. The beam was collimated to 5 cm35 cm by an
upstream lead collimator. Photons, scattered photons,
secondary electrons were transported through vacuum to
phantom surface. Secondary electrons were transported
kinetic energy dropped below 100 keV, whereupon ene
was deposited on the spot. Dose was scored in cubic vo

FIG. 1. The digital electron beam step-heterogeneity phantom used as
to the ITS MC calculations. Source electrons of energy 10 MeV are tra
ported through air to the water surface and form a 10-cm-diam radia
field. Dose is scored in a plane transverse to the beam axis, in voxe
cross section 0.2 cm30.2 cm and thickness 0.1 mm, at a depth of 2.55 c
Medical Physics, Vol. 29, No. 10, October 2002
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0.2 cm on each side. The dose distribution was padded
zeros before wavelet de-noising to avoid edge distortions

B. Wavelet de-noising

To reduce Monte Carlo noise fluctuations, we use a mo
fied wavelet thresholdde-noising algorithm9 with the so-
called 9,7-biorthogonal filters. We suppose that the simula
dose distributiond consists of two parts,d5s1n, wheres is
the smooth function we would obtain in the limit by runnin
the simulation forever, andn is the rough function giving the
error in our short simulation. The datad represent the dose
sums, giving an array of values that is then linearly tra
formed into its discrete wavelet coefficients, which we c
W(d)5W(s1n)5W(s)1W(n).

A key property of the wavelet transform is that a samp
rough functionn gives valuesW(n) which are more nearly
equal in amplitude than those of a sampled smooth func
s. If n is relatively small compared tos, then any sufficiently
small wavelet coefficient is more likely be part ofn thans.
By picking a positive thresholde and settingW(d) i50 if
uW(d) i u,e, we preferentially attenuate then, or noise com-
ponent ofd. The array reconstructed from the surviving c
efficients is therefore a closer approximation tos than was
d5s1n. For the key property to hold, it is necessary th
the wavelet transform use a wavelet that is about as sm
ass, and thus smoother thann.

Various wavelet bases can be used. We present re
here using the so-called 9,7-biorthogonal filters. The bi
thogonal family has attractive computational properties~dis-
cussed in the following! which makes it very efficient to
implement. The 9,7-biorthogonal filter was chosen as the
sis of the JPEG2000 image compression standard for c
tinuous value still images.10 As one might expect, compres
sion and de-noising performance are intimately related,
both depend on separating essential image features
small rough details. ‘‘Spin-cycling,’’ which is not in the
JPEG2000 standard, refers to choosing nine differ
nearest-neighbor points in the image as computational c
ters for the wavelet transform, and averaging the results~this
is not the same as averaging dose distributions!. Preliminary
tests~not shown! indicated that the use of spin-cycling~used
for all results presented in this paper! reduces small artifacts
introduced by the wavelet transform.

C. Approximations of dose distributions

Monte Carlo radiotherapy simulations produce samp
dose distributions on a regular grid. A simulated tw
dimensional slice of a three-dimensional dose distribution
an M3N grid is given by a non-negative functionf
5 f (m,n), where 0<m,M and 0<n,N are integer indi-
ces. Such functions may be approximated by distributio
f(x,y) defined on a continuum 0<x,y,1 as a superposi
tion of basic distributionsfmn5fmn(x,y) concentrated nea
(m/M ,n/N), given by

f~x,y!5 (
m50

M21

(
n50

N21

f ~m,n!fmn~x,y!.

ut
s-
n
of
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The representedf will be as smooth as its basic densitie
regardless off, so for this work we chose 9,7-biorthogon
basic densities, with two continuous derivatives, that are ‘
most’’ confined to the unit square.

D. Efficient coding of fluctuations as wavelets

Regions of nearly constant dosage might span many
points, with relatively small fluctuations on various scal
The amplitude and scale of each fluctuation can be use
decide what is noise and what is signal.

We modeled fluctuations by almost independent wa
functions of different sizes and positions. By approximati
the original dose distribution as a superposition of biortho
nal filters, we can use the fastdiscrete wavelet transform
algorithm,11 with 9,7-biorthogonal symmetric wavelets, fo
computing the scale and amplitude of fluctuations. A rep
sentative few of these are graphed on the same axis in Fi

For computational efficiency, we used thelifting
scheme.12 To reduce the bias arising from the arbitra
choice of grid origin, we averaged the results of de-nois
the original image and the eight images shifted by one g
point: left, right, up, down, and four diagonal shifts. This
referred to here as ‘‘spin-cycling.’’

E. Discrete wavelet transforms

For two-dimensional and three-dimensional arrays,
transform is applied separately along each dimension
only the one-dimensional transform will be described.11 Let
x5x(k), 0<k,K be the array ofK values to be trans
formed. We generate a new arrayF5F(k), 0<k,K, by the
following rule:

F~k!55 (
n524

4

h~n!X~k2n!, if k is even

(
n524

2

g~n!X~k212n!, if k is odd
. ~1!

FIG. 2. 9,7-biorthogonal wavelets. Examples of 9,7-biorthogonal symme
wavelets on 120 gridpoints. The wavelets differ in their central location
width.
Medical Physics, Vol. 29, No. 10, October 2002
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Hereh5h(n) andg5g(n) are the filter sequences definin
the 9,7-biorthogonal wavelets. Table I gives their values. T
index ranges@24,4# and@24,2# have 9 and 7 indices, respec
tively. Before summing, we extend the original signalx to a
longer signalX by whole-sample symmetric reflection, as de-
fined by

X~k!5H x~k! if 0<k,K

x~2K222k! if K<k,2K21.

X is thenextended periodicallyby definingX(k6@2K22#)
5X(k) for all integer indices k. The result is
(2K22)-periodic and symmetric with respect to reflectio
about indices 0 andK21, with X(k)5x(k) for the original
indicesk50, 1,...,K21. The output sequenceF(k) is also
(2K22)-periodic and defined at all integersk, but because
the filters are symmetric, a complete set of output values m
be found at just the indices 0, 1,...,K21. This allows com-
putation ofF in about 8K operations.

As described in Ref. 12, the lifting scheme reorganizes
computation ofF to save operations. Withx extended toX as
before,F is computed sequentially in place as follows~the
symbol ‘‘←’’ means ‘‘takes the value of’’!:

1. X(k)←X(k)1a@X(k21)1X(k11)#, for all odd k
in the range 0,k,K,

2. X(k)←X(k)1b@X(k21)1X(k11)#, for all evenk
in the range 0<k,K,

3. X(k)←X(k)1g@X(k21)1X(k11)#, for all odd k
in the range 0,k,K,

4. X(k)←X(k)1d@X(k21)1X(k11)#, for all evenk
in the range 0<k,K,

5. F(k)←X(k)/z, for all oddk in the range 0,k,K,
6. F(k)←zX(k), for all evenk in the range 0<k,K.

The coefficients$a,b,g,d,z% are given in Table II. The result
ing sequenceF is the same as the one defined by Eq.~1!, but
it takes only 5K operations to compute, less intermedia
storage, and fewer data exchanges.

ic
d

TABLE I. 9,7-biorthogonal analysis filtersh, g and their inverse, or synthesi
filters h8, g8.

k h(k)5(21)kg8(k) k g(k)52(21)kh8(k)

24, 4 0.037 828 455 506 99 24, 2 0.064 538 882 628 938
23, 3 20.023 849 465 019 38 23, 1 20.040 689 417 609 558
22, 2 20.110 624 404 418 42 22, 0 20.418 092 273 222 212
21, 1 0.377 402 855 612 65 21 0.788 485 616 405 664

0 0.852 698 679 009 40

TABLE II. Lifting coefficients for 9,7-biorthogonal analysis filters.

Coefficient Value

a 21.586 134 342 059 92
b 20.052 980 118 572 96
g 0.882 911 075 530 93
d 0.443 506 852 043 97
z 1.149 604 398 860 24
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To invert F, we use$2a,2b,2g,2d, 1/z% and apply the
operations in reverse order:

1. Y(k)←Y(k)/z, for all even k in the range 0<k
,K,

2. Y(k)←zY(k), for all oddk in the range 0,k,K,
3. Y(k)←Y(k)2d@Y(k21)1Y(k11)#, for all evenk

in the range 0<k,K,
4. Y(k)←Y(k)2g@Y(k21)1Y(k11)#, for all odd k

in the range 0,k,K,
5. F21(k)←Y(k)2b@Y(k21)1Y(k11)#, for all

evenk in the range 0<k,K,
6. F21(k)←Y(k)2a@Y(k21)1Y(k11)#, for all odd

k in the range 0,k,K.

The analog of Eq.~1! for F21 is

F21~n!5 (
kPK0~n!

h8~2k2n!Y~2k!

1 (
kPK1~n!

g8~2k2n!Y~2k11!, ~2!

whereY is the same extension ofy asX is of x. The inverse
filters h8, g8 are given in Table I. The index ranges a
K0(n)5$k:24<2k2n<2% and K1(n)5$k:24<2k2n
<4%, for n50,1,...,K21.

Each even-indexed elementF(2k) is a weighted average
of x over nine grid points near 2k, with the weights being the
filter coefficients.

To compute a one-dimensional wavelet transform on
signalx, we applyF, retain the odd-indexed values, extra
the even-indexed values to another array of about half
length, call that new arrayx, and repeat untilx contains just
a single number:

1. Let j 51.
2. Computey(k)5F(k), k50,1,...,K21.
3. Extract D j (k)5y(2k11) for all indices k with 0

,2k11,K.
4. Replacex(k)5y(2k) for all indices k with 0<2k

,K.
5. ReplaceK←K/2 if K is even, orK←(K11)/2 if K is

odd. This the number of elements written tox at step 4.
6. If K.1, then incrementj← j 11 and go to step 2

Otherwise, stop.

At the termination of the above-given algorithm, the discr
wavelet transform of the original signal is stored in the arra
D1 ,D2 ,...,DJ , plus y(0). Thevalues inD j are the ampli-
tudes of fluctuations of the signal at scales of 2j grid points;
y(0) contains the average value of the signal.J is thedepth
of the wavelet transform, the maximum value ofj in the
above-given algorithm, and is the least integer such thaJ

>K.
As mentioned, 9,7-biorthogonal wavelets can be app

in a fully 3D manner. We are only reporting here, howev
on the application to 3D dose distributions of a slice-by-sl
2D approach.
Medical Physics, Vol. 29, No. 10, October 2002
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F. Approximation and de-noising

We define thethresholding function T5Te@x# for a func-
tion x on M by lettinga5max$ux(m)u:mPM% and then setting

Te@x#~m!5H 0 if ux~m!u,ea

x~m! otherwise.

Let e be a fixed positive parameter, let 0PM be the origin
in the gridM, and letr PM be some fixed grid point. Des
ignate the wavelet transform off by W( f )5$W( f )m :m
PM %, with W( f )0 being the single average coefficient, pr
viously calledy(0). Weperform the following algorithm:

1. Translate the functionf to f r , so thatf r(0)5 f (r ).
2. Compute the wavelet transformyr←W( f r).
3. Apply e-thresholdingzr(m)←T(yr(m)) for all mÞ0.
4. Compute the inverse wavelet transformxr←W21(zr).
5. Translate the functionxr to x, so thatx(r )5xr(0).

We now letO be the origin ofM and its nearest neighbors
and then average together all thex’s obtained for different
choices ofr PO ~‘‘spin-cycling’’ !. In the one-dimensiona
case,O5$21,0,11%, while in the two-dimensional caseO
is the nine-point set produced by permuting such offsets
both directions, resulting in eight nearest neighbors and
center point. Denote byE( f ,e) the average of thex’s pro-
duced by all the shifts of the originalf.

Suppose thatd5s1n is an approximation to the true
dose distributions. We may assume thats is known because
we have run a Monte Carlo simulation long enough to a
proximate it adequately, referred to as the ‘‘target.’’ We me
sure rms error as the square root of the mean differe
between the dose values and the target~low noise! dose val-
ues, including only those voxels where the target dose va
is greater than 50% of the maximum target dose. Varia
error is defined as the square of the rms error. Dose va
are variance stabilized~made closer to normally distributed!
by taking the square root before wavelet de-noising a
squaring after de-noising, as explained in Ref. 6. This gi
an estimator fors from E(Ad,e)2. The thresholde that mini-
mizes the rms erroriE(Ad,e)22si for each of the short
segmentsd that comprise the long run is found by exhausti
search, as further discussed in the following. Exhaus
search is necessary due to multiple local minima. The a
age of these thresholds is an estimator for the best thres
to use for all MC simulations with similar noise and imag
characteristics.

Estimating noise reduction is not straightforward, beca
de-noising introduces nonrandom errors~bias!. The standard
deviation of voxels between batches is a misleading m
surement of noise due to variations in bias. To quantify no
reduction, we use the local second derivative~Laplacian! of
an imageg, computed using the five-point formula:

D~x,y!5g~x21,y!1g~x11,y!1g~x,y21!

1g~x,y11!24g~x,y!.

We define ‘‘roughness’’ as the square root of the median
the squared Laplacian values for all dose voxels above
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50% maximum dose cutoff. The median operator makes
roughness metric nearly independent of the large value
the Laplacian which occur near edges or other regions
high second-derivative. Roughness is useful because it m
sureslocal roughness of the image, which is important f
dose visualization. This differs from the rms error metr
which includes the effect of voxel-to-voxel fluctuations a
bias introduced by the de-noising procedure. Roughnes
not a dose accuracy measure, but is introduced primaril
demonstrate the effect of wavelet de-noising, as further
cussed in the following.

G. Computational efficiency

The total number of arithmetic operations required to
ply this de-noising algorithm in 2-D, including spin-cycling
is about 336 operations~multiplications or additions! per
dose grid point. For a typical three-dimensional dose dis
bution of size less than 500 000 voxels, the total numbe
operations required for de-noising~without counting input/
output operations! will be less than 200 mil arithmetic op
erations. Given that current desktop computers are capab
several hundred million arithmetic operations per second,
noising computation time for this algorithm is expected to
neglible in a clinical setting.

H. Results

Figure 3 shows the improvement in the rms differen
between a de-noised image of 4 mil source electrons and
target image as the threshold~e! is changed, showing mul
tiple local minima. In Fig. 4, we plot best thresholdse and
the rms error compared to a target with 192 mil source e
trons. With more source electrons, the MC simulation
comes less noisy, weaker features in the signal become
tistically significant, and the best threshold decreases.

The result of de-noising of the electron beam dose dis
bution with 4 mil source electrons is shown in Fig. 5. A col
version is available via the EPAPS link to this documen13

FIG. 3. Error vs threshold. The change in the rms error between a de-no
image of 4 mil source electrons and the target image as the threshold~e! is
changed.
Medical Physics, Vol. 29, No. 10, October 2002
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The standard deviation of un-de-noised dose voxels gre
than 50% of the maximum dose voxel was 2.7%. The thre
old was 0.0839. The low noise target result used 192
source electrons. Figure 6 shows the mean interbatch v
standard deviation of dose for voxels above 50% maxim
dose, determined from eight de-noised runs, and the rati
mean interbatch dose variance for the raw and de-noised
results. When the standard error of the de-noised MC is
de-noising reduces variance by a factor of 8.5–9.5. Beca
variance is reduced in a non-de-noised MC run invers
proportional to the run time, it would require 8.5–9.5
many source particles without de-noising to achieve
same interbatch consistency. However, this is not the sam

edFIG. 4. Threshold determination. Best thresholds~e values! according to the
minimum rms error criteria, determined by exhaustive search. The 192
source electron image is used as the reference. Eight simulations wer
for increasing numbers of source electrons. The solid line connects the m
values of the best thresholds.

FIG. 5. Electron beam de-noising. De-noising of the electron beam d
distribution with 4 mil source electrons:~a! the low-noise 192 mil source
electron result,~b! the high-noise 4 mil source electron result,~c! the de-
noised high-noise result with a best threshold of 0.0839, and~d! the differ-
ence of the de-noised and low-noise dose distributions. The dose dist
tions were scaled such that the maximum low noise dose value is one
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an improvement in dose accuracy. The ratio of variance e
for the de-noised and un-de-noised slice dose distributio
for 4 mil source electrons, is 4.96.

Figure 7 plots three different performance metrics for M
de-noising applied to the electron beam phantom:~a! mean
interbatch variance between batches of dose values~open
circles, plotted as the ratio of values for the raw and
noised results!, ~b! the mean squared error with respect to t
‘‘true’’ ~low-noise! image ~closed circles, also plotted as
ratio!, and ~c! the maximum dose deviation from the tru

FIG. 6. Dose calculation noise reduction using de-noising. The solid cu
~left axis! gives the mean standard deviation of dose for voxels above 5
maximum dose, determined from eight runs. The dashed curve~right axis! is
the ratio of dose variance for the raw and de-noised MC results. Again
mean variance is for the same voxels and the same eight runs. Whe
standard error is 1%~perhaps the magnitude needed for clinical review! then
the ratio of the variances is 8.5–9.5. This represents a computational a
eration of the same magnitude to reduce noise to a clinically accep
level.

FIG. 7. De-noising performance, as measured by three different met
mean variance of dose values between batches~open circles!; mean squared
difference with the ‘‘true’’ ~low-noise! image ~closed circles!; maximum
deviation from the true image~open squares!. All points are ratios:~raw
image!/~de-noised image!. All results are averages over all voxels grea
than 50% maximum, for eight MC runs, with 2, 4, 8, or 16 mil sour
electrons.
Medical Physics, Vol. 29, No. 10, October 2002
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image~open squares, as a ratio!. All results are averages ove
all voxels greater than 50% maximum dose, for eight M
runs, with 2, 4, 8, or 16 mil source electrons.

The roughness metric for the electron beam phantom
plotted in Fig. 8. Roughness is defined primarily to und
stand the effect of wavelet de-noising. We note that
roughness of the de-noised images~using decreasing thresh
olds! is nearly constant, independent of the number of sou
electrons, and that it is similar to the target image roughn
Low-pass filtering techniques would typically result
roughness values which decrease with the number of so
electrons. However, as the number of source electrons
creases the de-noised image more closely approaches the
image.

De-noising performance for the lung-like photon bea
phantom is also encouraging. We applied 2D de-noising
planes which contain the beam axis. The midplane dose
tribution is shown in Fig. 9:~a! low noise ~3.25 bil source
photons!, ~b! high noise~250 mil source photons!, ~c! de-
noised high noise, and~d! low noise minus de-noised. An
average best threshold of 0.032 75 was used. The mean
dard deviation of voxels from one batch to the next w
2.4% of the dose maximum for the high noise runs, 0.6
for the low noise target, and 1.19% for the de-noised h
noise run. The effective acceleration measured by reduct
in rms fluctuations is therefore 4.0 for this example. T
roughness metric is more representative of the difference
image smoothness: roughness was 0.048 for the high n
image, 0.018 for the low noise image, and 0.0096 for
de-noised image. The effective acceleration in terms of
variance error ratio is 1.97.

III. DISCUSSION

The Monte Carlo method for treatment planning is itsel
statistical estimation technique, with random and system

e
%

e
the

el-
le

s:

FIG. 8. Roughness of de-noised electron beam images. Roughness is p
for raw images~solid line! and de-noised images~dashed line!. The value
for the 192 million source electron target image is shown as a dotted
According to this metric, even the de-noised 2 mil source electron imag
less rough than the target image. However, de-noised dosimetric accu
decreases with decreasing source electrons.
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error components due to unknowns or errors in incid
phase space specifications, computed tomography voxel
ues, material properties, etc. Because transport diffus
makes true dose distributions more smooth than MC vo
to-voxel statistical fluctuations, de-noising of voxel sums
energy deposition events is superior to using the raw su
De-noising of MC generated data, which can potentially
accomplished in a variety of ways, is a natural last step
the MC dose calculation technique, and represents a
type of variance reduction method.

As shown in Fig. 7, wavelet de-noising improves both t
rms dose deviation and the maximum dose deviation fr
the ‘‘true’’ dose distribution. However, extensive dosimet
analysis of clinical examples will be required to determi
the MC noise level which must be attained prior to d
noising to yield acceptable clinical accuracy with the le
run time. Relatively smooth de-noised dose distributions
be obtained even with rather large initial dose standard
viations. This is reflected in the small and nearly const
roughness values plotted in Fig. 8. Wavelet de-noising
high-noise images is of course not perfectly accurate, an
most likely to disagree with target doses in regions of ra
dose variation, as shown in Figs. 5 and 9. However, co
pared to conventional digital filtering techniques,6 the fast
wavelet de-noising algorithm is particularly good at prese
ing high-frequency features, such as the interface dose sp
in the photon beam example shown in Fig. 9.

Thresholds have been determined by direct compar
with ‘‘true’’ images in this report. We expect that reasonab
thresholds could be set by using typical clinical dose dis
butions, computed to very high accuracy. Threshold val
near the ‘‘best’’ value also perform well~see Fig. 3!

Monte Carlo de-noising is based on the relative statist
independence of voxels. However, this clearly is not stric
true, as neighboring voxels share many of the same par
trajectories. This may sometimes result in ‘‘clumping’’ o

FIG. 9. De-noising of the photon beam phantom dose for a beam-alig
midplane:~a! low-noise~3.25 bil source photons!, ~b! high-noise~250 mil
source photons!, ~c! de-noised high-noise, and~d! low-noise minus de-
noised. The dose distributions were scaled such that the maximum low n
dose value is one. A color version is available via the EPAPS link to
document.13
Medical Physics, Vol. 29, No. 10, October 2002
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statistical fluctuations of the same sign over a shared ne
borhood of voxels. Clearly, the choice of de-noising plan
affects noise removal in such ‘‘clumps.’’ More importantl
such clumps, when they do occur, are unlikely to be co
pletely smoothed out by, say, doubling the number of Mo
Carlo histories. New histories are unlikely to introduce s
tistical fluctuations which would have a structure which ju
so happens to be the same in shape but the opposite in
nitude as the original ‘‘clump.’’ Hence, ‘‘clumping’’ is an
occasional hazard of MC-based treatment planning, an
not particularly a de-noising problem per se.

Wavelet de-noising, or other de-noising techniques, co
potentially substantially reduce the cost and increase the
ficiency of MC-based radiation therapy treatment planni
This efficiency gain could produce both lower operati
costs and, perhaps more importantly, more time for poten
improvements of the treatment plan or other important cli
cal activities.

Different metrics emphasize different aspects of d
noising. Accuracy is easy to measure in a mean-square s
~variance error!, but could be significantly affected by high
frequency rolloff of voxels near steep gradients. De-nois
or smoothing methods typically perform worst near edges
discontinuities, effectively introducing small geometric di
tortions. Wavelet de-noising appears superior to frequen
based de-noising in this respect,6 however, bias is still intro-
duced preferentially near edges~see Fig. 9!. Such slight
geometric distortions may not be significant in treatme
planning, as other geometric uncertainties may dominate

The results show that the proposed wavelet threshold
noising algorithm with spin-cycling decreases the compu
tional time needed to compute smooth, low-noise MC do
distributions. We conclude that de-noising of MC-genera
data based on wavelet threshold de-noising could potent
provide significant efficiency gains for clinical radiotherap
treatment planning. However, clinical validation will requi
much more extensive testing with a range of dose distri
tions based on individual patient anatomy as represente
computed tomography scans. The computationally effici
wavelet de-noising algorithm investigated here, based on
9,7-biorthogonal filters, including a computationally efficie
lifting scheme and spin-cycling, is attractive for further clin
cal testing, or as a basis for further algorithm improvemen
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