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We would like to describe a method permitting efficient compression of a variety of signals such as sound
and images. While similar in goals to vector quantization, the new method uses a codebook or library of
predefined modulated waveforms with some remarkable orthogonality properties. We can apply the method
to two particularly useful libraries of recent vintage, orthogonal wavelet-packets [CM1],[CW] and localized
trigonometric functions [CM2], for which the time-frequency localization properties of the waveforms are
reasonably well controlled. The idea is to build out of the library functions an orthonormal basis relative to
which the given signal or collection of signals has the lowest information cost. We may define several useful
cost functionals; one of the most attractive is Shannon entropy, which has a geometric interpretation in this
context.

Practicality is built into the foundation of this orthogonal best-basis methods. All bases from each library
of waveforms described below come equipped with fast O(Nlog N) transformation algorithms, and each
library has a natural dyadic tree structure which provides O(N log N) search algorithms for obtaining the
best basis. The libraries are rapidly constructible, and never have to be stored either for analysis or synthesis.
It is never necessary to construct a waveform from a library in order to compute its correlation with the
signal. The waveforms are indexed by three parameters with natural interpretations (position, frequency,
and scale), and we have experimented with feature-extraction methods that use best-basis compression for
front-end complexity reduction.

The method relies heavily on the remarkable orthogonality properties of the new libraries. It is obviously a
nonlinear transformation to represent a signal in its own best basis, but since the transformation is orthogonal
once the basis is chosen, compression via the best-basis method is not drastically affected by noise: the noise
energy in the transform values cannot exceed the noise energy in the original signal. Furthermore, we can
use information cost functionals defined for signals with normalized energy, since all expansions in a given
library will conserve energy. Since two expansions will have the same energy globally, it is not necessary to
normalize expansions to compare their costs. This feature greatly enlarges the class of functionals usable by
the method, speeds the best-basis search, and provides a geometric interpretation in certain cases.

Definitions of Two Modulated Waveform Libraries. We now introduce the concept of a “library of
orthonormal bases.” For the sake of exposition we restrict our attention to two classes of numerically useful
waveforms, introduced recently by Y. Meyer and the authors.

We start with trigonometric waveform libraries. These are localized sine transforms associated to a
covering by intervals of R or, more generally, of a manifold.

We consider a strictly increasing sequence {a;} C R, and build an orthogonal decomposition of L?(R).
Let b; be a continuous real-valued function on the interval [a; 1, a;] satisfying:

bi(a,—,l) = 0; bz(al) =1 bg(t) + b3(2a1 — t) =1 fora;,_1 <t<a,.

Then the function which we may define by bi(t) = b;(2a; —t) is the reflection of b; about the midpoint of
[ai—1,a;], and we have b2(t) + b2(t) = 1. Now define

bi, if a;—1 <t<a,,
pi(t) =19 biy1, ifa; <t <ap1,
0, ift<a;_qort> Aj41-
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Each p; is supported on the interval [a; 1, a; 1], and we have
St
i

The middle of the bump function p; lies over the interval I; = [¢;,¢;41), where ¢; = (a; + a;—1)/2; these
intervals form a disjoint partition of R, and we can show that the following functions form an orthonormal
basis for L2(R) localized to this partition:

Sik(t) = \/%pi(t) sin [W(k + %)tglcz]

This is what we shall call a local sine basis. Certain modifications are possible, for example sine can be
replaced by cosine, so we shall refer to it also as a local trigonometric basis.
Below is a plot of one such function, localized to the interval [0, 1]:

T T T T T T T T T T
1t i R _ modulation —— |
R 7~ envelope ——--
e AN
7
a A
/0 N\
05 r g AN ]
/| N\
// N\
// \\
1 N
0 =</ A b s
-05 ¢ .
1k -
1 1 I 1 1 1 1 1 1 1

-04 -02 0 02 04 06 08 1 12 14

Ezxample of a localized sine function.

The indices of each function S;; have a natural interpretation as “position” and “frequency.” The
collection {S; ) : k € N} forms an oscillatory orthonormal basis for a subspace of L?(R) consisting of
continuous functions supported in [a;_1,a;4+1]. If we denote this subspace by Hyp,, then Hj, + Hj, , is

i+1
spanned by the functions
2 1 t—c¢
—————— P(t)sin {(k + )T
| i| + |Zis1] 27| L]+ |Liga

P2(t) = p; (t) + p}i(t)

is a “window” function whose middle lies over the interval I; U I; 1.
The relationship between the larger interval and its 2 “children” is illustrated by the following figure:

where
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The larger subspace is the direct sum of the 2 smaller subspaces.

It can now be seen how to construct such an orthonormal basis for any partition of R which has {a;}
as a refinement. For each disjoint cover R = U,J,, where the J,, are unions of contiguous I;, we have
L*(R) = @,Hj,. The local trigonometric bases associated to all such partitions may be said to form a
library of orthonormal bases. There is a partial ordering of such partitions by refinement; the graph of the
partial order can be made into a tree, and the tree can be efficiently searched for a “best basis” as will be
described below.

A second new library of orthonormal bases, called the wavelet packet library, can also be constructed.
This collection of modulated wave forms corresponds roughly to a covering of “frequency” space. This library
contains the wavelet basis, Walsh functions, and smooth versions of Walsh functions called wavelet packets.

We’ll use the notation and terminology of [D], whose results we shall assume.

We are given an exact quadrature mirror filter h(n) satisfying the conditions of Theorem (3.6) in [D], p.

964, i.c.
> h(n—2k)h(n—20) =6kp, > h(n) =V2
We let g, = (—1)*hy_, and denﬁne the operations F; on (*(Z) intT(L) “2(2Z)”
(1.0) Fo{sk}(2i) = Zskhkfm
k
Fi{se}(20) = Y segr—2i

k

The map F : (2(Z) — (?(2Z) @ (*(2Z) defined by F = Fy @ F; is orthogonal. We also have Fo Fif = F1F} =1,
FiF; = FyFF =0, and

(1.1) FoFy+FiF =1
We now define the sequence of functions {W;}2°, from a given function Wy as follows:

(1.2) { Wan(2) = V23 W, (22 — k)
. Wani1(2) = V23 e W, (22 — k).
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Notice that Wy is determined up to a normalizing constant by the fixed-point problem obtained when n = 0.
The function Wo(z) can be identified with the scaling function ¢ in [D] and W with the basic wavelet 9.
Let us define mo(§) = % >~ hpe”™*¢ and

L 1 .
ma(€) = ~emo(€ + m) = 5 3 gue'™
REMARK. The quadrature mirror condition on the operation F = (Fy, F}) is equivalent to the unitarity of

the matrix
o[ m©  mi }
mo(§ +m) mi(§+ )

Taking the Fourier transform of (1.2) when n = 0 we get

A

Wo(€) = mo(€/2)Wo(£/2)

Wo(€) = H m(€/29)

and
Wi (&) = ma(£/2)Wo(£/2) = ma(&/2)mo(€/4)mo(€/2%) - -

More generally, the relations (1.2) are equivalent to

(1.3) Wal€) = ][ me;(6/29)

oo
andn= Y e;2"1(s; =0 or 1).
j=1

The functions W,,(z — k) form an orthonormal basis of L?(R).

We define our library of wavelet packet bases to be the collection of orthonormal bases composed of
functions of the form W, (2‘c — k), where £,k € Z, n € N. Here, each element of the library is determined
by a subset of the indices: a scaling parameter £, a localization parameter k and an oscillation parameter n.
These are natural parameters, for the function W, (2¢x — k) is roughly centered at 2=k, has support of size
~ 2¢ and oscillates ~ n times. We have the following simple description of the orthonormal bases in the

library:

Proposition. Any collection of indices (¢,n,k) C N x N x Z such that the intervals [2°n,2¢(n 4 1)) form a
disjoint cover® of [0,00), and k ranges over all the integers, corresponds to an orthonormal basis of L?(R).

If we use Haar filters, there will be elements of the library which do not correspond to disjoint dyadic
covers. For the sake of generality, we will not consider such other bases.

This collection of disjoint covers forms a partially ordered set. Just like the local trigonometric basis
library, the wavelet packet basis library organizes itself into a tree, which may be efficiently searched for a
“best basis.”

Entropy of a Vector. We now define a real-valued cost functional M on sequences and search for its
minimum over all bases in a library. Such a functional should, for practical reasons, describe “concentration”
or the number of coefficients required to accurately describe the sequence. By this we mean that M should be
large when the coefficients are roughly the same size and small when all but a few coefficients are negligible.
In particular, any averaging process should increase the information cost, suggesting that we consider convex
functionals. This property should also hold on the unit sphere in 2, since we will be measuring coefficient
sequences in various orthogonal bases. Finally, we will restrict our attention to those functionals which split
nicely across cartesian products, so that the search is a fast divide-and-conquer.

1We can think of this as an even covering of frequency space by windows roughly localized over the corresponding intervals.
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Definition. A map M from sequences {z;} to R is called an additive information cost function if M(0) = 0

and M({z;}) = 5, M(x;).

If we fix a vector € RY, we can make an additive information cost function into a functional on the
manifold of orthonormal bases, i.e., the orthogonal group O(N). Let B € O(N) be an orthonormal basis,
written as a matrix of row vectors. Then Bz is the vector of coefficients of z in the orthonormal basis B,
and M(Bxz) is the information cost of 2 in the basis B.

Since O(N) is compact, there is a global minimum for every continuous information cost. Unfortunately,
this minimum will not be a rapidly computable basis in general, nor will the search for a minimum be of
low complexity. Therefore, we will restrict our attention to a library B C O(N) of orthonormal bases each
of which has an associated fast transform (of order O(N log N) or better) and for which the search for a
constrained minimum of M converges in O(N) operations.

Definition. The best basis relative to M for a vector x in a library B of bases is that B € B for which
M(Bx) is minimal.

Motivated by ideas from signal processing and communication theory we were led to measure the “dis-
tance” between a basis and a function in terms of the Shannon entropy of the expansion. More generally,
let H be a Hilbert space. Let v € H, ||[v|]| = 1 and assume that H is an orthogonal direct sum:

HZEBZHi

We write v = @ ), v; for the decomposition of v into its H;-components, and define

(v {Hi}) = =) llvillPenvsl?

as a measure of distance between v and the orthogonal decomposition. &2 is characterized by the Shannon
equation which is a version of Pythagoras’ theorem.
Let

H=a0_ H)a () Hj)
=H, o H_

Thus, H* and H; give orthogonal decompositions Hy =Y H',H_ =) H;. Then

(s (1 ) = 0 L H) ol (s G )+ Do (2 )
This is Shannon’s equation for entropy if we interpret || Py, v||* to be, as in quantum mechanics, the “prob-
ability” of v being in the subspace H,. This equation enables us to search for a smallest-entropy spatial
decomposition of a given vector.
REMARK. The Karhunen-Loéve basis is the minimum-entropy orthonormal basis for an ensemble of vec-
tors. The best basis as defined above is useful even for a single vector, where the Karhunen-Loéve method
trivializes. The constraint to a library B can keep us within the class of “fast” orthonormal expansions.

Suppose that {z,} belongs to both L? and L?log L. If x,, = 0 for all sufficiently large n, then in fact the
signal is finite dimensional. Generalizing this notion, we can compare sequences by their rate of decay, i.e.,
the rate at which their elements become negligible if they are rearranged in decreasing order. This allows us
to introduce a notion of the dimension of a signal.

Definition. The theoretical dimension of {z,} is

d=exp(— Y _ pnlogpy)

where p, = |z, |?||z] 2.

Our nomenclature is supported by the following ideas, which are proved in most information theory texts:
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Proposition. If z,, = 0 for all but finitely many (say N) values of n, then 1 <d < N.

Proposition. If {x,} and {x]} are rearranged so that both {p,} and {p],} are monotone decreasing, and
if we have ) v Pn = D gcnem P for all' m, then d < d'.

Of course, while entropy is a good measure of concentration or efficiency of an expansion, various other
information cost functions are possible, permitting discrimination and choice between special function ex-
pansions.

Selecting the Best Basis. For the local trigonometric basis library example, we can build a minimum-
entropy basis from the most refined partition upwards. We start by calculating the entropy of an expansion
relative to intervals of length one, then we compare the entropy of each adjacent pair of intervals to the
entropy of an expansion on their union. We pick the expansion of lesser entropy and continue up to some
maximum interval size. This uncovers the minimum entropy expansion for that range of interval sizes. This
rough idea can be made precise as well as generalized to all libraries with a tree structure:

Definition. A library of orthonormal bases is a (binary) tree if it satisfies:

(1) Subsets of basis vectors can be identified with intervals of N of the form I, = [2¥n,2¥(n + 1)[, for
k,n > 0.

(2) Each basis in the library corresponds to a disjoint cover of N by intervals I,j.

(3) If Vi is the subspace identified with Iy, then Vy k11 = Vap i ® Vopt1 k-

The two example libraries above satisfy this definition. The library of wavelet packet bases is naturally
organized as subsets of a binary tree. The tree structure is depicted in the figures below:

X0 X1 X2 X3 X4 X5 Xg X7
S /\ D
S0 S1 S2 3 do dq dy d3
S / \ D S / \ D
ssq S dsg  dsq sdg sdq ddg  ddq
Sss dss sds dds ssd dsd sdd ddd

Wawvelet packets organized as a binary tree.

Each node represents a subspace of the original signal. Each subspace is the orthogonal direct sum of its
two children nodes. The leaves of every connected subtree give an orthonormal basis. Two example bases
from this library are depicted in the figures below:
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X0 X1 X2 X3 X4 Xg X6 X7
So s1 S2 S3 do dq do ds

ssq ssq dsg  dsg sdg sdq ddyg  ddq

SSS dss sds dds ssd dsd sdd ddd

Part of the wavelet packet basis library: the wavelet basis.

X0 X1 X2 X3 X4 Xg Xg X7
) S1 So S3 dg dq do ds

ssq ssq dsg  ds; sdg sdq ddg  ddg

sss dss sds dds ssd dsd sdd ddd

Part of the wavelet packet basis library: some unnamed basis.

The library of local trigonometric bases over a compact interval U may be organized as a binary tree by
taking partitions localized to a dyadic decomposition of U. Then Iy, will correspond to the sine basis on U,
and I, will correspond to the local sine basis over interval n of the 2% intervals at level k of the tree. This
organization is depicted schematically in the figure below:
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Organization of localization intervals into a binary tree.

This procedure permits the segmentation of acoustic signals into those dyadic windows best adapted to
the local frequency content. An example is the segmentation of part of the word “armadillo,” in the figure
below:
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Automatic lowest-entropy segmentation of part of a word.
REMARK. In multidimensions, we must extend this notion to libraries which can be organized as more
general trees. This can be done by replacing condition (3) with the condition that for each k,n > 0, we have
an integer b > 1 such that V;, 11 = Vo @ -+ - ® Vipyp—1,5- It will not change the subsequent argument.

If the library is a tree, then we can find the best basis by induction on k. Denote by B, the basis of
vectors corresponding to I, and by A,; the best basis for x restricted to the span of B,;. For k = 0,
there is a single basis available, namely the one corresponding to I, o, which is therefore the best basis:
Apo = By for all n > 0. We construct A,, 11 for all n > 0 as follows:

By k41, if M(Bp g17) < M(Azp k) + M(Azpi1, 1),

1.4 A1 =
(1.4) n,k+1 {AMJC@A%JFU“ otherwise.

Fix K > 0 and let V be the span of Iyx. We have the following;:
Proposition. The algorithm in Eq. (1.4) yields the best basis for x relative to M.

Proof. This can be shown by induction on K. For K = 0, there is only one basis for V. If A’ is any basis
for Vo, i +1, then either A’ = By 11 or A’ = Aj @ A} is a direct sum of bases for Vg  and V; . Let Ag and
A; denote the best bases in these subspaces. By the inductive hypothesis, M(A4;x) < M(Ajx) for i =0, 1,
and by Eq. (1.4) M(Az) < min{M(Bg x41z), M(Apz) + M(A1z)} < M(A'z).
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Comparisons are always made between two adjacent generations of the binary tree. Therefore, the com-
plexity of the search is proportional to the number of nodes in the tree, which for a vector in RN is just
O(N). This complexity is dominated by the cost of calculating all coefficients for all bases in the library.
This takes O(N log IV) for the wavelet packet library, and O(N [log N]?) for the local trigonometric library. In
practice, the coefficients are small: approximately 20 for wavelet packets, and approximately 1 for localized
sines.

The number of bases in a binary tree library may be calculated recursively. Let A be the number of
bases in a binary tree of 1 + L levels, i.e., L levels below the root or standard basis. We can combine two
such trees, plus a new root, into a new tree of 2 + L levels. The two subtrees are independent, so we obtain
the recursive formula

Apy1 =1+ A2L

from which we can estimate Ar1q > 22" Thus a signal of N = 2% points can be expanded in 2% different
orthogonal bases in O(N log N) operations, and the best basis from the entire collection may be obtained in
an additional O(N) operations.

For voice signals and images this procedure leads to remarkable compression algorithms; see the references
[W2] and [W3] below. The best basis method may be applied to ensembles of vectors, more like classical
Karrhunen-Loéve analysis. The so-called “energy compaction function” may be used as an information cost
to compute the joint best basis over a set of random vectors. The idea is to concentrate most of the variance
of the sample into a few new coordinates, to reduce the dimension of the problem and make factor analysis
tractable. The algorithm and an application to recognizing faces is described in [W1].

Some other libraries are known and should be mentioned. The space of frequencies can be decomposed
into pairs of symmetric windows around the origin, on which a smooth partition of unity is built. This and
other constructions were obtained by one of our students E. Laeng [L]. Higher dimensional libraries can also
be easily constructed, and there are generalizations of local trigonometric bases for certain manifolds.
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