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1. INTRODUCTION

In [1, 8], we used the autocovariance matrix as a substitute for the Jacobian to
investigate geometric properties of functions, such as the local dimension of the
range. Specializing to images, this idea may be used, for instance, to detect points,
edges, and other features. In this article, we concentrate on edges with the relatively
weak regularity defined by Morrey and Campanato [4].

The literature on the subject of edge detection is enormous. We mention just
a few such algorithms which are related to our own: Aron and Kurz [5], linear
hypothesis testing of variances in small windows to detect lines and edges; Duda
and Hart [2], Hough transform for detection of lines and curves in images; Mallat
and Zhong [6], edge detection from wavelet maxima. Many other ways to use Fourier
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transforms to detect singularities are described in [3]. These algorithms separate
into a local part, such as discrete Laplacian or Sobel difference filtering, followed
by a global part such as template matching that recognizes edge-like groups of
pixels. The local operation is based on approximate differentiation, either by finite
differences as in the Sobel detector, or after transformation as in the Fourier and
wavelet methods. It assigns a large value at singular points of the image, and a
small value at smooth points. It typically produces too many candidate edge points,
which must then be screened for membership along some line or curve. Candidate
edge points are especially overabundant in noisy images.

To improve this situation, we introduce a local operation that produces a large
value at a point only if it and a few lined-up neighbors are singular points. Both
single-point singularites and nonsingular points of the image will produce small
values. This will reduce the number of candidates to be checked by the global
follow-up, especially in moisy images. Our local step has complexity comparable to
filtering or transformation, but the global part’s complexity grows with the number
of candidates, so we expect our method to require less total computational effort.

We begin with a classical observation: whenever a function is not smooth at some
point, then the power in its Fourier transform localized near that point will be slowly
decreasing at high frequencies. But then, if the singularity has a direction, such as
the normal direction to an edge discontinuity, the decrease will be particularly slow
in that direction. This slow decrease creates a large variance in the slow direction, if
we treat the local Fourier power spectrum as a probability density. By contrast, the
variance in the other directions, in which the Fourier transform decreases rapidly,
will be smaller. These variances are the two eigenvalues of the 2 x 2 autocovariance
matrix, or equivalently the second-moment matrix, of the localized Fourier power
spectrum.

Our new technique is to recognize the edge-like nonsmooth points of a function
by the differences between these two eigenvalues. For theoretical analysis, we com-
pute the limit eigenvalues as the localization shrinks to the point of interest. The
“edginess” of a point will be a function of the ratio or difference of these limit
eigenvalues, with bigger differences or ratios giving more “edginess.” We will fur-
ther show that the eigenvector of the larger eigenvalue will be normal to the edge,
when such a normal exists.

The eigenvalues might be the same because they are small and equal, or large
and equal. The first case arises at a point of smoothness, the second at a point
singularity. Our technique assigns low “edginess” in both cases, and therefore
differs from the differentiation-based edge detectors. Drawing a conclusion from
two eigenvalues specializes our earlier work, in which we estimated the local rank
of a complicated function from the number of relatively large eigenvalues of the
autocovariance matrix.

We have implemented our algorithms in Standard C, and the source codes are
freely available from the ACHA Software Distribution Web Site. The edginess func-
tions of five example images were computed with this software and are displayed
at the end of this article. Readers are invited to experiment with parameter varia-
tions using our five images, which are also on the web site. The codes may be used
without modification on any other images in the simple PGM format.
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2. MOTIVATION, THEORY AND EXAMPLES

Our motivation comes from probability theory. Suppose ¢ : T — C is a function
on the unit circle T. We define a map ® : T — C? as follows:

®(0) = ¢(0)(cos b, sinb),

for # € T. Regarding ® as a random vector on the probability space T', and ignoring
normalization, we may define the 2 X 2 autocovariance matrix:

B0 ®),; = /T 10, — / " 16(0) Pri(0)7(0) db,

where i,j € {1,2}, 71(0) = sin 6, and (0) = cos@. This is a symmetric matrix. If
we apply this matrix to a vector v, then (E(®*®)v,v) = [ [(®,v)[?, so in particular
the supremums over all v with ||v|| = 1 are equal. A vector realizes this supremum if
and only if it is a unit eigenvector of the largest eigenvalue of E(®*®). Such a vector
always exists, and it will be our approximation to the point at which |¢| = ||@]||
attains its maximum. For example, in the special case that ¢ is highly concentrated
near the point 6y € T, we see that E(®*®) will be approximately proportional to

< cos? 6, cos 0y sin b >

cos 6y sin 6y sin? 6,

for which the vector that points from the origin to 6y is an eigenvector of the largest
eigenvalue.

Instead of the probability space T, we may integrate over a disc B to get a version
of the autocovariance matrix studied in [g]:

B(3°®),; = /B 16(6) 26,6 de

for i,7 € {1,2}, and ¢ € L?(B).

To get localized information on the singularities of a function f : R2 — R, we
will take ¢ to be the Fourier transform of f, after multiplication by a smooth cutoff
function, or “bump,” concentrated around the point of interest. This bump should
be radial, to avoid introducing directional bias.

DEFINITION 2.1. Fix a nonzero radial function ¢ : R? — R in the Schwartz class,
centered at the origin, and fix € > 0. Then for each polynomially bounded function
f:R? = R, and each point 2° € R?, define the dual local autocovariance matriz
of f at z° to be the 2 x 2 matrix

Eeg(f;2%)i = /

B(0,1/€

— 2
66 [ad©f de,ide {12,

€

where ¢g.(§) =g (f — xo).

By these assumptions, gf is integrable, so g;} is bounded and continuous and
the matrix coefficients are well defined. It is the real, symmetric second moment
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matrix of the unnormalized probability density function |53|2 If f is nonzero in a
neighborhood of 2%, then the matrix will be positive definite. Our technique is to
use differences and ratios of its eigenvalues to define the “edginess” of the function
f, at the point z°.

The dual local autocovariance matrix can also be defined for certain singular mea-
sures and distributions. For example, let f be the Dirac delta measure supported
at 1°, and let g, be centered at 2° as in Definition 2.1. Then [g.f(€)]? = |g(1°)[2,
which tends to 0+ as € — 0 if 29 # y°, but remains constantly 1 as e — 0 if 29 = 4°.
In either case, E¢ 4(f; 20) tends to a multiple of the identity as e — 0, so both the
ratio and the normalized difference of the eigenvalues is everywhere the same in the
limit. Hence, either definition of edginess ignores point singularities.

2.1. Straight edges
After a change of variables, it is easy to see that:

/Rz g (f” + = 1év°) f(ex) exp(—2miz - £) dx 2 d¢. (1)

€

Eeg(f;2%)i Z/B&'ﬁj

We can therefore compute the dual local autocovariance matrix explicitly for the
homogeneous example f = 1, the characteristic function of the left half-plane
L ={(z1,22) : x1 < 0}. The graph of f presents an edge along the line z; = 0. We
choose the radial function g(x) = exp(—n|z|?), for ease of computing its Fourier
transform.

LEMMA 2.1. Matriz Ec 4(11;0) has distinct eigenvalues A1, Ay that correspond
to the eigenvectors (1,0), (0,1) and satisfy A1 > A2 > 0, independently of €.

Proof. Since 17, is homogeneous of degree 0, and 2° = 0, we can eliminate € in
Equation 1:

Eoy(10); = /B €5 1915(6)]2 de.

Hence the eigenvalues A1, A2 do not depend on e.

Now Feg4(11;0)12 = Feg(12;0)21 = 0 by the symmetry of g/l\L with respect
to &, so the matrix is diagonal. The two eigenvalues, corresponding to eigenvec-
tors (1,0), (0,1), are therefore N; = B 4(17;0):; = [ 2917 (€)|?dE, for i = 1,2
Since g is nonzero, it is evident that A; and Ay are positive. On the other hand,
|91 (€)| = O(1/&) because of the jump discontinuity in z; and smoothness in

9 of g1, so an elementary estimate with Taylor’s theorem shows that A\ > A5, W

Conversely, by taking §(£) to be a smooth, radial, compactly supported function,
we see that for any 20 outside of the left half-plane L, and e small enough, the dual
local autocovariance matrix Fe ;(1z; 2%) will be zero, since g.1; = 0. Moreover,
for each point z° in the interior of L, the matrix is a constant times the identity
for all sufficiently small € > 0.

The eigenvector (1,0) of the larger eigenvalue of the dual local autocovariance
matrix at (0,0) indicates the normal direction to the edge at {z; = 0}. Tt is easy
to see that we will obtain the same result for every other edge point (0, z5), since
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we can translate 17 by such a vector without changing it or |g:1\L| Likewise, if
R = {(z1,22) : z1 > 0} is the right half-plane, and 1 is its characteristic function,
then E. ;(1p;2°) = E. 4(11;2°%). That is because 1g(z) = 11(—z), and the dual
local autocovariance matrix of 1, at 0 is preserved under this coordinate change.
Other rotations and translations also give simple transformations:

PROPOSITION 2.1. Let T be a translation in R? by 2°: f o T(x) = f(z + 2°).
Then Ee 4(f;2°) = Ec 4 (f o T;0).

PROPOSITION 2.2. Let U be a rotation about z° in R%. Then E. 4(f o U;2°%) =
UoE. 4(f;2°)oU L.

Of main interest to us is that the normal direction to an edge is an eigenvector
of the larger eigenvalue of the dual local autocovariance matrix at an edge point,
and that off edges the eigenvalues are the same. This gives us our first main result:

THEOREM 2.1. Suppose H = {x € R? : v -z < (3} is a given half-plane, defined
by the nonzero normal vector v € R? and some constant 3 € R. Let 1g be its
characteristic function.

1.A point 20 € R? belongs to OH if and only if for every smooth, radial nonzero
function g : R?> — R, the matriz Ecq(1a; 20) has distinct positive eigenvalues, and
then the normal vector v will be an eigenvector of the larger eigenvalue.

2.4 point z° € R? is in the complement of OH if there is some smooth, nonzero
but compactly-supported radial function §: R? — R, and some € > 0, such that the
matriz Ee g(1g;2°) is a multiple of the identity.

2.2. Domains with smooth boundary
Our calculations for the characteristic function of a half-plane also apply to the
characteristic function 1p of a domain D with smooth boundary:

PROPOSITION 2.3. Let D C R? be a domain with a smooth boundary, and fix
20 € D. Fiz a smooth radial function g : R — R, centered at 0 and supported
in B = B(0,1). Let H be either half-plane defined by the line tangent to OD at x°.
Then for any matriz norm || - ||,

||Ee7g(1H;.7:O) — Ee,g(lp;mo)H = O(e).

Proof. It will suffice to prove the estimate for the coefficients, since all norms are
equivalent in the finite-dimensional space of 2 X 2 matrices. Also, note that if H, K
are the two half-planes defined by the tangent line, then E. ;(1g;2°) = Ee 4(1x; 2°)
by Proposition 2.2. Hence it suffices to prove the result for one of them.

We may assume by Proposition 2.1 that z° is the origin. Then g, is supported
in B(0,¢), so for one of the half-planes H defined by the line tangent to 9D at 2°,
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we have ’gg/l\H — ge/l\DH <|lgelm — gelpll; = O(e3). Therefore
o

Beauia®)sy = Boy(10ia”)s] <O [ el [ lauta)|dode = O
B(0,1/¢) R2

)

A standard argument extends nearly the same estimate to a larger class of func-
tions g¢:

PROPOSITION 2.4. Let D C R? be a domain with a smooth boundary, and fiz
20 € D. Fiz a Schwartz function g : R? — R, radial about 0. Let H be either
half-plane defined by the line tangent to 0D at z°. Then

HE6,9(1H§$O) — Ee¢(1p; xO)H = 0(61_6>7
as € — 0, for every 6 > 0.
Proof. Again we assume without loss of generality that z° is the origin. Given

any 6 > 0, let p(e) = ¢ %/3. Then lim._q u(€) = oo, and €p?(e) = p~ 9% is just a
power of 1, so since ¢ is rapidly decreasing,

1
lim 7/ g(z)dx = 0.
=0 €43(€) Jya|>p(e) )

In particular, this gives a bound on the integral of g:

/ o) dz = O(E(e)). @)
|z >p(e)

But also, for one of the half-planes H the areas of (H\ D)NB(2°,r) and (D\ H)N
B(z% r) are both O(r3) as r — 0. Hence, we obtain an estimate in two equivalent
parts:

0 Tn(©) ~a1p©)] < [ a@)lLnle) - 1p(e)] o

[ = o(E@@) = o,
o[ >en(e) I || <epn(e)

because of our choice of u. We may now reuse the last part of the proof of
Proposition 2.3 to obtain the result:

|Beg(Lrr;a%)ij — Eeg(1p;a®)sj| = O(' ),

for 4, j € {1,2}. By Proposition 2.2, this holds for the other half-plane as well. H

We may now state our second main result:

THEOREM 2.2. Suppose D C R? is a domain with a smooth boundary, z° € 0D,
and g : R?> — R is a nonzero radial Schwartz function. Let H be either half-plane
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defined by the line tangent to D at 2°. If we denote the eigenvalues of Ee 4(1p; x°)
by A1(e) and A2(€), then lim(i]r+1f [A1(€) — Aa(e)| > 0.

Proof. By Lemma 2.1, the eigenvalues of E. ,(1g;2°) satisfy \; > A2 > 0, and

do not depend on €. The result follows from Proposition 2.4. ®

The boundary smoothness assumption in Proposition 2.3 and Proposition 2.4 is
not crucial. We can prove similar results for rougher 0D, using the weaker Morrey-
Campanato regularity assumption [4] in generalized form [1]. This leads to the
following result:

THEOREM 2.3. Suppose D is a domain in R? such that 0D is of generalized
Morrey-Campanato class L(p,00,1) for some function p(e) = o(¢), as ¢ — 0. Fix
20 € 0D, and suppose further that for every e > 0, there exists a line £, that realizes
the infimum of ||0D — L L(p.00,1) over the ball B(z°,€). Choose a smooth, radial
function g : R?> — R with compact support in B = B(0,1). Let H = H, be either
half-plane defined by £.. Then

tim | e (L1 2) = Eoy (1p:2)] =0,

Proof. By the definition of the space L(p, oc, 1), for the family of half-planes H,
chosen as above, we have that:

19¢(1e = 1p)llx = O(e p(e))-

Repeating the calculations from the proof of Proposition 2.1, we obtain:
[ By (1 2%) = By (103 2%)[| = O(e 7" p(e)).

The result follows from p(e) = o(e). N

If we allow g to be a radial Schwartz function, then a standard modification of
this proof, along the lines of Proposition 2.4, yields the estimate

HEéyg(lH; xo) — Eeg(1p; I‘O)H = O(p(e)6_1_6)

as € — 0, for every & > 0.
An example of a domain with Morrey-Campanato regular boundary is shown in
Figure 1.

2.3. Functions with tangent planes
The dual local autocovariance matrix of a function f, at a point along a Morrey-
Campanato curve of discontinuities, has distinct eigenvalues. Now, we show that
at differentiable points the eigenvalues are equal.

PROPOSITION 2.5. Let A : R? — R be an affine function: A(x) = a-x+b
for some constants a € R?,b € R. Let g : R> — R be a smooth radial function
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FIG. 1. Domain with Morrey-Campanato regular boundary. At the point of the spiral,
approximate tangents exist at all scales €, but do not converge as € — 0.

supported in B = B(0,1). Denote by A1(€), A2(€) the two eigenvalues of the dual
local autocovariance matriz E. 4(A;0). Then:

lim [ (€) — Aa(€)] = 0.

e—0+
Proof. Writing V for the normalized gradient %(%, 8%2), we get:
2
B0y = [ & [Aa| de= [ 6 la-voor bl de
B(0,1/¢) B(0,1/e)

Now |a- Vi +bgc)* = |a- V> + [bgc|” + 2R {(a- V§c)(bgc)}. We may assume,
after any needed translation, that 2% = 0. Then the pieces evaluate as follows:

* 3:(§) = €°9(e€), so
[ agbad@Pds= [ mnlbamP an=ca,
B(0,1/¢) B
by the symmetry of g and thus g. Here C' = |b]* [5n]g|* = |b|* [z 039]° is a
nonnegative constant depending on g, but independent of e.

e Vi (&) = e3V§(e€), so
oy G510 V8O = [ o V500 d = O
B(0,1/¢) B
e &1, &, and € are all real, so

/ @@%m-vm@w@@n%=w%{/nmﬂ~vmm@mwm}=0&»
B(0,1/¢) B

In each case, the substitution ¢ «<— en rescales the domain of integration to B =
B(0,1). Thus

E.g(A;2%);; = Coij + O(e),  ase—0,

from which the result follows. H
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PROPOSITION 2.6. Suppose that f : R? — R is differentiable at 2°, and let A
be the affine function tangent to f at z°. Fiz a smooth function g of compact
support. Then ||Ec4(f;2") — Ee g(A;2%)|| = o(€), as e — 0. If. in addition, f is
continuously differentiable in a neighborhood of z°, then in fact

| Eey(f:2°) = Eey(A;2°)| = O(2),  ase— 0.

Proof. We may write f = A+ w, where A(z) = a-z+ b and w(x) = o]z — 2°])
in some neighborhood of 2°. We compare the dual local autocovariance matrices
of f and A:

Bea(fi%) — Byl i)y = [ 65 (@001 + 2R{@0Ag}) de.

B(0,1/¢)

Now |w(x)| = o(€) on the support of g, so |wge (£)| = o(€?)]|g]|1, as € — 0, uniformly
in €. In addition, |R{Ag.(£)}| < |Agc(¢)| = O(e?)||Agl|1, uniformly in &. Thus:

[Beai%)5 = Bug(Aia®)s| =ole®) [ el dg = o(e) [ mldn = oo
B /€) B

)

If f is continuously differentiable in a neighborhood of 20, then w(z) = O(|x —

2°)?) near 2° and the same argument results in the better estimate. ®

Combining Propositions 2.5 and 2.6 gives our third main result:

THEOREM 2.4. Suppose that f : R> — R is differentiable at 2°. Then for any
smooth radial function g : R?2 — R of compact support, the matrix E€7g(f;:1:0)
converges to a multiple of the 2 X 2 identity matriz, as ¢ — 0.

The converse to Theorem 2.4 is false: even if lim o4 |Ee 4(f; 2°)| is a multiple of
the identity, we cannot conclude that f is differentiable at 29, or even continuous.
Sufficient symmetry can masquerade as smoothness, as the following example shows.
Let f(z) = 1, (21)1,(x2), where 1 is the characteristic function of R™, and fix
g(z) = exp(—n|z|?) as before. Then, reusing some calculations from Lemma 2.1,
we discover that F 4(f;0) is a positive multiple of the identity, so A (€) = Aa(€) =
A > 0 for every ¢, even though f is discontinuous at 0.

2.4. Higher dimensional theory

Dual local autocovariance matrices can be defined for functions f : R? — RY,
and provide a tool to study the geometry of complicated maps in high dimensions.

DEFINITION 2.2. Let f : R? — R? be a polynomially bounded, vector valued
function, f = (fi,...,f4), and fix a point 2° € RP. Choose a radial function
g : R? — R% in the Schwartz class, and let ¢ > 0 be given. Then we may define
the dual local autocovariance matriz of f at x° to be the p x p matrix:

Eeg(f;2%)i = /

B(0,1/

) &&N - g2 de,
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for i,7 € {1,...,p}, where g.(z) =g (”*”O), as before.

This p-dimensional dual local autocovariance matrix preserves the properties
of the two-dimensional example. In particular, we have the following immediate
generalization of Theorem 2.4.

THEOREM 2.5. Suppose that f : RP — R? is differentiable at 2°. Then for any
smooth radial function g : R? — R? of compact support, the matriz Eeq(f;2?)
converges to a multiple of the p X p identity matriz, as ¢ — 0.

Theorem 2.3 also generalizes. We may define a hyperplane £ = {z € R? : a-x = b}
and half-space H = {x € R? : a -« < b} by constants a € RP,b € R, and we may
denote by \;(€) the it eigenvalue of the matrix E. 4(1p), for g(z) = exp(—||z||?),
arranged in decreasing order. Lemma 2.1 generalizes to imply A1(e) > A;(e) for all
j=2,...,p, independent of e.

THEOREM 2.6. Suppose D is a domain in RP such that 0D is of generalized
Morrey-Campanato class L(p, 00, 1) for some function p(e) = o(€), as e — 0. Fix
29 € 0D, and suppose further that for every e > 0, there exists a hyperplane £, that
realizes the infimum of |0D — L¢||1(p,00,1) 0ver the ball B(2°,€). Choose a smooth
radial function g : R? — R with compact support in B = B(0,1). Let H = H, be
either half-space defined by £.. Then

lim || Ec g (1a;2%) = Ee,g(1p;a”)|| = 0.

3. CASE STUDIES
3.1. Algorithm and implementation
‘We make some well-known approximations to calculate the autocovariance matrix
in the discrete sampled case. Our normalization of the one-dimensional discrete
Fourier transform on N real samples {f(n):0<n < N} is
N-1
fk) = Zexp (—27ri]j\7;> f(n), ke By = [—];[];]] .

n=0

If only the first ¢ < N samples of f are nonzero, then the sum reduces to the
smaller range {0,1,...,¢ — 1}. Thus, the squared absolute value of f(k), when f
is real-valued, is

SES (n—n)

Z Zexp( 2mT> f(n)f(n), k € By.
n=0n'=

The r-th moment of |f(k)[? is therefore

S HFEP = Y krexp( 2m’“<N"”">) Fn) ()

kEBn k€Bn n=0n'=0
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k(n—n')
= Z Z Z k" exp( 271'7,T> .
n=0n’=0

keBn

The innermost sum in & is a function of the integer n — n’. Except for a factor of
N™+1 it is a Riemann approximation to the integral

1
,ur(n):/ a" exp(—2minx) dz,

1
2

evaluated at n <+ n — n/, whose easily-computed values we shall use instead. Evi-
dently po(n) =1 if n = 0, but is zero otherwise, while

0, ifn=0, 1/12, ifn=0,
pa(n) =9 (=" : pa(n) =9 n” .

i~5——, otherwise; 5-7.7, Otherwise.

We can apply the above results to analyze an image, which for our purposes will
be a real-valued function supported on the rectangle [0, M] x [0, N] C R?, sampled
on a regular grid with grid point coordinates {(m,n) : 0 < m < M; 0 < n < N}.
We will use a bump function supported on small subrectangles of size p X ¢, rather
than a dilated radial function, for g.. Translations of f have no effect on | f 12, so
we may assume that the localized portion of the image has been translated to the
subgrid {(m,n) : 0 < m < p; 0 < n < ¢}. The dual local autocovariance matrix
may then be computed as follows:

By o= Y flmn)f(m ) pa(m —m)po(n —n) (3)
e
= 55 S Flmam) g m)pa(m — ')
m=0m’=0n=0
p—1 g—1 g—1
E22 = Z Z Z f(man)f(m7n/)ﬂ2(n - nl); (4)
m=0n=0n'=0
3D

Around each grid point 2° of the image, we perform the following steps:

q—

q—1
Ey = Exn Z fm,n) f(m/ . n")pa (m — m)pa (n —n'). (5)

1
m/=0n=0n’'=

Localization. Extract the samples on the square subgrid 20 + [—¢,¢€] X [—¢, €],
where a small positive integer plays the role of € in Definition 2.1. Then p = ¢ =
2¢+1. The sample at 2° becomes the sample at 0 in the (2¢+1) x (2¢+ 1) extracted
subgrid [—¢, €]2. The sample at 2° +y is multiplied by the Gaussian bump function
exp(—7|y|?/€?) and stored at y in the subgrid. This costs O(e?) operations per
pixel.

If 20 is within e grid points of the boundary, then we simply pad any missing
samples in the subgrid with zeros. For definiteness, we chose ¢ = 3 to prepare our
case studies.

Dual Autocovariance. Compute the 2 x 2 matrix F = (Fj;) using Equations 3,4,
and 5. This always yields a real-valued, symmetric, positive semidefinite matrix.
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FIG. 2. Geometrical figures: image, and edginess.

The computational complexity of the quadruple sum in Equation 5 dominates the
triple sums of Equations 3 and 4, so this step costs O(e?) operations per pixel.

Figenvalues. For symmetric 2 x 2 matrices F, the exact formula for eigenvalues
is:

1
A= 3 (En + By & \/(Ell — Ex)?+ 4E%2> ) (6)

where we take + for A\; and — for Ay. These will satisfy \;y > Ay > 0, so in
particular, if A2 > 0 we always have A; /Ay > 1. The greater the relative difference,
the greater the edginess.

Edginess. We define this to be the ratio A;/Ay. We actually compute the
bounded reciprocal A\y/A; € [0, 1], amplified to fill the grayscale range of a write-
black display device. That way, the darkest marks indicate the greatest edginess.

The Dual Autocovariance step dominates the computational complexity. It is
therefore O(p?q?) operations per pixel, if we localize to subgrids of p x ¢ points.

3.2. Example images

We prepared five examples by the algorithm described above, localizing with
Gaussian bumps restricted to 7 x 7 subgrids centered at z°.

The geometrical figures are piecewise constant functions with jump discontinu-
ities along various rectifiable, mostly smooth curves. The fingerprint image was
obtained from NIST; it is part of its compliance test suite for the FBI’s WSQ com-
pression standard. “Lena” is the famous image from [7]. “Cone” is a synthetic
ray-traced image provided by Craig Kolb. “Truck,” provided by Peng Li, is one
frame from a video. All five are available from the ACHA Software Distribution
Web Site.

REFERENCES

1. W. K. Czaja. Applications of Local Autocovariance Matrices. PhD thesis, Washington Uni-
versity, Saint Louis, Missouri, 2000.

2. R. Duda and P. Hart. Use of the Hough transform to detect lines and curves in pictures.
Communications of the ACM, 15(1):11-15, 1972.

3. A. Gelb and E. Tadmor. Detection of edges in spectral data. Applied and Computational
Harmonic Analysis, 7(1):101-135, 1995.



SINGULARITY DETECTION

: image, and edginess.
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FIG. 6. Truck: image, and edginess.
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