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ABsSTRACT. Necessary and sufficient conditions are given for some functions in L2(R) with compactly
supported Fourier transforms to generate orthonormal bases under the action of integer translations
and power-of-two dilations.

INTRODUCTION

Some work of A. Grossman and J. Morlet [GM] brought together the interests of engineers and
classical harmonic analysts in the construction of “nice” bases for classical function spaces. Seeking
square-integrable representations of the ax + b group, they characterized admissible vectors and
their orbits. They mentioned the problem of constructing a basis for L?(R) from an orbit of a
discrete subset of the ax + b group. Much of the group theory they would like to use in this
situation, however, fails to apply due to the significant differences between the az + b group and
its discrete subsets.

Y. Meyer [M] then found a special function, which he called a “wavelet,” smooth and with expo-
nential decay at infinity, whose discrete orbit was a Hilbert basis for L?(R), and an unconditional
basis for almost every common Banach space of functions on R. P. G. Lemarié [L] used this basis
to prove certain basic facts about algebras of Calderén-Zygmund operators.

More recently, I. Daubechies [D] has found an algorithm for constructing other wavelets tailored
to particular function spaces, including wavelets of compact support.

In this paper, we will explore Meyer-type bases for L?(R), trying to obtain the simplest possible
Hilbert bases with vectors lying in specified “nice” subspaces. Our principal tool will be a unitary
isomorphism 6 : L?(R) — L?(D x Z), where D C R is a dyadic interval together with its reflection
about 0. The map € intertwines the ax + b group with shifts and multiplications by exponentials,
providing insight into the orbit through certain simple functions. We shall call » € L*(R) a basis
wavelet if its discrete orbit is a Hilbert basis of L?(R).

We will focus on the simplest types of functions describable by their images under 6. Observe
that L?(D) @ 1? < L?(D x Z). An elementary tensor wavelet will be a basis wavelet 1 belonging
to L2(R) such that 01 is an elementary tensor f ® e, in L?(D)®12, and a k-tensor wavelet will be
a basis wavelet 1) for which 07 is a linear combination of k elementary tensors. The main theorems
are the uniqueness of the elementary tensor wavelets and a functional equation whose solutions are
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all possible 2-tensor wavelets. Note that Meyer’s wavelet, itself a 2-tensor wavelet, is a particular
solution to this functional equation.

In a similar fashion, we can obtain necessary and sufficient conditions for the existence of k-

tensor wavelets, which exhaust the class of L? functions whose Fourier transforms are compactly
supported in R — {0}.

THE UNITARY ISOMORPHISM

Choose z > 0 and let D = [~2z, —z) U (2,2z] C R. Define 6 : L*(R) — L*(D x Z) by
Of(t,n) =2""/2f(2~") forte D, neZ.

Then @ is an isometry, since:

l6f|2 = /\thn )[2dt — /|f )29 gy

neZ nez
=3 [ ifopa= [ (fRd= 7R = 11
ne? onp u2nD

Also, 0 is surjective since for any nonzero ¢ € R there are unique ¢ € D and n € Z such that
¢ = 2"t. Hence, if g € L?(D x Z), there is a well defined f € L? satisfying f(g) = 2%/2g(n,t).
Evidently, g = 0f.

Finally, 0 is unitary because the Fourier transform is unitary. For f,g € L?(R), we have:

<9f,0g):Z/0fthgtn)

nez

:Z/f 27"1)§(2—"t)2 7 "dt

> (f,9) by Plancherel’s Theorem.
The ax + b group, isomorphic to R x R, has the following multiplication law: For a,b,c,d € R,

(a,b)(c,d) = (a+¢,2°D+d), and
(a,b)™ = (—a, —27%).

It has a faithful unitary representation U on L?(R) as the semidirect product of translations and
dilations: For f € L*(R),
Ula,b)f(z) =292 (2% — b).

Definition. Set L = {(a,b)|a,b € Z}. Denote by I those elements of L with nonnegative first
coordinate: then I = {(a,b)la,b € Z,a > 0}. Denote by G the group generated by L : then
G ={(a,b)la € Z,2"b € Z for some n = n(b) € Z}.

G is the group of dyadic rational translations followed by dyadic dilations. L is the set of integer
translations followed by dyadic dilations. Both are generated by I.
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Lemma 1. The subset I C G is a semigroup.
Proof. [

Lemma 2. Every (r,y) € G may be written as (z,y) = (a,b)(c,d)t, where (a,b) € I and
(c,d) € I.

Proof. If y = k27" with n, k € Z, n > 0, then we may choose ¢ = maz{n, -z}, a=x+¢, d =0,
and
b k, if x> —n,
ol k2rn, i< —n. O
Since U is faithful, we shall abuse notation and identify the group G with U(G), L with U(L)
and I with U([).
Lemma 3. If f € L?*(R) and (a,b) and (c,d) belong to G, then

(U(av b)fa U(Cv d)f) = (U(a —cb-— 2a_cd)fa f>

Proof. O
This leads to a criterion for orthogonality in an orbit of L :

Proposition 4. The set Lf = {U(a,b)fla,b € Z} is orthonormal in L*(R) if and only if
(U(a,b)f, f) = de for (a,b) € I, where e = (0,0) is the identity in G.

Proof. By Lemma 3, we can reduce (U(c,d)f,U(c.d")f) = (U(a,b)f, f), where (a,b) = (c—',d—
2¢=¢'d). Without loss, we can arrange that ¢ > ¢ so that (a,b) € I. But (a,b) = (0,0) if and only
ifc=c andd=d. O

INTERTWINING L AND 6

The map @ is a unitary equivalence between the representation U of L (or G, or I,) on L*(R)
and another representation V on L?*(D x Z) :

Definition. For (a,b) € G, define V(a,b) : L?>(D x Z) — L?*(D x Z) by VOf = QU f for every
f € L2(R). Then we have, for £ = {£,(t)} € L*(D x Z), the relation

(V(a,b)§),, (1) =™ "carn(D).

Since 6 is unitary, we have

Lemma 5. If{ =0f, then for all (a,b) € G,
(U(a,0)f, ) = (V(a,b)&, §).

Proof. [

Since this holds for (a,b) € I, one can check orthogonality in L?(D x Z), which is technically
easier.
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THE INFLUENCE OF D

Recall that D = [-2z, —z) U (z,2z] for z > 0. Of course the choice of z influences €, but exactly
doubling z is a unitary isomorphism:

Lemma 6. IfV and V' are the representations of G on L*(D x Z) and L*(2D x Z), respectively,
given by the previous definition, then V and V' are unitarily equivalent.

Proof. Tt suffices to find a unitary isomorphism n : L?(DxZ) — L*(2D xZ) such that V = n=1V'n.
But 71 defined as below works:

1
n(©a(t) =273 1(51)  forte2D.
Then for n € Z, ¢t € D, one has:

17V (@, b)nén(t) = 22V (a, b)n€ns1(28)

— 22 exp (—ib(2t)27a7(n+l)> N8atnt1(2t)

1 . —a—(n _1 1
= 24 exp (~ib(20)27 Y ) 276 nin 1 (2(31)

= exp(— b2 (1)

= V(a, b)fn (t)
A similarly straightforward calculation shows that ({',7¢)12(2pxz) = (¢, §)L2(pxz) for every
£e€L?(D xZ), ¢ € L?(2D x Z). That n is an isomorphism is clear. [J

Corollary 7. Every representation V' of G is unitarily equivalent to a representation V on L?(D x
Z) for some D C [—7,m].

Proof. U

Many tools are available to study the representation V' when D C [—7, 7.

ELEMENTARY TENSOR WAVELETS

Let f: D — C be a fixed function, f € L?(D). Let &,(t) = f(t)em(n) € L?(D) @ [?, where

em(n) =

{1, if n=m,
0, ifn#m.

This e,, is a unit vector inl%2. Define ¢ = 1(z), 1 € L?(R), by the equation 6 = £, namely,

0, if n #£ m,

(00)(t) - { o el

Then necessary and sufficient conditions for L) to be an orthonormal set may be found in terms
of f:
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Proposition 8. L) is an orthonormal set in L*(R) if and only if

[ v 0P =50 orvez.
D

Proof. By Lemma 5 and Proposition 4, L1 is an orthonormal set if and only if
(V(a,b)&, &) = dc(a,b) for (a,b) € I.

With 1 as above, this translates into

so(ab) =Y /D (V(a, 5)E) (OB (D)t

=3 [ e femlat m) e

neZ
_ { [pe ™2 T f(t)Pdt, ifa=0,
0, ifa #0. O

Because of Corollary 7 we can assume without loss that D C [—m,7]. It is useful to think of f
as a function on [—, 7] (or equivalently, on the circle 7') which is zero off D. Then the condition
on f in Proposition 8 becomes a condition on the Fourier coefficients of | f|?.

Proposition 9. If L is an orthonormal set in L?(R), then m < 0.

Proof. Otherwise, since all Fourier coefficients but the 0th vanish, we must have | f|? = constant
almost everywhere in 7. But D¢ U T has positive measure, and f(t) = 0 off D forces f = 0 and
L+ = {0}, not an orthonormal set. [J

Definition. Fort € T = [, @, define (t)x = {t,t + 2F,... t + m} (mod T), which is the
orbit of t under the (natural) action of the \'h roots of unity.
Definition. For h € L*(T), define S\h(t) = A7} >se(t)y M), which is the symmetrization of h

over A points. Note that Syh has the Ath Fourier coefficients of h, with all of its other Fourier

coefficients vanishing: .
¢ h(k), IifA|Ek,
CUIDES S
0, it A k.

Proposition 10. If L1 is an orthonormal set in L?(R), then |f|? has the following symmetry
property: For almost allt € T,

27m—-1

(*) >

k=0

ok |?
= So-m|fIP(t) = 1.

f(t+2,—m)

~

Proof. By Proposition 9, m < 0. From Proposition 8 we conclude that (|f|?)(27™k) = 0 for all

~

integers k # 0. But then (Sy-m|f]?)(27™k) = 0 for all integers k # 0. Thus Sy-m|f|? =constant#
0, and we may normalize this nonzero constant to 1. [
We now characterize those D for which it is possible to have an elementary tensor wavelet.

Observe that if L1 is orthonormal, then for almost every ¢t € T' at least one summand of equation
(*) must be nonzero.
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Proposition 11. If Ly is a Hilbert basis for L?(R), then for almost every t € T at most one
summand of equation (x) may be nonzero, and f(t) # 0 for almost every t € D.

Proof. To begin with, if f vanishes on a set P C D of positive measure, then, the function
g € L?(R) defined by 0g(t,n) = xp(t)eo(n) is nonzero and orthogonal to L1). This contradicts the
assumption that L) is a basis.

Further, if more than one summand in equation (*) is nonzero, we can construct another nonzero
g € L*(R) orthogonal to L because of cancellation. From any subset of D of positive measure
on which at least 2 summands of Sy-m|f|? are nonzero, we can choose a measurable subset P
satisfying the following:

(i) [P >0,

(ii) For all t € P, t + 2Z& (mod T) belongs to D for some fixed k = k(P) # 0,

(iii) Both |f(t)| > € and | f(t + ZZ&)| > € for some fixed e > 0 and all ¢ € P,

(iv) PN (P+ &Zk)=0.

Define g € L?(D) by:

1/f(1), if t € P,
gty =4 —1/f(t), ifteP+ 2L (modT),
0 otherwise.

Then Sy-m (f§)(t) = 0, so that for every integer b,

/ exp(—ibl2~™) f(3)dt = 0.
D

But because of the compact support of g, we also have the following equation for all integers a, b:
/ exp(—ibt2=™) f(t)g(2—™—at)dt = 0.
D

Together,these equations imply that (V' (a, b)0,0g) = 0 for all integers a, b, and thus that g L L.
But by its construction, g is a nonzero element of L?(R). This contradicts the assumption that
L7 is a basis. [

Proposition 11 imposes strong restrictions on D, and likewise on f.

Theorem 12. If ¢ is an elementary tensor wavelet, then |[{(t)| = (2m)~2 for almost every t €
[—27, —7) U (7, 27], and 9 (t) = 0 elsewhere.

Proof. Write 6y = f ® e,,. By Proposition 9, m < 0. By Proposition 11 and the preceding
observation, D must have the property that exactly one point of (¢)3-= belongs to D for almost
every t € [—m,n] = T. Hence if t € D, then no other point of (t);-m may be in D, so that T
is covered by the 27" disjoint translates by 27 /27" of D (mod T'), which we may as well call
(D)g-m. Comparing lengths forces 27™|D| = |T| = 27 = D = [-2m2™, 72™) U (72™,272™],
which is easily seen to work.

Now, since exactly one summand of Sy—m|f|? contributes in equation (x), | f|* must be constant.
Recalling that ¢(t,n) = 2~ 54)(27"t) yields:

. { 2% f(2m), if2mte D,

0, otherwise.
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Thus |¢| must be constant on 27D = [—2x, —7) U (, 27] and zero elsewhere. Normalizing ¥ so
that ||¢||z2(r) = 1 completes the proof. []

This theorem characterizes elementary tensor wavelets. They are the images of the wavelet 1,
under the group M of unitary multiplication operators, where zﬂo = (QW)*%X p and M € M has
the action (ij(t) = pu(t)f(t) for |u(t)] = 1 at almost every ¢ € R. Notice that M contains all
translations as well as the Hilbert transform. Elementary tensor wavelets are unique up to the
equivalence defined by M.

It is not hard to compute that ¢,(z) = (sin 27z — sinzwz)/(7z). Such functions have uses in
information theory because their frequencies are localized to a single octave. See, for example, the
discussion of band-limited functions in McKean [DMcK]. Unfortunately, these wavelets suffer from
significant deficiencies. In particular, no elementary tensor wavelet can have a continuous Fourier
transform, so it cannot provide a basis for L*(R) (or H!(R)).

TwO-TENSOR WAVELETS

For fixed j,k € Z, j < k, and fixed f,g € L*(D), define » € L*(R) by 0y = f @ e; + g ® eg.
Then the orthnormality condition may be written as below:

de(a,b) = (U(a,b), ) fora,be I
= (V(a, )09, 0¢)

=> /D exp(—ibt2=* ")[f(H)ej(a+n) + g(t)ex(a + n)][f(t)ej(n) + g(t)ex(n)]dt

neZz

0, ifa#0and a#k— j,

=< /b exp(—ibt2=%)g(t) f(t)dt, ifa=k— 7,
Jplexp(—ibt279) | f(1)]? + exp(—ibt2~*)|g(t)[*]dt, if a = 0.
This calculation may be summed up as follows:

Lemma 13. If ¢ = 07 (f @ e; + g ® e) is a 2-tensor wavelet, then

1 fp exp(fibt2_k‘)g(t)f(t)dt =0, and
(2) [plexp(=ibt277)[f(t)|* + exp(—ibt2~*)|g(t) |*]dt = do(b)-

Proof. [

As usual, we assume without loss that D C [—m, w]. Lemma 14 is an easy consequence of Lemma
15, but is presented to clarify some of the ideas in the latter’s proof.

Lemma 14. If¢p=0"'(f @ e; + g ® ey) is a 2-tensor wavelet, where j < k, then j < 0.
Proof. Let A = 28=J_ Then A > 2. The second equation in Lemma 13 implies that (\f\25(2_jb) =

~

—A(lgx?)(277b), where gx(t) = g(Mt) and b # 0. But then, if j > 0, this equation relates all but
the the 0th Fourier coefficients of |f|? and |gx|?. Without loss, we can write

[FI? + Algal* = 1.

Now f and gy have disjoint support, showing immediately that |f|? = xp and |g|?> = A\~1xp. But
the first equation of Lemma 13 shows that

—_

(g/)(27%b) =0 for all b € Z.
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Again, if k£ > j > 0, this implies that gf = 0 and that |g|?|f|?> = 0, which contradicts |g|?|f|?> =
/\_IXD. ]

Lemma 15. Ifv) =07 (f®e; +g®@ey) is a 2-tensor wavelet, where j < k and g # 0, then k < 0.

Proof. Suppose that k£ > 0. Then.an € Z for all n € Z. From the second equation of Lemma 13
with b = n2F and setting A = 2¥7 > 2, one obtains

() (I91%)(n) + (| f)(An) = do(n)  for n € Z.

This relates all the Fourier cofficients of |g|? to those of |f|? which are multiples of A\. But these
latter coefficients may be isolated by using the symmetrization operator S} :

(1) (An) = (Salf12)(An).

Recalling the notation hy(t) = h(At) and using a well known property of the Fourier transform
yields:

(191%)(n) = (Alga)(An).

Putting these two equations together with equation (%) yields
(SAlf1)(An) + (Algal?)(An) = do(An)  for all n € Z.
All other Fourier coefficients in the above equation vanish, so it is possible to conclude that:
SalfI2(t) + Maga|>(t) =1 forallte€T.

Now [gx|?(t) = 0 if t € (A1 D)¢, since supp g C D. Thus t € (A\"'D)¢ = S,|f|*(t) = 1. But
since Sy|f]?(t) is an average over (t)y, and r € (t)x = (r)x = (1), we have that if ¢ € (\"1D)¢
and 7 € (t)y, then Sy|f|?(r) = 1 and gx(r) = 0. With A > 2, it can be shown that for almost
all 7 € A71D there exists t € (A™1D)¢ with r € (¢)). This is because both r + 7 € (r)) and
r—m € (r)x, and with A'D C [-Z, 5] we are guaranteed that one of r + 7 must be in (A\~'D)®
for almost every » € A™'D. Thus |gx|? = 0 almost everywhere in A™'D, so g = 0 in L?*(D),
contradicting the hypothesis. [

The lemmas above are results of the orthogonality condition for wavelets. They may be combined
with the density requirement to yield the main theorem:

Theorem 16. Suppose ¢ = 071(f @ e; + g @ ey,) is standardized with j < k, f and g different
from 0, and D C [—m,w]| = T. Write A\ =27 > 2, 1 =277, and v = 27%. Then 1 is a 2-tensor
wavelet if and only if all of the following are true:

(1) 1<k <0, sothat p>2v >4 and p > 2X > 4,

(2) Su(IfI?+Agal?) =1 onT,
(3) Su(gf)=0o0nT, 1
(4) Ifh € L2(R), then (Vn € Z) (S“([f + A3 galhan) =0 on T) s h=0.

Proof. Lemma 15 shows the necessity of (1). We can rewrite the two necessary conditions of
Lemma 13 as follows:

/ exp(—ibtv)g(t) f(t)dt = 0 for all b € Z, and
D
(res) ] expl=ivt) (O + expl=ibn)0) Pl = 8o

= [ e + Nor o)



ELEMENTARY WAVELETS 9

With A and p as given, these equations in the S, notation are equivalent to (2) and (3). Conversely,
if j < k < 0, then (2) and (3) are equivalent to equations (xx), which imply that L1 is an
orthonormal set.

Given (1), the condition that L1 is dense in L?(R) is equivalent to (4) by the following calcu-
lation: For ¢ € L*(R),

b=0o¢ L L
< 0= (U(a,b)y, ¢) for all (a,b) € L
< 0= (V(a,b)01,00) for all (a,b) € L

203 [ expl-ibt2 %) es(n + a)(0) + exn -+ a)g(0) T m.
nez’ D

All but two of the summands vanish, and this last condition is equivalent to:
0= / exp(—ibt2 =) f(£)0p(t, j — a)dt + / exp(—ibt2 ®)g(t)0p(t, k — a)dt.
D D

Now let h(t) = 0¢(t,j —a). Then 0¢(t,k — a) = h(\~1t), where we must think of h as a function
on T rather than as a function on D. Then ¢ = 0 < (Vn € Z) hon =0 on 7. Changing variables
in the second integral and using p and A, one obtains the equivalent condition:

p=0&0= / exp(—ibtp) f(t)hon (t)dt +
D
—I—/ exp(—ibtp))g(t)hon (A"1t)dt for all n € Z,
D
0= / exp(—ibtp) f(t)hon (t)dt +
D

—I—/ exp(—z’bt,u))\*%g(/\t)hgn(t)dt for all n € Z,
A-1D

S 0=28,(f+Agalhan) forallneZ. 0O

From these functional equations (2) (4), it is possible to construct examples of basis wavelets.
Similar equations may be found for k-tensor wavelets, although they become unwieldy.

Theorem 16 characterizes those D for which one may have 2-tensor wavelet. Since S, (| f|* +
AMga|?)(t) = 1 on T, it is necessary that for almost every ¢t € T there is some s € (t), such that
s € DUATID. This may be stated as T C (D U A™1D),. However, condition (4) may hold even
if several points of (t)y belong to D UA™!D for a nonnull set of points t € D U A™'D. This is
because of the possibility that the only nonzero function ¢ which can satisfy ¢ 1 L1 by exploiting
the resulting cancellation might not be in L?(R). In fact, the Fourier transform of Meyer’s wavelet
is supported in D U271 D, where =4, A =2, and

This particular D has the property that for every ¢ € T there are exactly two points in (¢), which
belong to DUA"1D, and either they both belong to D or they both belong to A=*D. Call these two
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points ¢; and t5 if they belong to D. In addition, A='#; and A~'t5 are the only points in DUA"1D
which are also in (A™'¢1), or (A™*¢2),. Thus, to satisfy condition (4) for every n € Z, it is necessary
that all three of the equations below hold simultaneously for all pairs {t1,t2} = (), N [DUA"D]

arising from t € D:
f(t1)g(th) + f(t2)g(t2) =0
f(t1)han (t1) + f(t2)han(t2) =0
g(t1)hon(t1) + g(t2)hon(t2) =0

It is easy to choose functions f and g such that this can only happen if h = 0.

In a forthcoming article, we will discuss other limitations on D, u, and A imposed by Theorem
16.
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