ELEMENTARY WAVELETS

ELLIOT C. GOOTMAN*
MLADEN VICTOR WICKERHAUSER**

Department of Mathematics University of Georgia Athens, Georgia 30602

ABSTRACT. Necessary and sufficient conditions are given for some functions in $L^2(\mathbf{R})$ with compactly supported Fourier transforms to generate orthonormal bases under the action of integer translations and power-of-two dilations.

Introduction

Some work of A. Grossman and J. Morlet [GM] brought together the interests of engineers and classical harmonic analysts in the construction of "nice" bases for classical function spaces. Seeking square-integrable representations of the ax + b group, they characterized admissible vectors and their orbits. They mentioned the problem of constructing a basis for $L^2(\mathbf{R})$ from an orbit of a discrete subset of the ax + b group. Much of the group theory they would like to use in this situation, however, fails to apply due to the significant differences between the ax + b group and its discrete subsets.

Y. Meyer [M] then found a special function, which he called a "wavelet," smooth and with exponential decay at infinity, whose discrete orbit was a Hilbert basis for $L^2(\mathbf{R})$, and an unconditional basis for almost every common Banach space of functions on \mathbf{R} . P. G. Lemarié [L] used this basis to prove certain basic facts about algebras of Calderón-Zygmund operators.

More recently, I. Daubechies [D] has found an algorithm for constructing other wavelets tailored to particular function spaces, including wavelets of compact support.

In this paper, we will explore Meyer-type bases for $L^2(\mathbf{R})$, trying to obtain the simplest possible Hilbert bases with vectors lying in specified "nice" subspaces. Our principal tool will be a unitary isomorphism $\theta: L^2(\mathbf{R}) \to L^2(D \times \mathbf{Z})$, where $D \subset \hat{\mathbf{R}}$ is a dyadic interval together with its reflection about 0. The map θ intertwines the ax + b group with shifts and multiplications by exponentials, providing insight into the orbit through certain simple functions. We shall call $\psi \in L^2(\mathbf{R})$ a basis wavelet if its discrete orbit is a Hilbert basis of $L^2(\mathbf{R})$.

We will focus on the simplest types of functions describable by their images under θ . Observe that $L^2(D) \otimes l^2 \hookrightarrow L^2(D \times \mathbf{Z})$. An elementary tensor wavelet will be a basis wavelet ψ belonging to $L^2(\mathbf{R})$ such that $\theta \psi$ is an elementary tensor $f \otimes e_m$ in $L^2(D) \otimes l^2$, and a k-tensor wavelet will be a basis wavelet ψ for which $\theta \psi$ is a linear combination of k elementary tensors. The main theorems are the uniqueness of the elementary tensor wavelets and a functional equation whose solutions are

^{*}Partially supported by a grant from the National Science Foundation. **Partially supported by a grant from the University of Georgia Research Foundation.

all possible 2-tensor wavelets. Note that Meyer's wavelet, itself a 2-tensor wavelet, is a particular solution to this functional equation.

In a similar fashion, we can obtain necessary and sufficient conditions for the existence of k-tensor wavelets, which exhaust the class of L^2 functions whose Fourier transforms are compactly supported in $\hat{\mathbf{R}} - \{0\}$.

THE UNITARY ISOMORPHISM

Choose
$$z > 0$$
 and let $D = [-2z, -z) \cup (z, 2z] \subset \hat{\mathbf{R}}$. Define $\theta : L^2(\mathbf{R}) \to L^2(D \times \mathbf{Z})$ by $\theta f(t, n) = 2^{-n/2} \hat{f}(2^{-n}t)$ for $t \in D$, $n \in \mathbf{Z}$.

Then θ is an isometry, since:

$$\begin{aligned} \|\theta f\|^2 &= \sum_{n \in \mathbf{Z}} \int_D |\theta f(t,n)|^2 dt = \sum_{n \in \mathbf{Z}} \int_D |\hat{f}(2^{-n}t)|^2 2^{-n} dt \\ &= \sum_{n \in \mathbf{Z}} \int_{2^n D} |\hat{f}(t)|^2 dt = \int_{\cup 2^n D} |\hat{f}|^2 dt = \|\hat{f}\|^2 = \|f\|^2. \end{aligned}$$

Also, θ is surjective since for any nonzero $\xi \in \hat{\mathbf{R}}$ there are unique $t \in D$ and $n \in \mathbf{Z}$ such that $\xi = 2^n t$. Hence, if $g \in L^2(D \times \mathbf{Z})$, there is a well defined $f \in L^2$ satisfying $\hat{f}(\xi) = 2^{n/2}g(n,t)$. Evidently, $g = \theta f$.

Finally, θ is unitary because the Fourier transform is unitary. For $f, g \in L^2(\mathbf{R})$, we have:

$$\begin{split} \langle \theta f, \theta g \rangle &= \sum_{n \in \mathbf{Z}} \int_D \theta f(t, n) \overline{\theta g(t, n)} dt \\ &= \sum_{n \in \mathbf{Z}} \int_D \hat{f}(2^{-n}t) \overline{\hat{g}(2^{-n}t)} 2^{-n} dt \\ &= \int_{\hat{\mathbf{R}}} \hat{f}(t) \overline{\hat{g}(t)} dt \\ &= \langle \hat{f}, \hat{g} \rangle = \langle f, g \rangle \quad \text{by Plancherel's Theorem.} \end{split}$$

The ax + b group, isomorphic to $\mathbf{R} \times \mathbf{R}$, has the following multiplication law: For $a, b, c, d \in \mathbf{R}$,

$$(a,b)(c,d) = (a+c, 2^cb+d)$$
, and $(a,b)^{-1} = (-a, -2^{-a}b)$.

It has a faithful unitary representation U on $L^2(\mathbf{R})$ as the semidirect product of translations and dilations: For $f \in L^2(\mathbf{R})$,

$$U(a,b)f(x) = 2^{a/2}f(2^ax - b).$$

Definition. Set $L = \{(a,b)|a,b \in \mathbf{Z}\}$. Denote by I those elements of L with nonnegative first coordinate: then $I = \{(a,b)|a,b \in \mathbf{Z},a \geq 0\}$. Denote by G the group generated by L: then $G = \{(a,b)|a \in \mathbf{Z}, 2^n b \in \mathbf{Z} \text{ for some } n = n(b) \in \mathbf{Z}\}$.

G is the group of dyadic rational translations followed by dyadic dilations. L is the set of integer translations followed by dyadic dilations. Both are generated by I.

Lemma 1. The subset $I \subset G$ is a semigroup.

Proof. \Box

Lemma 2. Every $(x,y) \in G$ may be written as $(x,y) = (a,b)(c,d)^{-1}$, where $(a,b) \in I$ and $(c,d) \in I$.

Proof. If $y = k2^{-n}$ with $n, k \in \mathbf{Z}$, $n \ge 0$, then we may choose $c = max\{n, -x\}$, a = x + c, d = 0, and

$$b = \begin{cases} k, & \text{if } x \ge -n, \\ k2^{x-n}, & \text{if } x < -n. \quad \Box \end{cases}$$

Since U is faithful, we shall abuse notation and identify the group G with U(G), L with U(L) and I with U(I).

Lemma 3. If $f \in L^2(\mathbf{R})$ and (a, b) and (c, d) belong to G, then

$$\langle U(a,b)f, U(c,d)f \rangle = \langle U(a-c,b-2^{a-c}d)f, f \rangle.$$

Proof. \Box

This leads to a criterion for orthogonality in an orbit of L:

Proposition 4. The set $Lf = \{U(a,b)f|a,b \in \mathbb{Z}\}$ is orthonormal in $L^2(\mathbb{R})$ if and only if $\langle U(a,b)f,f\rangle = \delta_e$ for $(a,b) \in I$, where e = (0,0) is the identity in G.

Proof. By Lemma 3, we can reduce $\langle U(c,d)f, U(c',d')f \rangle = \langle U(a,b)f, f \rangle$, where $(a,b) = (c-c',d-2^{c-c'}d)$. Without loss, we can arrange that $c \geq c'$ so that $(a,b) \in I$. But (a,b) = (0,0) if and only if c = c' and d = d'. \square

Intertwining L and θ

The map θ is a unitary equivalence between the representation U of L (or G, or I,) on $L^2(\mathbf{R})$ and another representation V on $L^2(D \times \mathbf{Z})$:

Definition. For $(a,b) \in G$, define $V(a,b) : L^2(D \times \mathbf{Z}) \to L^2(D \times \mathbf{Z})$ by $V\theta f = \theta Uf$ for every $f \in L^2(\mathbf{R})$. Then we have, for $\xi = \{\xi_n(t)\} \in L^2(D \times \mathbf{Z})$, the relation

$$(V(a,b)\xi)_n(t) = e^{-ibt2^{-a-n}}\xi_{a+n}(t).$$

Since θ is unitary, we have

Lemma 5. If $\xi = \theta f$, then for all $(a, b) \in G$,

$$\langle U(a,b)f, f \rangle = \langle V(a,b)\xi, \xi \rangle.$$

Proof. \Box

Since this holds for $(a, b) \in I$, one can check orthogonality in $L^2(D \times \mathbf{Z})$, which is technically easier.

The Influence of D

Recall that $D = [-2z, -z) \cup (z, 2z]$ for z > 0. Of course the choice of z influences θ , but exactly doubling z is a unitary isomorphism:

Lemma 6. If V and V' are the representations of G on $L^2(D \times \mathbf{Z})$ and $L^2(2D \times \mathbf{Z})$, respectively, given by the previous definition, then V and V' are unitarily equivalent.

Proof. It suffices to find a unitary isomorphism $\eta: L^2(D \times \mathbf{Z}) \to L^2(2D \times \mathbf{Z})$ such that $V = \eta^{-1}V'\eta$. But η defined as below works:

$$\eta(\xi)_n(t) = 2^{-\frac{1}{2}} \xi_{n-1}(\frac{1}{2}t) \quad \text{for } t \in 2D.$$

Then for $n \in \mathbf{Z}$, $t \in D$, one has:

$$\eta^{-1}V'(a,b)\eta\xi_n(t) = 2^{\frac{1}{2}}V'(a,b)\eta\xi_{n+1}(2t)$$

$$= 2^{\frac{1}{2}}\exp\left(-ib(2t)2^{-a-(n+1)}\right)\eta\xi_{a+n+1}(2t)$$

$$= 2^{\frac{1}{2}}\exp\left(-ib(2t)2^{-a-(n+1)}\right)2^{-\frac{1}{2}}\xi_{a+n+1-1}(2(\frac{1}{2}t))$$

$$= \exp(-ibt2^{-a-n})\xi_{a+n}(t)$$

$$= V(a,b)\xi_n(t).$$

A similarly straightforward calculation shows that $\langle \xi', \eta \xi \rangle_{L^2(2D \times \mathbf{Z})} = \langle \eta^{-1} \xi', \xi \rangle_{L^2(D \times \mathbf{Z})}$ for every $\xi \in L^2(D \times \mathbf{Z})$, $\xi' \in L^2(2D \times \mathbf{Z})$. That η is an isomorphism is clear. \square

Corollary 7. Every representation V' of G is unitarily equivalent to a representation V on $L^2(D \times \mathbb{Z})$ for some $D \subset [-\pi, \pi]$.

Proof. \Box

Many tools are available to study the representation V when $D \subset [-\pi, \pi]$.

ELEMENTARY TENSOR WAVELETS

Let $f: D \to \mathbf{C}$ be a fixed function, $f \in L^2(D)$. Let $\xi_n(t) = f(t)e_m(n) \in L^2(D) \otimes l^2$, where

$$e_m(n) = \begin{cases} 1, & \text{if } n = m, \\ 0, & \text{if } n \neq m. \end{cases}$$

This e_m is a unit vector in l^2 . Define $\psi = \psi(x), \ \psi \in L^2(\mathbf{R})$, by the equation $\theta \psi = \xi$, namely,

$$(\theta \psi)_n(t) = \begin{cases} 0, & \text{if } n \neq m, \\ f(t), & \text{if } n = m. \end{cases}$$

Then necessary and sufficient conditions for $L\psi$ to be an orthonormal set may be found in terms of f:

Proposition 8. $L\psi$ is an orthonormal set in $L^2(\mathbf{R})$ if and only if

$$\int_D e^{-ibt2^{-m}} |f(t)|^2 dt = \delta_0(b) \quad \text{for } b \in \mathbf{Z}.$$

Proof. By Lemma 5 and Proposition 4, $L\psi$ is an orthonormal set if and only if

$$\langle V(a,b)\xi,\xi\rangle = \delta_e(a,b)$$
 for $(a,b) \in I$.

With ψ as above, this translates into

$$\delta_{e}(a,b) = \sum_{n \in \mathbf{Z}} \int_{D} (V(a,b)\xi)_{n}(t) \overline{\xi_{n}(t)} dt$$

$$= \sum_{n \in \mathbf{Z}} \int_{D} e^{-ibt2^{-a-n}} f(t) e_{m}(a+n) \overline{f(t)} e_{m}(n) dt$$

$$= \begin{cases} \int_{D} e^{-ibt2^{-m}} |f(t)|^{2} dt, & \text{if } a = 0, \\ 0, & \text{if } a \neq 0. \end{cases}$$

Because of Corollary 7 we can assume without loss that $D \subset [-\pi, \pi]$. It is useful to think of f as a function on $[-\pi, \pi]$ (or equivalently, on the circle T) which is zero off D. Then the condition on f in Proposition 8 becomes a condition on the Fourier coefficients of $|f|^2$.

Proposition 9. If $L\psi$ is an orthonormal set in $L^2(\mathbf{R})$, then m < 0.

Proof. Otherwise, since all Fourier coefficients but the 0th vanish, we must have $|f|^2 = \text{constant}$ almost everywhere in T. But $D^c \cup T$ has positive measure, and f(t) = 0 off D forces $f \equiv 0$ and $L\psi = \{0\}$, not an orthonormal set. \square

Definition. For $t \in T \equiv [-\pi, \pi]$, define $(t)_{\lambda} = \{t, t + \frac{2\pi}{\lambda}, \dots, t + \frac{(\lambda-1)2\pi}{\lambda}\} \pmod{T}$, which is the orbit of t under the (natural) action of the $\lambda^t h$ roots of unity.

Definition. For $h \in L^2(T)$, define $S_{\lambda}h(t) = \lambda^{-1} \sum_{s \in (t)_{\lambda}} h(s)$, which is the symmetrization of h over λ points. Note that $S_{\lambda}h$ has the λth Fourier coefficients of h, with all of its other Fourier coefficients vanishing:

$$(S_{\lambda}h)(k) = \begin{cases} \hat{h}(k), & \text{if } \lambda \mid k, \\ 0, & \text{if } \lambda \nmid k. \end{cases}$$

Proposition 10. If $L\psi$ is an orthonormal set in $L^2(\mathbf{R})$, then $|f|^2$ has the following symmetry property: For almost all $t \in T$,

(*)
$$\sum_{k=0}^{2^{-m}-1} \left| f(t + \frac{2\pi k}{2^{-m}}) \right|^2 = S_{2^{-m}} |f|^2(t) = 1.$$

Proof. By Proposition 9, m < 0. From Proposition 8 we conclude that $(|f|^2)(2^{-m}k) = 0$ for all integers $k \neq 0$. But then $(S_{2^{-m}}|f|^2)(2^{-m}k) = 0$ for all integers $k \neq 0$. Thus $S_{2^{-m}}|f|^2 \equiv \text{constant} \neq 0$, and we may normalize this nonzero constant to 1. \square

We now characterize those D for which it is possible to have an elementary tensor wavelet. Observe that if $L\psi$ is orthonormal, then for almost every $t\in T$ at least one summand of equation (*) must be nonzero.

Proposition 11. If $L\psi$ is a Hilbert basis for $L^2(\mathbf{R})$, then for almost every $t \in T$ at most one summand of equation (*) may be nonzero, and $f(t) \neq 0$ for almost every $t \in D$.

Proof. To begin with, if f vanishes on a set $P \subset D$ of positive measure, then, the function $g \in L^2(\mathbf{R})$ defined by $\theta g(t,n) = \chi_P(t)e_0(n)$ is nonzero and orthogonal to $L\psi$. This contradicts the assumption that $L\psi$ is a basis.

Further, if more than one summand in equation (*) is nonzero, we can construct another nonzero $g \in L^2(\mathbf{R})$ orthogonal to $L\psi$ because of cancellation. From any subset of D of positive measure on which at least 2 summands of $S_{2^{-m}}|f|^2$ are nonzero, we can choose a measurable subset P satisfying the following:

- (i) |P| > 0,
- (ii) For all $t \in P$, $t + \frac{2\pi k}{2-m} \pmod{T}$ belongs to D for some fixed $k = k(P) \neq 0$,
- (iii) Both $|f(t)| > \epsilon$ and $|f(t + \frac{2\pi k}{2-m})| > \epsilon$ for some fixed $\epsilon > 0$ and all $t \in P$,
- (iv) $P \cap \left(P + \frac{2\pi k}{2^{-m}}\right) = \emptyset$.

Define $g \in L^2(D)$ by:

$$\hat{g}(t) = \begin{cases} 1/\bar{f}(t), & \text{if } t \in P, \\ -1/\bar{f}(t), & \text{if } t \in P + \frac{2\pi k}{2-m} \pmod{T}, \\ 0 & \text{otherwise.} \end{cases}$$

Then $S_{2^{-m}}(f\overline{\hat{g}})(t) = 0$, so that for every integer b,

$$\int_{D} \exp(-ibt2^{-m})f(t)\overline{\hat{g}(t)}dt = 0.$$

But because of the compact support of \hat{q} , we also have the following equation for all integers a, b:

$$\int_{D} \exp(-ibt2^{-m})f(t)\overline{\hat{g}(2^{-m-a}t)}dt = 0.$$

Together, these equations imply that $\langle V(a,b)\theta\psi,\theta g\rangle=0$ for all integers a,b, and thus that $g\perp L\psi$. But by its construction, g is a nonzero element of $L^2(\mathbf{R})$. This contradicts the assumption that $L\psi$ is a basis. \square

Proposition 11 imposes strong restrictions on D, and likewise on f.

Theorem 12. If ψ is an elementary tensor wavelet, then $|\hat{\psi}(t)| = (2\pi)^{-\frac{1}{2}}$ for almost every $t \in [-2\pi, -\pi) \cup (\pi, 2\pi]$, and $\hat{\psi}(t) \equiv 0$ elsewhere.

Proof. Write $\theta \psi = f \otimes e_m$. By Proposition 9, m < 0. By Proposition 11 and the preceding observation, D must have the property that exactly one point of $(t)_{2^{-m}}$ belongs to D for almost every $t \in [-\pi, \pi] = T$. Hence if $t \in D$, then no other point of $(t)_{2^{-m}}$ may be in D, so that T is covered by the 2^{-m} disjoint translates by $2\pi/2^{-m}$ of $D \pmod{T}$, which we may as well call $(D)_{2^{-m}}$. Comparing lengths forces $2^{-m}|D| = |T| = 2\pi \Rightarrow D = [-2\pi 2^m, \pi 2^m) \cup (\pi 2^m, 2\pi 2^m]$, which is easily seen to work.

Now, since exactly one summand of $S_{2^{-m}}|f|^2$ contributes in equation (*), $|f|^2$ must be constant. Recalling that $\theta\psi(t,n)=2^{-\frac{n}{2}}\hat{\psi}(2^{-n}t)$ yields:

$$\hat{\psi}(t) = \begin{cases} 2^{\frac{m}{2}} f(2^m), & \text{if } 2^m t \in D, \\ 0, & \text{otherwise.} \end{cases}$$

Thus $|\psi|$ must be constant on $2^{-m}D = [-2\pi, -\pi) \cup (\pi, 2\pi]$ and zero elsewhere. Normalizing $\hat{\psi}$ so that $\|\psi\|_{L^2(\mathbf{R})} = 1$ completes the proof. \square

This theorem characterizes elementary tensor wavelets. They are the images of the wavelet ψ_o under the group **M** of unitary multiplication operators, where $\hat{\psi}_o = (2\pi)^{-\frac{1}{2}}\chi_D$ and $M \in \mathbf{M}$ has the action $(M\hat{f})(t) = \mu(t)\hat{f}(t)$ for $|\mu(t)| = 1$ at almost every $t \in \mathbf{R}$. Notice that **M** contains all translations as well as the Hilbert transform. Elementary tensor wavelets are unique up to the equivalence defined by \mathbf{M} .

It is not hard to compute that $\psi_o(x) = (\sin 2\pi x - \sin \pi x)/(\pi x)$. Such functions have uses in information theory because their frequencies are localized to a single octave. See, for example, the discussion of band-limited functions in McKean [DMcK]. Unfortunately, these wavelets suffer from significant deficiencies. In particular, no elementary tensor wavelet can have a continuous Fourier transform, so it cannot provide a basis for $L^1(\mathbf{R})$ (or $H^1(\mathbf{R})$).

TWO-TENSOR WAVELETS

For fixed $j, k \in \mathbb{Z}$, j < k, and fixed $f, g \in L^2(D)$, define $\psi \in L^2(\mathbb{R})$ by $\theta \psi = f \otimes e_j + g \otimes e_k$. Then the orthnormality condition may be written as below:

$$\begin{split} \delta_{e}(a,b) &= \langle U(a,b)\psi,\psi\rangle & \text{for } a,b \in I \\ &= \langle V(a,b)\theta\psi,\theta\psi\rangle \\ &= \sum_{n \in \mathbf{Z}} \int_{D} \exp(-ibt2^{-a-n})[f(t)e_{j}(a+n) + g(t)e_{k}(a+n)]\overline{[f(t)e_{j}(n) + g(t)e_{k}(n)]}dt \\ &= \begin{cases} 0, & \text{if } a \neq 0 \text{ and } a \neq k-j, \\ \int_{D} \exp(-ibt2^{-k})g(t)\overline{f(t)}dt, & \text{if } a = k-j, \\ \int_{D} [\exp(-ibt2^{-j})|f(t)|^{2} + \exp(-ibt2^{-k})|g(t)|^{2}]dt, & \text{if } a = 0. \end{cases} \end{split}$$

This calculation may be summed up as follows:

Lemma 13. If $\psi = \theta^{-1}(f \otimes e_i + g \otimes e_k)$ is a 2-tensor wavelet, then

- (1) $\int_D \exp(-ibt2^{-k})g(t)\overline{f(t)}dt = 0$, and (2) $\int_D [\exp(-ibt2^{-j})|f(t)|^2 + \exp(-ibt2^{-k})|g(t)|^2]dt = \delta_0(b)$.

Proof.

As usual, we assume without loss that $D \subset [-\pi, \pi]$. Lemma 14 is an easy consequence of Lemma 15, but is presented to clarify some of the ideas in the latter's proof.

Lemma 14. If $\psi = \theta^{-1}(f \otimes e_j + g \otimes e_k)$ is a 2-tensor wavelet, where j < k, then j < 0.

Proof. Let $\lambda = 2^{k-j}$. Then $\lambda \geq 2$. The second equation in Lemma 13 implies that $(|f|^2)(2^{-j}b) =$ $-\lambda(|g_{\lambda}|^2)(2^{-j}b)$, where $g_{\lambda}(t)=g(\lambda t)$ and $b\neq 0$. But then, if $j\geq 0$, this equation relates all but the 0th Fourier coefficients of $|f|^2$ and $|g_{\lambda}|^2$. Without loss, we can write

$$|f|^2 + \lambda |g_\lambda|^2 = 1.$$

Now f and g_{λ} have disjoint support, showing immediately that $|f|^2 = \chi_D$ and $|g|^2 = \lambda^{-1}\chi_D$. But the first equation of Lemma 13 shows that

$$(q\bar{f})(2^{-k}b) = 0$$
 for all $b \in \mathbf{Z}$.

Again, if $k > j \ge 0$, this implies that $g\bar{f} \equiv 0$ and that $|g|^2|f|^2 \equiv 0$, which contradicts $|g|^2|f|^2 = \lambda^{-1}\chi_D$.

Lemma 15. If $\psi = \theta^{-1}(f \otimes e_j + g \otimes e_k)$ is a 2-tensor wavelet, where j < k and $g \not\equiv 0$, then k < 0.

Proof. Suppose that $k \geq 0$. Then $n2^k \in \mathbf{Z}$ for all $n \in \mathbf{Z}$. From the second equation of Lemma 13 with $b = n2^k$ and setting $\lambda = 2^{k-j} \geq 2$, one obtains

(**)
$$(|g|^2)(n) + (|f|^2)(\lambda n) = \delta_0(n)$$
 for $n \in \mathbf{Z}$.

This relates all the Fourier cofficients of $|g|^2$ to those of $|f|^2$ which are multiples of λ . But these latter coefficients may be isolated by using the symmetrization operator S_{λ} :

$$(|f|^2)(\lambda n) = (S_{\lambda}|f|^2)(\lambda n).$$

Recalling the notation $h_{\lambda}(t) = h(\lambda t)$ and using a well known property of the Fourier transform yields:

$$(|g|^2)(n) = (\lambda |g_{\lambda}|^2)(\lambda n).$$

Putting these two equations together with equation (**) yields

$$(S_{\lambda}|f|^2)(\lambda n) + (\lambda|g_{\lambda}|^2)(\lambda n) = \delta_0(\lambda n)$$
 for all $n \in \mathbf{Z}$.

All other Fourier coefficients in the above equation vanish, so it is possible to conclude that:

$$S_{\lambda}|f|^2(t) + \lambda|g_{\lambda}|^2(t) = 1$$
 for all $t \in T$.

Now $|g_{\lambda}|^2(t) = 0$ if $t \in (\lambda^{-1}D)^c$, since supp $g \subset D$. Thus $t \in (\lambda^{-1}D)^c \Rightarrow S_{\lambda}|f|^2(t) = 1$. But since $S_{\lambda}|f|^2(t)$ is an average over $(t)_{\lambda}$, and $r \in (t)_{\lambda} \Rightarrow (r)_{\lambda} = (t)_{\lambda}$, we have that if $t \in (\lambda^{-1}D)^c$ and $r \in (t)_{\lambda}$, then $S_{\lambda}|f|^2(r) = 1$ and $g_{\lambda}(r) = 0$. With $\lambda \geq 2$, it can be shown that for almost all $r \in \lambda^{-1}D$ there exists $t \in (\lambda^{-1}D)^c$ with $r \in (t)_{\lambda}$. This is because both $r + \pi \in (r)_{\lambda}$ and $r - \pi \in (r)_{\lambda}$, and with $\lambda^{-1}D \subset [-\frac{\pi}{2}, \frac{\pi}{2}]$ we are guaranteed that one of $r \pm \pi$ must be in $(\lambda^{-1}D)^c$ for almost every $r \in \lambda^{-1}D$. Thus $|g_{\lambda}|^2 = 0$ almost everywhere in $\lambda^{-1}D$, so g = 0 in $L^2(D)$, contradicting the hypothesis. \square

The lemmas above are results of the orthogonality condition for wavelets. They may be combined with the density requirement to yield the main theorem:

Theorem 16. Suppose $\psi = \theta^{-1}(f \otimes e_j + g \otimes e_k)$ is standardized with j < k, f and g different from 0, and $D \subset [-\pi, \pi] \equiv T$. Write $\lambda = 2^{k-j} \geq 2$, $\mu = 2^{-j}$, and $\nu = 2^{-k}$. Then ψ is a 2-tensor wavelet if and only if all of the following are true:

- (1) j < k < 0, so that $\mu \ge 2\nu \ge 4$ and $\mu \ge 2\lambda \ge 4$,
- (2) $S_{\mu}(|f|^2 + \lambda |g_{\lambda}|^2) \equiv 1 \text{ on } T$,
- (3) $S_{\nu}(g\bar{f}) \equiv 0 \text{ on } T$,
- (4) If $h \in L^2(\mathbf{R})$, then $(\forall n \in \mathbf{Z}) \left(S_{\mu}([f + \lambda^{\frac{1}{2}}g_{\lambda}]h_{2^n}) \equiv 0 \text{ on } T \right) \Leftrightarrow h \equiv 0$.

Proof. Lemma 15 shows the necessity of (1). We can rewrite the two necessary conditions of Lemma 13 as follows:

$$\int_{D} \exp(-ibt\nu)g(t)\bar{f}(t)dt = 0 \quad \text{for all } b \in \mathbf{Z}, \text{ and}$$

$$\int_{D} [\exp(-ibt\mu)|f(t)|^{2} + \exp(-ibt\mu\lambda)|g(t)|^{2}]dt = \delta_{0}(b)$$

$$= \int_{D \cup \lambda^{-1}D} \exp(-ibt\mu)[|f(t)|^{2} + \lambda|g_{\lambda}(t)|^{2}]dt.$$

With λ and μ as given, these equations in the S_{μ} notation are equivalent to (2) and (3). Conversely, if j < k < 0, then (2) and (3) are equivalent to equations (***), which imply that $L\psi$ is an orthonormal set.

Given (1), the condition that $L\psi$ is dense in $L^2(\mathbf{R})$ is equivalent to (4) by the following calculation: For $\phi \in L^2(\mathbf{R})$,

$$\phi = 0 \Leftrightarrow \phi \perp L\psi$$

$$\Leftrightarrow 0 = \langle U(a, b)\psi, \phi \rangle \quad \text{for all } (a, b) \in L$$

$$\Leftrightarrow 0 = \langle V(a, b)\theta\psi, \theta\phi \rangle \quad \text{for all } (a, b) \in L$$

$$\Leftrightarrow 0 = \sum_{n \in \mathbb{Z}} \int_D \exp(-ibt2^{-n-a}) \left[e_j(n+a)f(t) + e_k(n+a)g(t) \right] \overline{\theta\phi(t, n)} dt.$$

All but two of the summands vanish, and this last condition is equivalent to:

$$0 = \int_{D} \exp(-ibt2^{-j})f(t)\overline{\theta\phi(t,j-a)}dt + \int_{D} \exp(-ibt2^{-k})g(t)\overline{\theta\phi(t,k-a)}dt.$$

Now let $h(t) = \overline{\theta\phi(t, j-a)}$. Then $\overline{\theta\phi(t, k-a)} = h(\lambda^{-1}t)$, where we must think of h as a function on T rather than as a function on D. Then $\phi = 0 \Leftrightarrow (\forall n \in \mathbf{Z}) \ h_{2^n} \equiv 0$ on T. Changing variables in the second integral and using μ and λ , one obtains the equivalent condition:

$$\phi = 0 \Leftrightarrow 0 = \int_{D} \exp(-ibt\mu)f(t)h_{2^{n}}(t)dt +$$

$$+ \int_{D} \exp(-ibt\mu\lambda)g(t)h_{2^{n}}(\lambda^{-1}t)dt \quad \text{for all } n \in \mathbf{Z},$$

$$\Leftrightarrow 0 = \int_{D} \exp(-ibt\mu)f(t)h_{2^{n}}(t)dt +$$

$$+ \int_{\lambda^{-1}D} \exp(-ibt\mu)\lambda^{-\frac{1}{2}}g(\lambda t)h_{2^{n}}(t)dt \quad \text{for all } n \in \mathbf{Z},$$

$$\Leftrightarrow 0 = S_{\mu}([f + \lambda^{\frac{1}{2}}g_{\lambda}]h_{2^{n}}) \quad \text{for all } n \in \mathbf{Z}. \quad \Box$$

From these functional equations (2)–(4), it is possible to construct examples of basis wavelets. Similar equations may be found for k-tensor wavelets, although they become unwieldy.

Theorem 16 characterizes those D for which one may have 2-tensor wavelet. Since $S_{\mu}(|f|^2 + \lambda |g_{\lambda}|^2)(t) \equiv 1$ on T, it is necessary that for almost every $t \in T$ there is some $s \in (t)_{\lambda}$ such that $s \in D \cup \lambda^{-1}D$. This may be stated as $T \subset (D \cup \lambda^{-1}D)_{\mu}$. However, condition (4) may hold even if several points of $(t)_{\lambda}$ belong to $D \cup \lambda^{-1}D$ for a nonnull set of points $t \in D \cup \lambda^{-1}D$. This is because of the possibility that the only nonzero function ϕ which can satisfy $\phi \perp L\psi$ by exploiting the resulting cancellation might not be in $L^2(\mathbf{R})$. In fact, the Fourier transform of Meyer's wavelet is supported in $D \cup 2^{-1}D$, where $\mu = 4$, $\lambda = 2$, and

$$D = \left[-\frac{2\pi}{3}, -\frac{\pi}{3} \right) \cup \left(\frac{\pi}{3}, \frac{2\pi}{3} \right].$$

This particular D has the property that for every $t \in T$ there are exactly two points in $(t)_{\mu}$ which belong to $D \cup \lambda^{-1}D$, and either they both belong to D or they both belong to $\lambda^{-1}D$. Call these two

points t_1 and t_2 if they belong to D. In addition, $\lambda^{-1}t_1$ and $\lambda^{-1}t_2$ are the only points in $D \cup \lambda^{-1}D$ which are also in $(\lambda^{-1}t_1)_{\mu}$ or $(\lambda^{-1}t_2)_{\mu}$. Thus, to satisfy condition (4) for every $n \in \mathbf{Z}$, it is necessary that all three of the equations below hold simultaneously for all pairs $\{t_1, t_2\} = (t)_{\mu} \cap [D \cup \lambda^{-1}D]$ arising from $t \in D$:

$$f(t_1)\bar{g}(t_1) + f(t_2)\bar{g}(t_2) = 0$$

$$f(t_1)h_{2^n}(t_1) + f(t_2)h_{2^n}(t_2) = 0$$

$$g(t_1)h_{2^n}(t_1) + g(t_2)h_{2^n}(t_2) = 0$$

It is easy to choose functions f and g such that this can only happen if $h \equiv 0$.

In a forthcoming article, we will discuss other limitations on D, μ , and λ imposed by Theorem 16.

References

- [D] I. Daubechies, Discrete series of coherent states and their use in signal analysis, preprint, Courant Institute of Mathematical Sciences, New York.
- [GM] A. Grossman and J. Morlet, Decomposition of Hardy functions into square-integrable wavelets of constant shape, SIAM J. Math. Anal. 15 (1984), 723–736.
- [L] P. G. Lemarié, Continuité sur les espaces de Besov des opérateurs définis par les intégrales singulières, Annales de l'Institute Fourier (to appear).
- [M] Y. Meyer, Principe d'incertitude, bases hilbertiennes et algèbres d'operateurs, Séminaire Bourbaki 662 (February, 1986).
- [DMcK] H. Dym and H. P. McKean, Fourier series and integrals, Academic Press, New York, 1972.

SECOND AUTHOR'S TEMPORARY ADDRESS: MSRI, 1000 CENTENNIAL DR., BERKELEY, CA 94720