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NOTATION

Let X = {X, :n=1,...,N} € R? be an ensemble of vectors. We suppose that
d is very large and that X spans R?, implying N > d. The Karhunen-Loeve basis for

the ensemble consists of the eigenvectors of the symmetric positive definite autocovariance

matrix M = E(X ® X), or
N
1 . .
M;; = N ZXn(l)Xn(J)-
n=1

It is known that coefficients with respect to the Karhunen-Loéve basis are independent
random variables, and that they achieve the maximum linear transform coding gain or
equivalently, the minimum entropy of any linear code used to transmit X.

Write X = E(X) = + 2521 X,., and let o(X) € R? be the vector of variances of the

coefficients of X. Namely,
| N
o(X)() =+ D 1) - X(@)
n=1

We may assume without loss that X = 0. Write Var(X) for the sum of the coefficients of

o(X), which is the total variance of the ensemble X.
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Let U : R — R? be orthogonal and write Y = UX for the map Y;, = UX,,. Since U

is linear, Y = UX = UX = 0, and since U is orthogonal, Var(X) = Var(Y). Define the

transform coding gain as in [J] by the formula Gp¢(U) = Var(UX)/exp H(U X)), where

&Iv—‘

d
Z ogo(X

Grc(UX) is maximized when H (U X) is minimized, and H is the entropy of the direct
sum of d independent Gaussian random variables with variances o(X)(i), i = 1,...,d.
The Karhunen—Loeve transform is a global minimum for H, and we will say that the
best approximation to the Karhunen—Loéeve transformation from a library ¢ of orthogonal

transformations is the minimum of H(UX) with the constraint U € U.

ALGORITHM

Notice that H is an information cost function in the sense of [CMQW]. We may cre-
ate a large library of orthogonal bases by recursive quadrature mirror filter convolution-
decimation, and use the best-basis search algorithm with H to find the best approximation

to the Karhunen—Loeéve basis. In the case d = & we have:
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Figure 1. Complete wavelet packet expansion of X;.

Then the sums of the squares are accumulated in an array of variances:
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Figure 2. Variances of wavelet packet coordinates of X.
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This tree of variances may be searched for the orthogonal basis which minimizes H. Let
U be this basis, and write {U; € R? : i = 1,...,d} for the rows of U. We may suppose
that these rows are numbered so that o(UX) is in decreasing order. Then we fix € > 0
and let d’ be the smallest integer such that Z;{:l o(UX)(n) > (1 —¢)Var(X). Then the

projection of X onto the span of U’ = {U; ...Uy } contains 1 — € of the variance.

STATEMENT OF THE MAIN RESULTS

Call the orthogonal projection U’ (associated to €) the approximate Karhunen—Loeve
transform with relative variance error e.

Already these d’' vectors U’ are a good basis for the ensemble X, but they may be
further decorrelated by Karhunen-Loeve factor analysis. The algorithm is fast because we

expect that even for small € we will obtain d’ < d. Counting operations:

1) Expanding N vectors X,, € R? into wavelet packet coefficients: O(Ndlogd).

2) Summing squares into the variance tree: O(dlogd).

4

(1)

(2)

(3) Searching the tree for a best basis: O(d).

(4) Sorting the best basis vectors into decreasing order of importance: O(dlogd).
(5)

5) Transforming U'X by Karhunen—Lodve: O(d’®).

Indeed, the last step may not be necessary, since a large reduction in the number of

parameters is already achieved by the orthogonal projection U’.

APPLICATIONS TO THE MUG’S GALLERY PROBLEM

Lawrence Sirovich provided 143 digitized 128x128x8bit pictures of Brown University
students. These were already normalized with the pupils impaled on two fixed points
near the center of the image. We first transformed the data to floating point numbers,
computed average values for the pixels, and subtracted the average from each pixel to

> or deviations from the average.

obtain “caricatures,’
Each caricature was treated as a picture and expanded into 2 dimensional wavelet

packets as described in [W]. The squares of the amplitudes were summed into a tree
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of variances, which was searched via the best-basis search procedure. Call this most-
concentrated basis the joint best basis for the ensemble. In the joint best basis, 400
coordinates (of 16384) contained more than 90% of the variance of the ensemble. Figure
1 shows the total variance on the first d’ coordinates in the joint best basis, sorted in
decreasing order, as a fraction of the total variance of the ensemble, for 1 < d’ < 1024.
Using 1024 parameters captures more than 95% of the ensemble variance, but requires
somewhat more computer power than is readily available on a desktop. A 400 parameter
system can be analyzed on a common workstation in minutes. The top 400 coordinates
were recomputed for each caricature and their autocovariance matrix over the ensemble
was diagonalized by the LINPACK singular value decomposition routine.

Figure 2 shows the total variance on the first d’ coordinates in the Karhunen—Loeve
basis, sorted in decreasing order, as a fraction of the total variance of the 400 joint best
basis coefficients, for 1 < d’ < 143. The Karhunen—Loéve post-processing for this small
ensemble concentrates 98% of the retained variance from the top 400 joint best-basis
parameters into 10 coefficients.

Figure 3 shows the top 6 Karhunen—Loeve “eigenfaces” with respect to the top 400
joint best-basis parameters. These have been normalized to fill the dynamic range of the
printing device. Figure 4 shows the top 6 joint best basis wavelet packets. Whereas the
Karhunen—Loeve basis functions look more or less like faces (or at least heads), the wavelet

packets are abstract blobs which can be better localized at specific facial features.

CONCLUSIONS

Wavelet packet analysis reduces the number of parameters needed to perform approx-
imate Karhunen-Loéve expansions. For a factor analysis “explaining” all but € of the
ensemble variance in a d parameter system, the complexity will be O(d?log d + d’ 3), where
d’ < d. For accuracies of 1 or 2 significant digits, the analysis of systems of 16384 paramters

can be performed on desktop computers in minutes.
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Figure 1. Fraction of the variance in the joint best basis.
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Figure 2. Fraction of the variance in the Karhunen—Loeve basis.
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Figure 3. Top six Karhunen—Loeve eigenfaces.
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Figure 4. Top six joint best basis functions.
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