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Previously we reported a new method for ultrasound signal characterization using entropy, Hy,
and demonstrated that in certain settings, further improvements in signal characterization could
be obtained by generalizing to Renyi Entropy-based signal characterization, I(r) with values of

r near 2 (specifically » = 1.99).

We speculated that further improvements in sensitivity might

be realized at the limit » — 2. At that time, such investigation was not feasible due to excessive
computational time required to calculate If(r) near this limit. In this paper, we now derive an
asymptotic expression for the limiting behavior of If(r) as r — 2 and present results analogous to
those obtained with I;(1.99). Moreover, the limiting form, Iy o is computable directly from the
experimentally measured waveform, f(¢) by an algorithm that is suitable for real-time calculation

and implementation.

PACS numbers:

I. INTRODUCTION

In an earlier paper! we reported on the application of
Renyi entropy, I(r) which is defined for all » < 2 (r is
roughly a reciprocal “temperature”), for the detection of
changes in backscattered RF arising from the accumu-
lation of targeted nanoparticles in the neovasculature in
the insonified region of a tumor. That study was moti-
vated by the observation that acoustic characterization of
sparse collections of targeted perfluorocarbon nanoparti-
cles presented challenges that might require the applica-
tion of novel types of signal processing?. We were able
to show that signal processing based on a “moving win-
dow” Hj analysis (see Eq. (7)) could detect accumula-
tion of tissue-targeted nanoparticles 30 minutes following
nanoparticle injection. The signal energy, defined as the
sum of squares of the over the same moving window, was
unable to distinguish measurements made at any time
during the one hour experiment (as was conventional B-
mode imaging). Subsequently we determined that “mov-
ing window” I;(r) analysis, with r = 1.99, could distin-
guish the difference in backscatter measured at 0 and 15
minutes. Reduction of the accumulation time required to
reach detectability from 30 to 15 minutes is clearly of sig-
nificance: potentially reducing both patient discomfort
and increasing clinical throughput. Moreover, although
the computational effort to obtain the result precluded its
clinical application with currently available equipment,
the study raised the possibility of further sensitivity im-
provements by using values of r closer to the limiting
value of 2, where I;(r) approaches infinity. The purpose
of the current study is to investigate the behavior of I¢(r)
as 7 — 2 by extracting its asymptotic form. While this
involves use of the first derivatives of f(¢) at its critical
points, which can be expected to increase noise in the
processing chain output, surprisingly the resulting signal
processing scheme does not sacrifice sensitivity. More-
over, the operation count in this approach is lower than

that used to produce the signal envelope, which currently
is the standard for real-time ultrasonic imaging display,
thus demonstrating its suitability for implementation in
a real-time imaging system.

1. APPROACH

All results in this study were obtained using the density
function, wy(y) of the continuous function y = f(t), as-
sumed to underlie the sampled RF data. Subsequently,
wy(y) was used to compute the entropy I;(r). As de-
scribed in previous studies wy(y) corresponds to the den-
sity functions used in statistical signal processing'. In
contradistinction to statistical signal processing, where
f(t) is a random function, and often nowhere differen-
tiable, we assume that the noise levels in our appara-
tus are low enough so that with sufficient signal aver-
aging, noise may be eliminated, or at least reduced to
a low enough level, that derivatives of f(¢) may be ac-
curately computed. From these derivatives the density
function wy(y) may be computed®, which then facilitates
calculation of the quantities typically discussed in sta-
tistical signal processing (e.g., mean values, variances,
covariances)® 5. However, in that environment, the den-
sity function is usually assumed to be continuous, in-
finitely differentiable, and to approach zero at infinity.
In our case wy(y) is not so well-behaved and has (inte-
grable) singularities. While this renders calculation of
the density function more difficult, applications of en-
tropy imaging based on wy(y) have shown the cost to
be justified in terms of increased sensitivity to subtle
changes in scattering architecture that are often unde-
tected by more conventional imaging.

We use the same conventions as in previous studies so
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N
wr(y) =Y lop W)l (1)
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where N is the number of laps (regions of monotonicity
of f(t)), gx(y) is the inverse of f(t) in the k**-lap and if
y is not in the range of f(¢) in the k'"-lap, g (y) is taken
to be 0.

We also assume that all experimental waveforms f(t)
have a Taylor series expansion valid in the domain: [0, 1].
Then near a time t such that f/'(¢x) =0

y= 1) = F) + i /") (=t 4, (@)

where t;, is a lap boundary. On the left side of this point
Eq. (2) may be truncated to second order and inverted
to obtain

gr(y) ~t £ V2 — f(te) /£ (), (3)
with

19: )] ~ 1/V2f" (1) (y — f(tx))- (4)

The contribution to w(y) from the right side of the lap
boundary, from gi1(y), is the same, so that the over-
all contribution to w;(y) coming from the time interval
around tj is

9 ()] ~ 2/ (f" (t) (y — [ (tk))), (5)

for 0 < f(tx)—y < 1 for a maximum at f(¢;) and 0 < y—
f(tx) < 1 for a minimum. Thus, wy(y) has only a square
root singularity (we have assumed that ¢ is interior to
the interval [0, 1]; if not, then the contributions to w;
come from only the left or the right). If, additionally,
f"(tx) = 0, then the square root singularity in Eq. (4)
will become a cube-root singularity, and so on, so that the
density functions we consider will have only integrable
algebraic singularities.

Figure (1) illustrates the integrable singularities. In
general, two types of behavior are possible in w(y): dis-
continuities (not shown in the figure) and the integrable
singularities shown in the figure. This figure shows that
the density functions possess significantly different at-
tributes from those usually considered in statistical sig-
nal processing. The mathematical characteristics of the
singularities are important in order to guarantee the ex-
istence of the following integral on which we base our
analysis of signals in this study:

fmaz
I5(r) = 1 log V w(y)fdy], (6)

min

which known as the Renyi entropy®. It is similar to the
partition function in statistical mechanics with the pa-
rameter r playing the role of a reciprocal temperature®”,
moreover, I;(r) — —Hy, as v — 1, using L‘Hopital’s
rule, so that Iy is a generalization of H:

fmaz
Hy = / wy(y)logwy(y)dy. (7)

min

wi(y)

f""i" fma,:c

FIG. 1. A plot of a typical density function wy(y) employed in
our study. Compared to the distribution functions typically
encountered in statistical signal processing the function is ill-
behaved, not even being continuous. Inset: A time-domain
waveform, f(t) with three critical points(left), and its asso-
ciated density function wy(y) showing how the singularities
relate to the critical points of the sampled waveform f(t).

Previous studies have shown this quantity can be more
sensitive to subtle changes in scattering architecture than
are more commonly used energy-based measures,? with
subsequent studies demonstrating further sensitivity im-
provements using I at the suitable value of r.! For the
density functions wy(y) encountered in our study, I7(r)
is undefined for r > 2, since as v — 27, the integral ap-
pearing in Eq. (6) will grow without bound due to the
singularities in the density function, wy(y) described by
Eq. (5). The behavior as r — 2 is dominated by contri-
butions from these singularities, all of which correspond
to critical points of f(¢). This behavior is shown in Fig-
ure (2). Moreover, as shown in the figure it is possible
that two slightly different functions, f(¢) and f(¢) +&(¢),
where ¢ is small, may have entropies, Hy and H¢y¢ that
are close, as shown, but whose Renyi entropies, If(r) and
Ifi¢(r) diverge as r — 2. Previous studies have shown
that this can happen in practice!. However, these results
left open the possibility of further sensitivity gains. The
purpose of the present study is to investigate the pos-
sibility of obtaining further sensitivity improvements by
pushing toward this limit. To do this we will utilize the
limiting form of I¢(r) as r — 2, which may be obtained
by first observing that the integral in Eq. (6) may split
into two parts, one corresponding to the region where the
function is clearly bounded and one corresponding to its
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FIG. 2. Plots of I¢(r) and If4¢(r) (left) showing that while
I;(1) = —Hy and Iyy¢(1) = —Hyye may be close, If(r) and
Ifie(r) diverge as r — 2.

singularities as shown in Figure (3). Thus,

f(th+1)—0k+1 )
/ wy(y)*dy =
f(tr)

f(tk)+0k ) F (k1) —0k41 )
:/ wy(y) ’Edy+/ wy(y)*dy
f(te) f(te)+ok

f(te)+ok )
= [ sy B, ®)
f(te)

where we have written B} for the integral over the un-
shaded region between f(ty) + 0 and f(tg41) — dk41 in
Figure (3). We observe that By, is bounded as ¢ — 0,
while the integral appearing in Eq. (8) is not.

Next, we consider the small interval of length &
near the singularity of wy(f(tx)) (shaded regions of Fig-
ure (3)). This is the singularity corresponding to the k"
extrema of f(¢): f(tx); also shown is the adjacent singu-
larity corresponding to an extrema of f(t) at tgy1. The
dashed lines in these regions represent the one over square
root limiting form described in Eq. (5). By choosing
small enough we may make the ratio of the solid and
dashed curves arbitrarily close to one. In other words,
Egs. (1) and (5) tell us that in these shaded regions the
following difference can be made as small as we like:

ag

we(y — 0) /) —F—m
1y —ox)/ )

where aj, = \/2/f" (tr) = \/2/|f" (tx) | (assuming a min-
imum at f(tx); the argument for a maximum is similar).
Moreover, if a particular choice of 0 yields the desired
accuracy, ¢.e., makes the difference enough small enough,
choosing a smaller value of §; will produce greater accu-
racy. Since the number of extrema in our time domain

5

F(te+1) = Ok+1 ftrsr)

FIG. 3. An enlarged plot of a singularity of the density func-
tion wy (y)*>~° (solid curve) and Eq. (5) (dashed curves); quan-
tities relevant for derivation of Eq. (19). As the shaded re-
gions shrink the ratio between the dashed and solid curves
approaches 1. The darker shading corresponds to the region
discussed in the text.

function f(t) is finite, we pick the minimum dy, call it 4,
yielding the desired accuracy in all of the shaded regions
(i.e., at all singular points of wy(y)). With this choice of
d Eq. (8) becomes

f(trt1)—0 )
/ wy(y)™ dy =
F(tw)

f(te)+o -
=[Py B (o)
f(tx)

and Eq. (9) becomes,

wy(y - 6>/yf7’}(tk) ~1|<E, (11)
A -
wf(?/*@/m =1+ E(y), (12)

where E > |E(y)| may be chosen to be as small as we
like by choosing small enough §. As a result

wyly — 62 y—f(tk) 1= B(y)>
ag 2—e

:m {1 iE(y)} ) (13)

where, once again, E(y) is may be made arbitrarily small,

i.e., for every ' > 0 there exists some § > 0 such that
E > |E(y)| for all y in between f(tx) and f(tx) + 0.
Combining Eqs. (10) and (13) now yields
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f(te)+6 -
/ wy(y)* “dy + By =
F(tr)

Fltr)+6 an e . .
- /fm.) ( y— f(%)) [1 . E(yﬂ B

F(t)+ an e
Fltw) y — [(tx)

F(t)+0 a e -
+ _— E(y)dy + B 14
/f(tk) ( Y- f(%)) iy + B (1)

The second integral above may be bounded by

Flto)+3 e
[ (e ) b <
£tw) y — f(tk)
FtR)+6 a e
<[] 1wl
Ftx) y — f(tr)
F(te)+d 2me -
/ % Edy
Flte) y— f(tx)

_ pf(te)+s 2
B / M) qy (15)
() y — f(tr)

This inequality may be converted to an equality by re-
placing the E factor by a smaller (positive) number. In
general, this number will depend on the behavior of w¢(y)
near the singular point y = f(tx). For clarity, we denote
this constant by Er. With this notation, Egs. (15) be-
come

Flt)+6 a e
Y% ) Ew)dy=
/fm) ( Y- f(m)) (vt

o pFt+s 2
Eg/ %) gy (6)
£(tx) y— f(tr)

where E > Ej, > 0 and hence may also be made as
small as we wish by reducing 6. The common integral
appearing in Egs. (14) and (15) may be computed as

/f(tk)+5 a 2e
Tk dy =
£(tx) y — f(tx)

f(te)+6
—a? [ e )
I (tx)

IN

IA

e/2 |F(tr)+6
e = S
— Qi 6/2 )
ftr)
ol () 8 — ()
= ak )
€/2
2a26¢/?
==, (17)

so that Eq. (14) becomes

F(te+1)—0 )
/ wi(y)™ “dy =
f(tr)

) 256/2
=20 4 f

~ 2ai56/2 =
k +

k>
€

2 256/2 5 ~
:‘l’fT [1 iEk} + B, (18)

which we sum over all minima to obtain

2256/2 B ~
> akf[uEk]Jer, (19)
%
" (tr)>0

a sum of bounded and unbounded terms, whose un-
bounded term is computable directly from the ex-
perimentally accessible function f(¢) using a; =

V2/F7 (t) = 2/ (t) ] -

[Aside: for the maximum we have the asymptotic term

f(te) 2
/ ——— (20)
f)=s \V [ (tr) =y
So that the contribution to Eq. (6) from all of the maxima
becomes

f(tk) an 2—e
Jos ) 0=
Ftn—6 \V f(te) —y
f(tr)
=%%*/ (f(t)
f(te)—9

o (F(tr) — )2
€/2

—y)' "y,

f(te)
:ak

f(te)—0

o (f(t) = f(t) +6)°
€/2 ’

:a’k

:2ai56/2
€ )

(21)

we now have a different expression for ap =

V=2/ 7 (k) = V217 ()] ]
Adding the contributions for the maxima and minima
we obtain

fmaz
/' wy(y)?~dy =
f

min

2q2 €/2 - ~
= Z 203077 [1 + Ek} + By,
(el f)=0p €

46/ - =
{tlf(te)=0} y

Cross multiplying by €

fmﬂl'
6/ wy(y)* “dy =

min

{tx|f’(tx)=0}

46¢/? - z
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taking the logarithm of both sides and letting ¢ — 0 we

have
f"YL(L(Z' 2
/ wy(y)" “dy| | =

m [1 + Ek} L (29)

lir% <10g € + log

=log (4 Z

{tx|f'(tx)=0}

Now taking the limit § — 0 so that the E}, — 0 we obtain

/fm Wf(y)g_edyD =

min

1in% <log €+ log

1
=log [4 > | (25)

{telf’ (tx)=0}

This shows that as ¢ — 0, the leading term in
log [ wy(y)* “dy always behaves like log1/e, regardless
of f(t); but the next term in the asymptotic expansion,
the right-hand side of Eq. (25), does depend critically on
f(t), and is the quantity we seek.

Multiplying both sides by 1/(1 —r) =1/(1—-2+¢€) —
—1 and then cancelling minus signs on both sides of the
equation, we obtain

lirr(l)(—loge—ff(2 —€) =

1
=—log |4 > | (26)

{te|f’(te)=0} |

For imaging applications, where offset removal and
rescaling are typically performed when pixel values are
assigned, we define the new quantity

Ifoo = —lin%If(Q—e) —log4 +loge

1
- v | (27)

{tx|f’(tx)=0}

We will use this quantity to generate the images pre-
sented in the results section.

I1l. MATERIALS AND METHODS
A. Numerical Computation of I¢

Calculation of I¢ o, via Eq. (27) is accomplished by fit-
ting a cubic spline to the experimentally acquired data
array using a well-known algorithm, which returns the
second derivative of the cubic spline (in an array having
the same length as the experimental data) and initializes
data structures suitable for rapid computation of its first
derivative.® Subsequently, an array of corresponding first
derivatives is computed and used to bracket the critical
points of the spline (i.e., the zero crossings). Linear in-
terpolation is then used to estimate the exact location of
the bracketed zero crossings in order to obtain an algo-
rithm suitable for real-time implementation in a medical
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FIG. 4. Simulation for a noise free Gaussian pulse showing
the dependence of ¢ . on the number of sampled points N, .

imaging system. The total operation count is of order
N, where N, is the number of points processed, is more
than four orders of magnitude faster than the operation
count 16384N, required to compute I¢(r) used in our
previous study'. For comparison, we also note that the
operation count required to produce the envelope of the
same number of points (i.e., to produce a conventional
B-Mode image) would be of order N, log(N, ) since com-
putation of the envelope requires use of the Fast Fourier
Transform, for the value of N, = 512 used in our study
below, this represents an increase in processing speed of
roughly nine.

B. Simulations

The convergence properties, stability in the presence of
noise, and effects of quantization error and sampling rate
have been extensively evaluated using simulated data.
Several types of waveforms have been investigated: Gaus-
sian and parabolic waveforms, for which the exact value
of It o, may be computed and linear combinations of ex-
ponentially damped sine waves that qualitatively resem-
ble backscattered ultrasonic waveforms. Several carefully
chosen example simulations illustrate guidelines for ap-
plication of our algorithm in order to avoid potential ar-
tifacts produced by experimental factors.

The first of these is Figure (4) which shows a plot of
Iy o for a noise-free Gaussian pulse f(t) = e=30(t=0.5)°
for values of N, ranging from 32,64, 128, ...,8192. Even
at N, = 32 the estimated value of I is within 1% of
the exact value of log[1/60] = —4.094. For moving win-
dow analysis of experimental data, IV, is the length of
the moving window. Choosing its length requires mak-
ing trade-offs between sensitivity (smaller N, implying
loss of sensitivity, but increased spatial resolution), noise
level (smaller N, implying increased noise, but increased
spatial resolution) and spatial resolution.

However, noise can have a significant effect on the cal-
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FIG. 5. Simulation for a Gaussian pulse showing the depen-
dence of If . on the number of sampled points N, and noise
level.

culation of Iy . Figure (5) illustrates the impact of noise

on the Gaussian pulse (f(t) = e 30(=0-5%) that was just
discussed. As N, ranges from 32,64,128,...,8192 and
noise levels ranges from 0 to 150dB, the calculated value
of It can vary by over 100% of its actual value. Even-
tually, as N, increases and the noise level drops, and our
algorithm converges to a stable value. However, as the
plots indicate, the noise requirements for a single peak
function like the Gaussian peak are quite stringent, be-
ing greater than 100 dB to obtain 10% accuracy.

These requirements are less stringent if f(¢) has sev-
eral critical points. An example is shown in Fig-
ure (6) which plots Iy for values of N, ranging from
32,64,128,...,2048, and for noise levels ranging from 0
to 150 dB for the Gaussian modulated pulse: f(t) =
e~ 10(t=0-5)" gin (207 (¢ — 0.5)) + 0.7sin(207(t — 0.5)) +
0.7sin(107(t — 0.5))). As the plots indicate the noise re-
quirements for a multipeak peak waveform, f(t), are far
less stringent with 87% accuracy being obtained at about
20dB noise level for N, = 512 (plotted using a heavier
line in the plot family since these parameters match val-
ues used in the experimental portion of our study).

Figure (7) shows a plot of Iy for values of N,
ranging from 32,64,128,...,8192 for noise levels rang-
ing from 0 to 150dB for the simulated pulse f(t) =
e~ 150(t=0-55)* ¢ (407 (t — 0.55)) + 0.7 sin (807 (¢ — 0.55)) +
0.7sin(207 (¢t — 0.55)) 4+ 0.03 sin(107 (¢t — 0.55)). The "ex-
act” answer is —4.149073, found by running our algo-
rithm with noise level set to zero, no quantization error,
and N, = 8192, is also shown on the plot. The cor-
responding values of N, are indicated on the right side
of the figure. For values of N, < 512 the error is less
than 13%. We also note that for larger values of N, and
lower levels of noise, our algorithm diverges with Iy o, be-
coming large and positive. This occurs only in quantized
simulations and is the result of the long perfectly flat seg-
ments in the quantized data. This is an easily detected
fault and, since the I o, images used in our experimental

1 Ny = 8192
-7 —

T T
0 20 100 150
Noise Level (dB)

FIG. 6. Simulation for an unquantized Gaussian modulated
pulse showing the dependence on the number of sampled
points N, and noise level.

study had pixel values of approximately 7bits/symbol in
magnitude on the regions used to estimate accumulation
of targeted nanoparticles, can be ruled out as a possible
artifact in our study.

C. Nanoparticles for molecular imaging

A cross-section of the spherical liquid nanoparticles
used in our study is diagrammed in Figure (8). For
in vivo imaging we formulated nanoparticles targeted
to «,03-integrins of neovascularity in cancer by in-
corporating an “Arg-Gly-Asp” mimetic binding ligand
into the lipid layer. Methods developed in our lab-
oratories were used to prepare perfluorocarbon (per-
fluorooctylbromide, PFOB, which remains in a liquid
state at body temperature and at the acoustic pressures
used in this study?®) emulsions encapsulated by a lipid-
surfactant monolayer.'%!! The nominal sizes for each for-
mulation were measured with a submicron particle ana-
lyzer (Malvern Zetasizer, Malvern Instruments). Particle
diameter was measured at 200£30nm.

D. Animal model

The study was performed according to an approved
animal protocol and in compliance with guidelines of the
Washington University institutional animal care and use
committee.

The model used is the transgenic K14-HPV16 mouse
in which the ears typically exhibit squamous metapla-
sia, a pre-cancerous condition, associated with abundant
neovasculature that expresses the a,, 33 integrin. Eight of
these transgenic mice!®!® were treated with 1.0 mg/kg
i.v. of either a3 -targeted nanoparticles (n=4) or un-
targeted nanoparticles (n=4) and imaged dynamically for
one hour using a research ultrasound imager (Vevo 660
40MHz probe) modified to store digitized RF waveforms
acquired at 0, 15, 30, and 60 minutes after injection of
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FIG. 7. Top panel: the simulated backscatter signal described
in the text. Bottom panel: plot showing the dependence of
If o on the number of sampled points N, and noise level at
eight-bit quantization. The heavy black line labeled ” Exact”
is at 4.149, the limiting value of I o obtained from our algo-
rithm in the unquantized, noise-free case with N, = 8192.

nanoparticles. In both targeted and untargeted cases,
the mouse was placed on a heated platform maintained
at 37°C, and anesthesia was administered continuously
with isoflurane gas (0.5%).

E. Ultrasonic Data Acquisition

A diagram of our apparatus is shown in Figure (9).
Radio-frequency (RF) data were acquired with a research
ultrasound system (Vevo 660, Visualsonics, Toronto,
Canada), with an analog port and a sync port to per-
mit digitization. The tumor was imaged with a 40 MHz
single element “wobbler” probe and the RF data corre-
sponding to single frames were stored on a hard disk for
later off-line analysis. The frames (acquired at a rate
of 40 Hz) consisted of 384 lines of 4096 eight-bit words
acquired at a sampling rate of 500 MHz using a Gage
CS82G digitizer card (connected to the analog-out and
sync ports of the Vevo) in a controller PC. Each frame
corresponds spatially to a region 0.8 cm wide and 0.3 cm
deep.

"\ Coupling Gel

2% lipid
surfactant

40% PFOB
Interior

58% buffer
deionized water

FIG. 8. A cross-sectional diagram of the nanoparticles used
in our study.

Fluorescent
Image

Computer/ADC

Targeted
Nanopartilces

S
AL
Vevo 660

Research

Imager Neovascular

Region

Gel Standoff
Skin.

Mouse
~/ Ear

FIG. 9. A diagram of the apparatus used to acquire RF data
backscattered from HPV mouse ears in vivo together with
an histologically stained section of the ear indicating portions
where a,(33 -targeted nanoparticles nanoparticles could ad-
here and a fluorescent image demonstrating presence of tar-
geted nanoparticles.

The wobbler transducer used in this study is highly
focused (3mm in diameter) with a focal length of 6 mm
and a theoretical spot size of 80 x 1100um (lateral beam
width x depth of field at -6dB), so that the imager is
most sensitive to changes occurring in the region swept
out by the focal zone as the transducer is “wobbled”. Ac-
cordingly, a gel standoff was used, as shown in Figure (9),
so that this region would contain the mouse ear.

A close-up view showing the placement of transducer,
gel standoff, and mouse ear is shown in the bottom of
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the figure. Superposed on the diagram is a B-mode gray
scale image (i.e.logarithm of the analytic signal magni-
tude). Labels indicate the location of skin (top of image
insert), the structural cartilage in the middle of the ear,
and a short distance below this, the echo from the skin
at the bottom of the ear. Directly above this is an image
of a histological specimen extracted from a HPV mouse
model that has been magnified 20 times to permit better
assessment of the thickness and architecture of the sites
where «,, 03 targeted nanoparticle might attach (red by fs
staining). Skin and tumor are both visible in the image.
On either side of the cartilage (center band in image), ex-
tending to the dermal-epidermal junction, is the stroma.
It is filled with neoangiogenic microvessels. These mi-
crovessels are also decorated with «, 33 nanoparticles as
indicated by the fluorescent image (labeled, in the upper
right of the figure) of a bisected ear from an v, 83-injected
K14-HPV16 transgenic mouse. It is in this region that
the a,, (3-targeted nanoparticles are expected to accumu-
late, as indicated by the presence of red (3 stain in the
magnified image of a histological specimen also shown in
the image.

F. Ultrasonic Data Processing

Each of the 384 RF lines in the data was first up-
sampled from 4096 to 8192 points, using a cubic spline
fit to the original data set in order to improve the sta-
bility of the thermodynamic receiver algorithms. As a
by-product of this “order N,” algorithm is simultaneous
output of a corresponding array of array second deriva-
tive values of the fit function®. Next, a moving window
analysis was performed on the second derivative data set,
using Eq. (27) to compute If o, by moving a rectangu-
lar window (512 points long, 0.512 us) in 0.064 us steps
(64 points), resulting in 121 window positions within the
output data set. This produced an image for each time
point in the experiment. The window length was chosen
to match that used in previous studies':2, it corresponds
to the heavy black curve shown in Figure (7). Analyses
were also performed using window lengths of 256 (0.256
us) and 128 points(0.256 us). While they also produced
statistically significant changes in I'f o, versus time, post-
injection, the resulting Iy o, vs. time curves were noisier,
and required one hour, post-injection, to exhibit statis-
tically significant changes. As discussed previously, the
optimum choice of window length requires trade-offs be-
tween sensitivity, noise level and spatial resolution. In
the results section we discuss the 512 point moving win-
dow length results since they correspond most closely to
previous results, which were supported by independent
histological results''2, and produced images with suffi-
cient spatial resolution to indentify relevant anatomical
features in the mouse ear. Additionally, a major goal
of this study was to assess the numerical stability of
the algorithm, which is based on the second derivative
of an experimentally measured data set, and thus con-
taminated by noise. Ordinarily, estimation of just the
first derivative is difficult. However, in our application
the effects of noise might be mitigated by two factors:
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FIG. 10. Iy image enhancement, i.e., change relative to 0
minutes, obtained after injection of o, 33 targeted nanoparti-

cles(closed circles) and nontargeted nanoparticles (open cir-
cles) into from four HPV mice in each case.

the second derivative is obtained from a global fit to the
data, and the second derivative appears in the denomi-
nator of the expression for receiver output so that values
of second derivative having large error are likely to make
small contributions to the sum appearing in Eq. (27).

G. Image Processing

All RF data were processed off-line to reconstruct /¢ o
images. Subsequently, a histogram of pixel values for
the composite of the 0, 15, 30, and 60 minute images
was computed as described in previous papers!2. Image
segmentation of each type of image, at each time point
in the experiment was then performed automatically us-
ing its corresponding histogram according to the follow-
ing threshold criterion: the lowest 7 % of pixel values
were classified as “targeted” tissue, while the remaining
were classified as “untargeted” (histogram analysis was
also performed using 90 and 87 percent thresholds, with
93 percent having the best statistical separation between
time points). The mean value of pixels classified as “tar-
geted” was computed at each time post-injection.

IV. RESULTS AND DISCUSSION

The results obtained after injection of targeted
nanoparticles and nontargeted nanoparticles by If o re-
ceiver, are shown in Figure (10). Both curves show the
time evolution of the change (relative to 0 minutes) in
mean value of receiver output in the enhanced regions of
images obtained from the four animals in the targeted
and the four animals in the nontargeted groups. Stan-
dard error bars are shown with each point. At fifteen
minutes the change in mean value if I, is more than
two standard errors from zero, implying a statistical sig-
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nificant at the 95% level. There is no statistically sig-
nificant change in image brightness for the nontargeted
nanoparticles group. As the results show, the algorithm
for computation of I is stable in the presence of ex-
perimental noise.

The results presented in this paper extend earlier stud-
ies where it was shown the an entropy based measure,
Hy, was able to detect targeted nanoparticles in tu-
mor neovasculature? after 30 minutes of accumulation
time. Subsequently, the time required to detect targeted
nanoparticles was reduced to 15 minutes using a gener-
alization of entropy, If(r), with r = 1.99, although the
time required for signal analysis was greatly increased!.
In the current study based on I o, the analysis time has
been reduced from days to minutes using an algorithm
suitable for real-time implementation, while maintaining
sensitivity that permits detection of nanoparticle accu-
mulation at 15 minutes.

Real-time performance appears to have been purchased
at the price of reduced statistical sensitivity, in view of
prior observation that I;(1.99) separated by over five
standard errors from 0 at 15 minutes® as compared to the
2 standard error separation obtained with the real-time
receiver (see Figure (10)). It is possible that preprocess-
ing of the data by bandpass filtering might improve the
statistical performance of the algorithm without signif-
icant increase in computational overhead. This will be
studied in a future report.
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