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A best orthogonal basis for a vector is selected from a library to mini-
mize a cost function of the expansion coefficients. How it depends on the
cost function, and under what conditions it provides the fastest nonlinear
approximation, are still open questions which we partially answer in this
paper.

Squared expansion coefficients may be considered a discrete probability
density function, or pdf. We apply some inequalities for pdfs to obtain
three positive results and two counterexamples. We use the notion of sub-
exponentiality, derived from the classical proof of an entropy inequality, to
derive a number of curious inequalities relating different information costs
of a single pdf. We then generalize slightly the classical result that one
pdf majorizes another if it is cheaper with respect to a large-enough set
of information cost functions. Finally, we present inequalities that bracket
any information cost for a pdf between two functions of norms of the pdf,
plus a counterexample showing that our result has a certain optimality.
Another counterexample shows that, unfortunately, the set of norm-type
pdfs is not large enough to imply majorization.

We conclude that all information cost functions are weakly comparable
to norms, but this is not quite enough to guarantee in general that the

cheapest-norm pdf majorizes.
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1. INTRODUCTION

Our ultimate goal is to obtain some estimates for the rate of approximation by
partial sums of orthogonal functions. These yield existence and uniqueness results
for fast divide-and-conquer algorithms that choose a best orthogonal basis.

Suppose we have a finite-energy signal to approximate. Given a collection of
orthonormal bases, it is desirable to choose one that concentrates the signal’s energy,
namely, that has two properties:

e only a relatively tiny number of expansion coefficients are non-negligible;

e the individually negligible coefficients add up to a negligible sum.

The fastest approzimation basis of the collection is the one for which the squared ex-
pansion coefficients, when rearranged into decreasing order, decrease most rapidly.
Comparison of rates of decrease may be done with the classical notion of majoriza-
tion, and we will say that the fastest approximation basis majorizes all others in
the collection. However, to find that basis with an efficient divide-and-conquer
strategy, it is necessary to avoid rearrangement.

There are classical inequalities that estimate rates of decrease without rearrange-
ment. They use various entropies, or information cost functions. Some of these are
described in seminal work by Hardy, Littlewood and Pélya [4, 5], and more recent
contributions by Rényi [8], Aczél and Daréczy [1], and Marshall and Olkin [7]. The
basis which minimizes a particular entropy or information cost function is called
the best basis for that function.

This paper presents three results. In Section 2, we introduce the notion of sub-
exponentiality, derived from the classical proof of an entropy inequality, and obtain
four useful lemmas and a number of curious inequalities relating different informa-
tion costs of a single pdf. In Section 3, we give a proof that one pdf majorizes
another if and only if it is cheaper with respect to any information cost functions.
Our proof reformulates a classical result of Hardy, Littlewood and Pélya, and is
valid for infinitely-supported pdfs. Finally, in Section 4 we present two inequalities
that bracket any information cost for a pdf between two simpler functions of the
pdf, plus a counterexample showing that our result has a certain optimality.

These methods apply to the still open question of the existence of a fastest
approximation basis within a library. The best basis for a single information cost
function yields the sole candidate, and we hope to use the inequalities bracketing
information cost functions to decide whether that candidate indeed majorizes all
others.

2. INEQUALITIES RELATING COST FUNCTIONS

Let p = {pn} be a (discrete) probability density function, or pdf: 0 < p, <1
and Y. p, = 1. Let M = {n: p, > 0} and write M = #M, its cardinality, if M
is finite. Denote the positive reals {x > 0} by R*.

An additive information cost function H is a real-valued functional defined on
pdfsby H(p) = >, f(pn), where f : [0,1] — R is nonnegative, concave and satisfies
f£(0) = 0. This is a special case of a Schur concave functional [1, 5, 7).

We have entropy in mind as a starting point: f(t) = tlog(1/t). To generalize it,

let f be given and define ((t) def f(t)/t for t > 0. We may assume that f is right
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continuous at 0:

li t)=0. 1
Jm f(t) =0 (1)
This does not imply that ¢(t) is right continuous at 0, and some of the most inter-
esting examples have £(t) — oo as t — 0. The following notation will be used to
indicate which ¢ defines the additive information cost function:

H=H(tp) € > palpn): (2)

This article investigates some of the properties of such H.

If M is a singleton, then H = £(1) is trivial to compute and does not involve any
properties of £ on (0,1) or (1,00). Therefore, it will always be assumed that M
contains at least two elements, and thus that

0<pn<l, for all n € M. (3)

Definition 2 and assumption 3 suggest that only the restriction of ¢ to (0,1)
matters. However, in many of the inequalities that follow, expressions like ¢(1/p,,)
will occur, necessitating an extension of ¢ to (1,00). There is no a priori relation
between the extension and the restriction to (0, 1).

Considering only n € M avoids the need to define ¢(0). However, comparing pdfs

with ¢ satisfying £(0+) = co will sometimes force evaluating ¢(0) ' . Because of

Eq. 1, arithmetic in such cases will obey the conventions 0-£(0) = 0; z-(£o0) = oo
for > 0; # + (+o00) = +oo for any real number .

2.1. Basic machinery

We will say that ¢ is nonnegative, decreasing, or convex if | ;) has these prop-
erties. We will call ¢ concavable if t + t{(t) is a concave function on (0,1), and
d-subezponential if £(x?) < d¢(z) for a given d € R and all x € (0,1).

A pdf p is called (1 + d)-summable if 3 \ipit? < oo for a given d € R,
and p((p?)-summable if Y-\ pn ((pS) is finite for a given d € R. Every pdf is
(1 + d)-summable for all d > 0. Finite support implies (1 + d)-summability and
pl(p?)-summability for any d. Conversely, if p is (1+d)-summable for some d < —1,
then M must be finite. Hence, for infinite M, (14 d)-summability is unknown only
for d € (—1,0).

A d-subexponential ¢ for a fixed d is needed to prove some of the inequalities
below, but it is not a very strong condition. For example, ¢ is 0-subexponential if
and only if ¢(1) < 0, while £(1) = 0 in many interesting examples. Likewise, ¢ is
1-subexponential if and only if ¢(¢) < ¢(t), which is no restriction at all. It is a
restriction to have d-subexponential ¢ for d ¢ {0,1}, or for more than one d. Also,
there is a significant difference between d > 0 and d < 0: in the first case, only ¢’s
behavior on (0,1) matters, while the second influences the behavior of ¢ on all of
RT. If D is a subset of R and ¢ is d-subexponential for every d € D, it will be said
that ¢ is D-subexponential.

Examples:

o ((t) = % — t is convex on (0, 1), concavable, and decreasing, though not non-

negative.
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e ((t) = 1 —t* is nonnegative, decreasing, and concavable, though not convex on
(0,1).

e ((t) = 1/t? is nonnegative, decreasing, and convex on (0,1), though not con-
cavable.

e Let a > 1 be a fixed real number. Define ((t) = —log,,(t); then £ is nonnegative,
decreasing, convex on (0, 1), convex on (1,00), concavable, and R-subexponential.

The hypothesis of subexponentiality allows us to estimate cost functions in terms
of simpler functionals, but it is a strong assumption that implies behavior compa-
rable to the logarithm function, at least on part of the domain.

The following several results explain D-subexponentiality in more detail. We
begin with a version of a classical uniqueness result:

LeMMA 2.1. If € : (0,1) = [0,00) satisfies ((t?) = d¢(t) for all d > 0 and all
0 <t <1, then either £ =0 or £ = —log, for some a > 1.

Proof. Obviously ¢ = 0 works, so suppose £ Z 0. Let to € (0,1) be a point such
that (ty) > 0. Then for domain d € R*, the map d — t{ has range (0,1), and d ~
dl(ty) has range (0,00). In particular, there is some dy € R" such that dof(ty) = 1.
But then t& € (0,1), and ¢(t) = 1. Now put a = 1/t%; thena > 1 and ¢(1/a) = 1.
It remains to show that ¢(t) = —log,(t) for all t € (0,1). But for any t € (0,1),
there is a unique d > 0 such that t = (1/a)? = a~¢, and thus log,t = —d = —d-1 =

—di(1/a) = —((t).

ProprosITION 2.1. If { is nonnegative and R¥ -subezponential, then either { =0
or { = —log, on (0,1) for some a > 1.

Proof. For d > 0, ¢ is both d-subexponential and 1/d-subexponential, which im-
plies that ¢(t?) = d¢(t) for all ¢ € (0,1) and d > 0. The result follows from Lemma

2. n

ProrosITION 2.2. If ( is nonnegative, (0,1)-subexponential, and not identically
zero on (0,1), then there ezists T € (0,1) and K > 0 such that

0
0

—Klnt, for every t € (T,1); (4)

<
> —Klnt, foreveryte (0,T). (5)
In particular, lim;_,o+ £(t) = 0o and lim,_,;- ((t) = 0.

Proof. The limit evaluations follow from Eqs. 4 and 5. By the hypotheses, there
is some T € (0,1) with ¢(T) > 0. For every ¢t € (0,T) there exists d € (0,1) such
that t¢ = T, namely d = 111:1—7; Since ¢ is (0,1)-subexponential, {(T) < d((t), so
that, for every t € (0,7),
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which establishes Eq. 5 with K = %. Similarly, for ¢t € (T, 1), choose d = 111?—} €
(0,1) to get T? = t. Since ¢ is d-subexponential, this implies £(¢) < d¢(T) and thus,

(1)

(t) < —Int =—KlInt
(t) < e Int,

which proves Eq. 4. H

There can be (0,1)-subexponentiality without logarithms, however. Although
Proposition 2.2 forces (0, 1)-subexponential ¢ to be bounded by the logarithm, it is
less restrictive than Proposition 2.1. Consider the class of functions ¢ described in
the following lemma:

LEMMA 2.2. Fiz o > 0. Then the function £(t) =t~ — 1 is strictly positive on
(0,1), decreasing and convez on R, and (0, 1)-subexponential. Also, { is concavable
if0<a<1.

Proof. That £ is positive, decreasing, and convex is evident. Now define

g(t) € det)y — ety = d(t > —1)— (t 7 —1).
This is a continuously differentiable function on (0,1], satisfying g(1) = 0, and
having a strictly negative derivative on (0, 1):

g (t) = —adt=*" ' 4 adt=*"! = —ad(t4) [t‘““‘” — 1} =—(+)[+] <0.

Thus, g(t) > 0 for all ¢ € (0,1), establishing that £ is (0, 1)-subexponential.
Finally, if o < 1, then f(t) = tf(t) = t! = — t is concave, since f”(t) = —a(1l —
ajt <0, ®

Notice also that (0, 1)-subexponentiality does not imply convexity on (0,1). Take
£y to be one of the example (0, 1)-subexponential functions, that is, logarithm or
t~* — 1. Define, for fixed A € (0,1), a function ¢ by

o) = { to(t), ifte(0,A);

0, otherwise.

It is easy to check that ¢ is (0, 1)-subexponential, but is not convex on (0, 1).

Consider the case of negative d. If only one exponent d is involved, there are
many examples: Any function ¢ defined on (0, 1) can be extended to (1,00) so as to
be d-subexponential. For x € (1,00), there is a unique ¢t € (0, 1) such that t? =z,
and to have a d-subexponential ¢ it suffices to define ¢(z) = r, where r € R is any
number satisfying r < d{(t).

However, there are many restrictions on D-subexponential functions if D C
(—00,0) is not a singleton:

PROPOSITION 2.3. Suppose that { is nonnegative, not identically zero on (0,1),
and (—1,0)-subexponential. Then there exist € > 0 and K > 0 such that

t) < K(—Int), for every t € (0,¢).
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Proof. By the assumptions, there exists z € (0,1) such that £(z) > 0. Take any
d € (—1,0); theny = z¢ is in (1,00), £(y) € R, and £(y) < d¢(x). This implies that
—o0 < {(y) < 0. Consider T = 1/y € (0,1). For any ¢t € (0,T") there exists a unique
d € (—1,0) such that t? = y, namely d = Iny/Int. It follows that ((y) < de(t).
But since d < 0,
‘(y)

(0 < 30) = 1 2(~ne)

which proves the result with K = —{(y)/Iny >0. ®H

Proposition 2.3 implies that it is not possible to extend ¢(t) =t~* — 1 to (1,00)
so that ¢ becomes (—1,0)-subexponential. However, it can be done for a single
exponent d < 0.

Propositions 2.2 and 2.3 together show that if ¢ is nonnegative, not identically
zero, and (—1,0) U (0, 1)-subexponential, then ¢(t) ~ —In(t) as t — 0+.

2.2. Applications
We can derive inequalities for additive information cost functions H using the
properties mentioned above. For example, it is obvious that if ¢ is nonnegative,
then H(¢,p) > 0 for every pdf p. A probabilistic interpretation of H aids in the
derivations. Fix a pdf p and consider a probability space (£2,2%, P), where Q@ = M
and P is defined by P({n}) = p, for every n € M. Define a random variable
X:Q—-Rby

X(n) = pn. (6)
Then the following results hold:
1. If ¢ is nonnegative, then the expectation E[¢(X)] lies in [0, cc], and
E[((X)] = H(¢,p)

2. If d > 0, then E [Xd] lies in [0, 1], and

E[XY =73 pit (7)

neM

3. If d < 0 and p is (1 + d)-summable, then E [X 9] is finite and Eq. 7 is valid.
4. If d € R and p is p ¢(p?)-summable, then E [¢(X?)] is finite and

E[(XD] = > pat (p2) -

nEM

PROPOSITION 2.4. If £ is nonnegative, —1-subexponential, and convex on (1,00),
and if p is (1 + d)-summable for some d < —1, then p is finitely supported and
0<H<—{M).
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Proof. First note that H > 0 since £ is nonnegative. Also, M must be finite.
Thus, Y, cp Prl(pd) is finite, so both E [((X~!)] and E [X~'] are finite. The

convexity of £ on (1,00) permits application of Jensen’s inequality, yielding

(M) =1 (Z p%“”) = ((BIXT) S E[X ] =Y pal (02) -

nEM nEM

But ¢ is —1-subexponential, so ¢ (p;') < —€(py). Thus, (M) < =3 pnl(pn) =
_H(Eap)- u

Note that the upper bound in Proposition 2.4 is not sharp, since there may be
many —1l-subexponential extensions of ¢. Taking the minimal one, ¢(¢) Lef _ 0(1/¢)

for t > 1, gives a sharp upper bound attained by p,, = 1/M for all n € M.

PROPOSITION 2.5. If{ is nonnegative and convez on (0,1), then 0 < ¢ (Zn p%) <

H((,p). Equality holds on the right if p, =1 for a single indezx n.

Proof. If H = oo the conclusion holds trivially. If H is finite, then H = E [¢(X)]
is finite. By Eq. 7, E[X] = 3, p2 € (0,1), so Jensen’s inequality implies 0 <

((EIX)) <E[(X)]=H. m

ProOPOSITION 2.6. Fiz d > 0. If ¢ is nonnegative, convex on (0,1), and d-
subexponential, then

1 1+d
0< ¢ (zn:pn ) < H((,p).

Proof. Asin the previous proof, notice that p is (1+d)-summableand pltd =
E [Xd] € (0,1). Nonnegative ¢ and d > 0 imply the left-hand inequality. It remains
to prove the right-hand inequality in the case H < co. But then E[((X)] = H is
finite. Likewise, E [¢((X?)] < dE[((X)] = dH is also finite, by d-subexponentiality.
Jensen’s inequality applies and yields ¢ (E[X‘]) < E [¢((X?)]. Since ¢ (E[XY]) =

(X, pH‘d) and d > 0, the result follows. W

n

ProPOsSITION 2.7. Fiz d > 0. If £ is convez on (1,00), and —d-subezponential,
and if both {pL=9} and {p.l(p;9)} are summable, then

H(t,p) < —ée <Z p}q‘d> .

nEM

Proof. Since £ is convex on (1,00) and 1 < E [X_‘l] < oo by the summability
assumption, Jensen’s inequality applies. Together with —d-subexponentiality, it
yields

—~dH = —dE[((X)] > E [(X~%)] > ¢ (BIX™]) =¢ (Zpi“’) :
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Division by —d < 0 gives the result. H

2.3. Examples
Applying the results of the previous section to three specific examples gives proofs
of some curious inequalities, and enables comparison of different cost functions in

COINIINOI use.

2.3.1. ((t) = —log,(t); a>1.

This ¢ is nonnegative, decreasing, convex on (0,1) and (1,00), concavable, and
R-subexponential, so all the results apply.

If p is a finitely-supported pdf, then Proposition 2.4 yields the following classical
result:

0< > (—pn)log,(pn) < log,(M). (8)
neM

Both estimates are sharp. Equality holds on the left if and only if p; = 1 for
a single ¢ with p, = 0 for all n # . Equality holds on the right if and only if
P1r=p2='""=PN = LN

Proposition 2.5 gives another lower bound for every pdf p:

—log, <Z pi) < D (=pn)log,(pn)- (9)

neM nEM

This is an improvement on Eq. 8: whenever M contains at least two elements,
Y oneM p2 < 1 and so —log, (ZneM p?,) > (. It is also sharp, for equality holds in
the extreme cases p, = 1 for a single n and p, = 1/M for all n € M.

More generally, Proposition 2.6 implies, for any d > 0 and all pdfs p,

0< —éloga (Z pifd) < > (=pa)log,(pn)- (10)

n€EM n€EM

This lower bound is, in a sense, the best possible. Namely, for finitely supported p
the following limit exists:

dl_i>r(1;1+—$]0ga (Z p},*") = D (=pn)log,(pn). (11)

neM neM

In the case a = 2, the expression on the left is known as the Rényi entropy I,(p),
where o = d + 1 (see [8], p.468).

Finally, Proposition 2.7 implies that for d > 0 and any (1 — d)-summable pdf p
for which {p, log,(pr)} is summable, the following inequality holds:

> (=pa)log,(pn) < éloga (Z pi.‘d> : (12)

n€EM neEM

For finitely supported p, the following limit holds as well:

i, é log,, <Z pi.d) = > (—pn)log,(pn)- (13)

nEM neEM
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2.8.2. Lty=t"*—1;t€(0,1); 0<a<l.

This ¢ is nonnegative, decreasing, convex on (0,1), (0,1)-subexponential, and
concavable. The results in this subsection do not depend on concavability, but it is
used in the next chapter.

Propositions 2.6 and 2.5 give the following lower bound for H(¢, p), for every pdf
p and every d € (0,1):

0<

Ul

(z p,afd) < <z p;,—a) . (11

nEM n€EM

If scaled by the constant factor (2% —1)~!, the right-hand side of Eq. 14 is equal to
the entropy of degree 1 — a introduced in [1], pp. 184-185. In the same reference,
there is a useful discussion of the behavior of this functional as o — 0.

Negative subexponentiality may be used to obtain upper bounds for H(t~*—1, p).
As already shown, this is not possible for a single function ¢ and all negative d, but
it can be achieved for every particular d using a suitable extension of ¢ to (1, 00).

For the case d = —1, to get —1-subexponentiality £ may be extended as follows:

lz)=1—2", if > 1. (15)

Since 0 < a < 1, the extension is convex on (1,00). Thus, Proposition 2.4 shows
that for every finitely supported p,

0< > ph*<M” (16)
nEM

The upper bound is sharp: equality holds on the right if p,, = 1/M for alln € M. In
this example, that is the only case that achieves equality, as shown by the following
argument: t'~% lies below its tangent line at ¢t = 1, so t!=* < (1 — a)t + o with
equality if and only if t = 1. Putting t = p,,/q,, where ¢ is any other pdf supported
on M, multiplying the inequality by ¢,, and summing over n € M, we see that

Yot < L,

neM

with equality if and only p,, = gy, for all n € M. Choosing q, = 1/M for alln € M
shows that 37\ pl=* < M*, with equality if and only if p, = g, = 1/M for all
n € M.

More generally, for each —d € (—1,0), the following extension of {(z) =2~* —1
will be —d-subexponential:

(z) = —d [xa/d - 1] . ifa> L (17)
To have convexity as well, it is necessary that
—d < —a < 0. (18)

Eqgs. 17 and 18 imply that if a pdf is (1 — d)-summable, it is also (1 — «)-summable
and pf(p)-summable. Hence, for 0 < o < d < 1 and every pdf p for which {p.=¢}
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is summable, the following inequality holds:

d o
(2 = (5 "

2.3.9. ((t)=—t""llog,t; t€(0,1); a>1 0< 3<1.
This ¢ is nonnegative, decreasing, convex on (0,1) and (0, 1)-subexponential. Tt
is also concavable for 3 > % If a = 2 and p is finitely supported, then

H(l,p) = (0,5H(p) " (Z pﬁ) ; (20)

neM

where (o g) H(p) is the entropy of order (0, 3) defined by Aczél and Daréezy (see [1],
p- 192). Proposition 2.6 applies (and, as a special case, so does Proposition 2.5) to
give, for every pdf p and for every d > 0,

B-1
0 < —_— (Z p1+d> loga <Z p1+d> < H E p Z p logapn (21)

n€EM n€EM n€EM

Next, consider d = —1. If ¢ is extended to (1,00) by
(t) = —t'"Plog,t, ift>1, (22)

then it is a —1-subexponential function. However, for ¢ to be convex on (1, 00), it is
necessary that g > % Then Proposition 2.4 applies to give the following inequality
for finitely-supported p, 3 > %, and /£ defined by Eq. 22:

0< > phlog,(1/ps) < M'~Flog, M. (23)
neM

More generally, for any 0 < 8 < 1 and d < 2(3 — 1) < 0, the extension of ¢
defined by

0t) = —tT log,t, ift>1, (24)

is d-subexponential and convex on (1,00). Therefore, Proposition 2.7 applies. More-
over, any pdf which is (1+d)-summable will be p¢(p?)-summable: since p¢ € (1 00)
for all n € M, we compute p,(( ,‘i) = —dp?log, p,. But also, since 8 > 1 + £, we
have
+4 -4
ph<pn T =pytpa,
.y

and since py, ?|log,, pn|is bounded on (0, 1) for any d < 0, we see that > p?|log, px|
is bounded whenever >, pl*?is bounded. With a change of d’s sign for clarity, we
conclude that for any 0 < 8 < 1 and any d > 2(1 — 8) > 0, we have

> plog,(1/pa) < <Z P ) log, <Z pi.d) ; (25)

neEM neM neEM
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for any (1 — d)-summable pdf p.

3. INEQUALITIES FOR COMPARING PDFS
Estimates of additive information cost functions use some elementary properties
of nonnegative concave functions. Recall that f = f(¢) is concave if and only if its
domain is a convex set and if, for all 0 < # < 1 and all z,y in the domain of f,

fOx+(1—=0)y)>0f(x)+(1—6)f(y) (26)

For twice differentiable f, this condition is equivalent to f”(z) < 0 for all z in the
domain of f. The properties we need, which hold even in the non-differentiable
case, are contained in the following two classical results:

LEmMA 3.1, The function f = f(t) is concave if and only if for any numbers
a,b,c,d in its domain satisfying a < b, ¢ < d, a < ¢, and b < d, the following
inequality holds:

1) = fla) o 1) = f(e)

b—a - d—c

COROLLARY 3.1. If f = f(t) is concave and nonnegative on (0,1), then f(t)/t
is @ non-increasing nonnegative function on (0,1). M

No conclusion may be drawn about the concavity or convexity of f(t)/t, though:
for the concave nonnegative “hat function,”

_ if0<t<g;
f(t)_{l—t, if 1 <t<1, (27)

the function f(t)/t is neither concave nor convex.

3.1. Information cost algebra
Suppose that H is an additive information cost function. Then we have several
purely algebraic results applicable to the comparison of pdfs by H:

1. Pdfs form a convez set: If p and g are pdfs and 0 < 6§ < 1, then 0p + (1 — 6)q
is a pdf, and H(0p + (1 —0)q) > 0H(p) + (1 — #)H(q). More generally, if ¢" is a
pdf for all n, and zn an = 1 with a,, € [0,1] for each n, then p = Zn anpq™ is a
pdf, and H(p) > 3°,, an H(q").

2. A stochastic linear operator Ax; def Zj a;jx;, for which Ej a;; = 1, maps
pdfs to pdfs. A doubly stochastic linear operator A, for which ZJ- ai; =1=73,aij,
increases information cost: H(Ap) > H(p) for any p, H.

3. The tensor product pRq def {pig;}is a pdf, and H(p®q) > max (H(p),H(q)).
This result is sharp: equality holds for f(¢) = t and any p, or for any fif p; = ¢; =1
for just a single index pair ¢, j.

(i) The entropy information cost function, defined by f(t) = tlog(1/t), satisfies
the stronger condition H(p ® q) = H(p) + H(q). See [9], p. 277.
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(ii) If H is defined by f(t) = t* — ¢ with fixed 0 < o < 1, then H(p ® q) >
H(p)H(q), with equality if and only if p; = ¢; = 1 for a single pair i, j.

(iii) The function f(t) = t", with any r, satisfies f(q;p;) = f(¢)f(p;) and
gives the stronger result H(p ® q) = H(p)H(q). Of course, only 0 < r <1 gives an
information cost functional.

Item 2. can be recovered from a theorem by Markus [6]. Earlier, Hardy, Lit-
tlewood and Pélya [4] used the result that if p is a finite discrete pdf, and A is a
doubly stochastic matrix, then H(Ap) > H(p) for every additive information cost
function H.

3.2. Rearrangement inequalities
Define the nonincreasing rearrangement of a pdf p to be another pdf p* with the
following two properties:

1. For all t > 0, #{n:p, >t} = #{n:p: >t}
2. If i > j, then p; < pJ.

The map p — p~* is equivalent to an index permutation, which is unfortunately
not uniquely defined in general. Note that nonincreasing rearrangements preserve
additive information cost functions, as do all other index permutations:

o0

HG) =Y 107) = Y 1(0) = H(p) 8)

i=1

Define the partial sums of a sequence p to be

Sp, = Zpk; Spo def . (29)
k=1

If p is a pdf, then Sp takes values in the interval [0, 1], with lim, ., Sp, = 1. Of
greatest interest is the sequence of partial sums of the nonincreasing rearrangement
of a pdf, namely Sp*. This is easily shown to be “concave” in the sense that
25p; > Spj_y + Spji1, whenever all the indices are valid.

Suppose that p and ¢ are two pdfs. It will be said that Sp* > Sq¢* if Sp}; > Sq,
for all n. In the case of finitely supported p and ¢, this corresponds to the notion
of majorization defined in [7]. We will use the same notation for all pdfs, including
those with infinite support. That is, we will say that p majorizes ¢, and write
p > q or equivalently ¢ < p, if we mean that Sp* > Sq¢*. Majorization implies the
following inequalities, through a standard summation-by-parts:

LEMMA 3.2. Suppose that £ is nonincreasing on (0,1). If p and q are pdfs and
p = q, then

LY pil(pi) < 32, 9;4(p;), and
2.3 qil(qi) > >0, pit(q;)-
m
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It is well known (see [9], p. 278, for the standard proof) that if p and ¢ are pdfs,

then >, prlog(1/pr) < >, prlog(1/qx), with equality if and only if py = ¢ for
all k. Applying this with Lemma 3.2 to the nonincreasing rearrangements p* and

q* yields Y, pplog(1/p;) < >op pilog(1/q;) < 30, ax log(1/qs), which is a classical
result:

CoroLLARY 3.2. If f(t) = tlog(1/t), and p,q are two pdfs with p = q, then
H(p)<H(q). ®

This argument depends on special properties of log, but the result generalizes
to all additive information cost functions H, as we shall now show. We need some
technical lemmas, whose straightforward proofs we omit:

LEMMA 3.3. Suppose that f = f(t) is concave and nonnegative on (0,1). Then
the following are true:

1.The extension of f to [0,1] defined by f(0) = f(1) <f 0 is also concave and

nonnegative.

2.If there exists o discrete pdf p such that pr > 0 for all k and >, f(pr) < o0,
then lim, o f(z) = 0.

3.If lim, o f(z) = 0, then there exists some § > 0 such that f is nondecreasing
on [0,]. ®

LEMMA 3.4, Suppose that {ar} and {h} are real sequences satisfying the fol-
lowing conditions:

1Y 4_ohe >0 for alln > 0;

2.{ar} is nondecreasing, namely, a < agyy for all k > 0;

3limy, oo a@n(ho +hy + -+ hy) =0.

Then ), arhy <0. W

COROLLARY 3.3. Suppose that {ay} and {hy} are real sequences satisfying the
following conditions:

LY h_ohe >0 for all n > 0;

2.{ap} is nondecreasing, namely, ay < a4 for all k > 0;

3.limy 0o EZ:() hi =0;

4.3°02 o aghy converges absolutely.

Then Y, arhy <0. W

We can now prove the main theorem of this section: the majorizing pdf always
costs less.

THEOREM 3.1. If p > q, then H(p) < H(q) for every additive information cost
function H.



14 SIKIC AND WICKERHAUSER

Proof. It may be assumed without loss of generality that p* # ¢* and H(q) =
H(q*) is finite.

Put m; = min{p;,q;} and M}, = max{p;.q;}; then 0 < m; < M, < 1. Since
the sequences {my} and {M}} are nonincreasing, My, < My and mg < my.
Since p* # ¢*, there must be a least integer j such that pj # q;, and thus m; # M;.
Now let f be the concave function defining H by H(p) =3, f(pn), and put

F(M;) — f(m;)

k< i
M;—m; nr<y;
ar =g f(Mg)— f(mg) .
-~ =~ - * f M,.:
Mk — Mg BTk < R
g, if mp = My, and k > 7,

where k' is the greatest index less than k for which my, < Mj,. The sequence {ay}
is thus well-defined, and by Lemma 3.1 is nondecreasing.
Put hy = p; — ¢; then EZ:(] hy >0 for all n > 0, and lim,,_, o EZ:O h, = 0.
Now f(p;) = f(q;) + arhg, since either M}, = p; and my, = g or else M} = g}
and my, = p;. Thus, |aphy| < f(p;) + f(q;), and >, aghy will converge absolutely
if both H(p) < oo and H(q) < co. The latter is true by assumption, and the former
is a consequence of the following lemma:

LEMMA 3.5. Suppose H is an additive information cost function. If p = q and
H(q) < oo, then H(p) < cc.

Proof. Without loss of generality, we may assume that g5 > 0 for all k. Using
Lemma 3.3, we can rewrite H(p) as follows:

D= D feD+ Y, feD+ Y. i)
k k<m k>m k>m
i < q; Pr >

The first two sums are finite. To show that the third sum is finite, we apply the esti-
f(4n)
* n

mate f(p;) < p;——%, Lemma 3.1, and summation by parts. ®
qn

To complete the proof of the theorem, consider the finite sums
n n n
D Fi) = flap) + ) arhu
k=0 k=0 k=0

All sums converge absolutely, so >~ , arhy < 0 by Corollary 3.3. We conclude that
H(p) =340 fp}) < 42 flap) = H(g). ™

Remark. Theorem 3.1 was proved for finite sequences and arbitrary concave f
by Hardy, Littlewood and Pélya [4]. Given p > q, they used Muirhead’s algorithm
to find a doubly stochastic matrix A such that ¢ = Ap, then applied Proposition
2.. The proof is constructive and builds A in a number of steps not greater than
the lengths of p and ¢, but we know of no proof that Muirhead’s algorithm works
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in the case of infinitely supported p and gq. Instead, our proof avoids using doubly
stochastic operators to characterize majorization. In a subsequent search of the
literature, we found a paper by Fuchs [3], in which the idea we use was applied to
the simpler case of finite sequences, where no question of convergence arises.

Hardy, Littlewood and Pélya [4] also proved a partial converse to Theorem 3.1.
A pdf which always measures least in cost majorizes all others in the collection:

THEOREM 3.2. If{p1,...,pn} and{q,...,q.} are finite pdfs, and >, _, f(pr) <
Y w_y f(qr) for all concave functions f, thenp>q. W

Actually, their converse only requires that Y., f(pr) < Y p_, f(qk) for a
sufficiently large subclass of concave functions f. In particular, if the inequality
holds for fp(t) =t — [t — T]4+ for all 0 < T < 1, then p > g. The same subclass
works if the sequences are infinite. We may even use somewhat weaker hypotheses
to prove our converse to Theorem 3.1. For T'> (0 and @ > b > 0, define a function
hrap:[0,00) = [0,00) by

hras(t) = at + (b— a)[t — T]4. (30)

This function is continuous, concave, nondecreasing and piecewise linear, with slope
a from hTya’b(O) =0to hT,a,b(T) = a7, and smaller slope b thereafter.

LeEMMA 3.6. If, for every T € (0,1), there exist a = a(T) and b = b(T), with
a>b> 0, such that

Z hTyayb(pn) < Z h/T,a,b(Qn)?

thenp>gq. N

The proof is a slight modification of the one in [4], so we omit it. An immediate
consequence is our converse:

THEOREM 3.3. If H(p) < H(q) for every additive information cost function H,
thenp>gq. N

It is natural to examine other subsets of the concave nonnegative functions, to
see if they can replace the “threshold” functions hr .4 as additive information cost
functions that imply majorization. One such class is the functions f(t) = t*, where
a € (0,1), which were studied in the first section. Unfortunately, not all classes of
costs suffice, as there is the following negative result:

Lemma 3.7.  There exist two pdfs p and q such that %, pos < > q for all
0<a<l, yet p#q.

Proof. We first establish that, for sufficiently small 1 > € > 0, the following
inequality holds for all 0 < o < 1:

ho) € (1+e)~+ 2(%)“(1 — )" —2>0. (31)
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Since h(0) = 1, h(1) = 0, and h is differentiable on (0,1), it suffices to show that
h'(a) <0on (0,1). But

Wia) = (1+6)0105(1+6)+2(%)a(1—e)o‘log<l;€)

IA

1— e
(14+¢€)log(l+€)+(1—€)log ( 5 6) < a(e), (32)
since log(14+¢€) > 0 and (1 +¢€) > (1+ ¢€)®, while log(15¢) < 0 and (1 —¢€) <
2(3)*(1 — €)*. But d is continuous and d(0) = log3 < 0, so d(e) < 0 for all
sufficiently small € > 0.

With Inequality 31 established, we construct the counterexample pdfs. Let € > 0

satisfy 31, and define a = $(1+¢) and b = 3(1 —a) = 3(+5°). Thena+b+b=1,

so p = (a,b,b,0,0,...) is a (finitely-supported) pdf. Furthermore, a > b, so p = p*.
Let g = (%, %, 0,0,...); this is another nonincreasing, finitely-supported pdf. Since
a> % but a +b < % + %, neither p > ¢ nor ¢ > p. However, for any o € (0,1),

gpﬁ—;qﬁf = a”‘+zba_2(%)a
(e (5 )
(%)ah(a) > 0.

4. CONSEQUENCES FOR THE BEST-BASIS ALGORITHM

Let B be a library, or collection of orthonormal bases for a separable Hilbert

space X with norm || - ||. A vector # € X, expanded in a basis B = {b, € X :
n=0,1,2,...} of BB, is represented by a sequence {c, : n =0,1,2,...} of expansion
coefficients:
=) N
z = z_:o ¢pby,  in the sense that A}l_)n})o |z — z_% cnbyl| = 0. (33)

Orthonormality implies that ||z||? = 3, |cn|?, so the sequence p = p(z, B) defined
by pn = leal?/||z]|? n = 0,1,2,..., is a discrete probability density function, or
pdf, associated to z and the basis B.

Let p* be the nonincreasing rearrangement of p as defined in Section 3.2 above,
and write {c} and {b} for the corresponding rearrangements of the expansion co-
efficients and basis vectors, respectively. Then majorization can be used to compare
rates of approximation in X by truncated expansions: if p(x, B) > p(z, B'), then for
every N=0,1,2,..., ZnN:O c; by is a better approximation to x than Z;LO b

A best basis B € B for a fixed z is one satisfying p(z, B) > p(z, B') for any B’ €
B. Tt evidently gives fastest approximation in norm by partial sums E;Y:o crbr.
One way to achieve data compression is to describe z € X using just the largest



INFORMATION COST FUNCTIONS 17

expansion coefficients {c} : n = 0,..., N} in its best basis, plus a code defining the
basis.

Wavelet packet bases constructed from a finite-depth multi-resolution analysis
of X form a discrete, in fact finite, library B whose members are the many com-
binations of relatively few pieces. With decomposability comes a low-complexity
divide-and-conquer algorithm for finding the minimizing basis for a fixed informa-
tion cost function H, and also for coding it [2]. Reference [9], pages 310ff, describes
the wavelet packet algorithm in detail.

By Theorem 3.1, minimizing any single H locates the sole candidate for best basis.
Since H(p) = H(p*), this candidate can be identified without rearrangement. By
Theorem 3.3, that candidate is in fact a best basis if it minimizes sufficiently many
information cost functions.

In this section, we prove that all information costs for a pdf p are bracketed
between two values that depend only on Y, p7 and Y pf. The latter is an in-
formation cost function, so it is minimal at the candidate majorizer p. We then
apply the result to wavelet packet libraries, to obtain an algorithm to decide when
a candidate basis is a best basis. Whether it exists depends on B and z, but the
exact conditions are yet to be found. We obtain a partial answer, concluding that
the cheapest pdf of a discrete set, determined by a single information cost function,
must be cheapest for all the hr 45 cost functions of Eq. 30 with 7" in an open in-
terval. In special cases, this allows us to deduce from a single cost evaluation that
the minimal pdf majorizes.

4.1. Legendre transforms
To apply the results of Section 2, we require convexity. Given a real-valued
function ¢ = ((t) on an open interval I, define the Legendre transform of { as
follows:

((t) =sup{at+b:VYs € I,as +b < ((s)}. (34)

We put 1 (t) = —oo if the set is empty. This has several well-known basic properties:

LEMMA 4.1. Either ((t) = —oc for all t € I, or else { is finite and convex on I,
and satisfies —oo < ((t) < ((t) for all t € I. Furthermore, { is the greatest convex
function below €, in the sense that if ¢ = c(t) is convex and c(t) < £(t) for allt € I,
then c(t) < ((t) forallt e 1. W

Note that if ¢ is convex, then (=1

LEMMA 4.2. If £ = ((t) is nonnegative and nonincreasing on an interval I, then
£ 18 also nonnegative and nonincreasing on I. Furthermore, if the left endpoint of
I is finite and £(t) is positive at some t € I, then € is not identically zero. M

4.2. Comparability of information costs

Using the Legendre transform (, we can generalize the results of Section 2 to get
a pair of inequalities bracketing any information cost function H (¢, p), regardless
of the convexity or subexponentiality of ¢:
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THEOREM 4.1. Let H be any additive information cost function determined by
concave nonnegative f = f(t), and put €(t) = f(t)/t for 0 < t < 1. For any
d € (0,1), and any pdf p which is 1 — d-summable, we have the inequalities

() o= ()

where ( is the Legendre transform of € on (0,1) and the Legendre transform of the
—d-subezponential extension of £ on (1,00).

Proof. Zeros in the sequence {p,} can be ignored in all sums, and if p,, = 1 for
a unique n, then the sums each reduce to a single term, and the inequalities follow
from the definitions of ¢ and ¢:
1 _d 1 1-
l-)<(1-) = —aﬁ((l—) )= —Eﬁ(l—l—) < —aﬁ(l—l—).

This ordering also holds for the continuous extensions of £(¢) and ¢(t) to t = 1,

and also to the extensions ¢(1) = ¢(1) 4" 0. We may thus assume without loss of

generality that 0 < p, < 1 for all n.
To get the lower bound, we use Lemmas 4.1 and 4.2 to conclude that ¢ is finite,
nonnegative, and convex on (0,1). Then, by Proposition 2.5,

0<? (Zpi) < H((,p).

For the upper bound, first note that 1 < 3~ pL~? < co. The —d-subexponential
extension of £ to 1 < s < oo is defined by ((s) = —dl(s~'/), so as to satisfy
((t=%) = —de(t) for t € (0,1). Let { be the Legendre transform of this ¢ on (1, c0)
and put

i(t), ifte(1,00)

By Lemma 4.1, there are two possibilities. Either E(t) = —oo for t > 1, and the
upper bound holds trivially. Otherwise, ¢;(¢) is finite and convex for all ¢ > 1, and
so there must exist a,b such that ¢1(s) > as+0b for all s > 1. The assumption that
>, pt~? is finite gives a finite lower bound Y pnti(p,?) > 3, pulap,? +b] =
b+ aznpl_d, so the series Y pn(; (p;d), in which all the terms are negative,
must converge monotonically to a finite sum. Finally, since ¢; satisfies El(t_‘l) =
((t=9) < 0(t=7) = —dL(t) = —dl,(t), it is —d-subexponential on (1,00), and we get
the upper bound,

H(t,p) < —éel (Zpi_d> _ _éi (th—d) 7

o) def {E(t), ift € (0,1);

by applying Proposition 2.7. H

An infinite upper bound is possible, as shown by Eq. 17: for a € (0,1) and
Lt)y=t""—1on0 <t <1, any —d-subexponential extension must satisfy ¢((z) <
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—d [z%/4 = 1] on 1 < < cc. It is easy to check that if d < a, then {(t) = —cc for
all t € (1, 00).

4.3. Example application: wavelet packet best bases
The main fact that we need here is that wavelet packet bases form a discrete,
indeed finite, subset of the orthonormal bases of X.
We specialize Theorem 4.1 with the example class of information cost functions
with f(t) = hrap(t) as in Eq. 30. Then ¢(t) = f(t)/t is nonnegative and nonin-
creasing:

aﬂ:{m ifoO<t<T, (35)

b+ (a—b)T/t, T <t<1.

The lower bound function comes from the Legendre transform on (0, 1), which by
Lemma 4.2 is nonincreasing. We compute it explicitly:

B a—(1-T)a—-0b)t, if0<t<1<2T,
((t) =1 a— gx(a—Db)t, if0<t<2T <1, (36)
(t), if 27 < t < 1.

The —d-subexponential extension of ¢ to (1,c00) will be
_ _ 1/d] —d
(s) = { dlb+ (a — b)Ts"/9), Tf 1 ?ds <71 (37)
—da, fT79< s < o0,

and the upper bound based on its Legendre transform will therefore be piecewise
linear and nondecreasing;:

1- {b+(a—b)T+w(s—1), if1<s<T4, (38)

——fl(s) = T-4-1
it a, if7-9< s < oo.

Now fix d = %, so that Theorem 4.1 becomes

‘ (Zpi) < H(t,p) <-3( <2p3/3> : (39)

n

2 de
Suppose that p and ¢ are 1 — d = 2/3-summable pdfs, with Y, p? &f 5 > 1 and

>k q§ = x + 4 for some § > 0. To show that H(¢,p) < H({,q) for all £ in some
class, it suffices to show that

i (30d) <7 (xa). (a0

3
But Holder’s inequality implies that 1 = (3 ¢?) (E qi/g) ,80 > q2 = (z+4)73.
It therefore suffices to show that

=30 (z) < ((x+6)7%), (41)
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for all ¢ in the class. But for fixed z and d, this holds for all information cost
functions t4(t) = hrq;(t) with (z + )72 < T < 273, since then

T 1-T

Multiplying both sides by @ — b > 0 and adding b gives the result.

In a discrete library, there will always be some separation ¢ > 0 between the
minimum value H(p) and the next lowest value H(q), so there will always be a
nonempty open interval 7 of values T such that all information cost functions
hrqp with T € T are cheapest at p.

4.4. Sharpness of the result
We might ask whether it is possible to find a better upper bound than the one
in Theorem 4.1, one that avoids subexponential extensions and thus has a simpler
dependence on d, and is always finite if H(¢,p) is finite. For example, is it possible
to have an estimate of the form

H(t,p)<Clof <2pn> , (42)

where f : R — (0,1) satisfies 0 < r < f(t) < 1 for all ¢ € [1,2], and C' and
are some fixed positive numbers. The idea is to map ) p? back into the domain
(0,1) of ¢, while making sure the upper bound avoids the potential infinity at £(0)
at least for 3 ~ 1. But no such estimate can hold for all concavable nonnegative
nonincreasing ¢, as the following shows:

LeMMA 4.3. Inequality 42 must fail for £(t) =t~ — 1 with some a € (0,1) and
some pdf p.

Proof. Let {ej:j=1,2,...} C(0,1) be a decreasing sequence satisfying

(1—¢)" > 7 <1, forall j=1,2,... (43)

l\DI»—l

Define p/ by
Mi=l-¢  ph=pi==pl,= G pl =0, forn>j+ 1.
Then p/ is a pdf, and for it and the given ¢,
H) = (1) 4o 1.

On the other hand,
X def Z[ n] l—ej —|—j17'3€?.

Eq. 43 implies that <X <2,500<r<f(X)<1. Since ¢ is nondecreasing, the
right-hand side of Inequahty 42 is smaller than C'¢(r), which is uniformly bounded
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above by % for all @ € (0,1). Thus, taking a; > % sufficiently close to 1 so that

l—«; . . .
€ 2 %7 and using this a; to define £/, we have

H(E,p) 2 (<1)+ 3V

which increases without bound as 7 =+ co. N

Since 0 < ¢ < ¢, Inequality 42 cannot be made to hold by using Legendre trans-
forms, either.
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