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Abstract

The local cosined orthonormal bases [1, 4] are particularly well adapted for analyzing signals with piecewise
time behaviour. There are many acoustic signals in music and speech processing that can be considered as a
sequence of overlapping elementary structures such as phonemes in speech signals. The Best Basis algorithm
[2] computes a local spectrum defined over a dyadic segmentation, however, there is no reason for elementary
structures to ’begin’ and ’end’ near dyadic points. We use Fang’s algorithm [3] which segments the time axis
into intervals of arbitrary length; this algorithm constructs a frequency change function whose local marima
denote structure changes. The smooth cosinej orthonormal basis defined over this segmentation is used to
compute a local spectrum associated with elementary structures. We show that this representation compared
with the Best Basis coefficients has less reconstruction distortion and better local pattern description.

1. Introduction

A signal can be decomposed into a linear combination of elementary waveforms, called time-frequency
atom, each waveform being essentially supported by a rectangle in the time-frequency plane. One now
has available a large selection of waveforms, the choice of the time-frequency atoms is not unique, the
decomposition can therefore be adapted to the analyzed signal.

There are many acoustic signals in music or speech processing that can be considered as a sequence of
overlapping elementary structures like phonemes in speech signals. One goal of time-frequency analysis is
to decompose these structures into elementary waveforms.

The cosined Best Basis algorithm of Coifman and Wickerhauser [2] computes a local spectrum over a
dyacic time segmentation in O(N log N) operations. There is no reason, however, for elementary structures
to "begin’ and to ’end’ near dyadic points.

In this paper, we use Fang’s algorithm [3] to segment the time axis into intervals associated with elementary
structures. This algorithm is based on the computation of a frequency change function whose local mazima
denote structure changes. These local maxima can therefore be considered as segmentation points. Since two
adjacents elementary structures are overlapping, the computed segmentation points are only approximate.
We therefore say that the segmented time intervals contain near local elementary structures.

We use a local cosined orthonormal basis defined over this time segmentation to compute a (piecewise
constant) spectra near local elementary structures in O(N?) operations. We show that this representation
has less reconstruction distortion. This means that the approximation error is less with coefficients near
local elementary structures than with the Best Basis spectrum.

2. Block and smooth cosine4 transform
The block cosined spectrum of a signal S over a segmented time axis,

O=ag< a1 <...<as =N,
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1s the set of coefficients
Dj ={djx:0<k <} (1)
in the decomposition

St)= D djrdjk(t),
j€EZ
0<k< N
where

djx = (S, x1; 95 k)
is the block dct4 transform. The function ¢; 5 defined as

_ V2 T 1
¢j,k = \/77C0S |£—J|(k+ 5)(t — Clj),

is the cosineq function, and xy,(t) is the indicator function of /;.

We are going to describe the smooth cosine4 transform algorithm that computes the smooth local spectrum

of a sampled signal {f(¢) }+ez where
Z=J1

i€z
I; = [aj,a;41) () Z, such that a; — 1 is an integer, inf(aj41 —a;) >0, lim a; = Foo.
JEL j—=tco
We consider the following functions and sets over Z :

e the raising function

0 t €] —oo0,—1]
r(t) = ¢ sin[G (1 +sin3t)]  t€[-1,1]
1 te[l,o0f

o the smooth orthogonal window associated with I; = [a;,a;41) () Z

) _rt—aj raj+1—t
wilt) =r(—==) r(==—) (2)

where 7 is the adjacent window overlap, 0 < n < ¢;/2 and ¢; = (aj41 — a;) is the number of points
belonging to [a;,a;41) () Z.

o bj(t) = r(50),
° O;:]aj:aj"i'n[a Oj_:]aj_n:aj[i OJ:O‘]_UO;-
We use the folding operator [8]

_ [ b f(t)+b(2a; 1) f(2a;—t)  if t €O,
Ujf(t)—{ bj(2a;— 1) F(t)~b; (1) f(2a;—t) ift €O

and its adjoint, the unfolding operator [8]

e | b F()=bj(2a;—t) f(2a;—t) if t €O},
0= o oty s O10e—) 120

that verify U; U} = USU; = id to compute the folded function
Fajyaj+1 = XIjUjUij-
The smooth orthogonal window (2) is equal to the rectangular window x7, unfolded at a; and at a;11:

w; = Ui UL, (3)



The associated orthonormal cosinej basis of {*(Z)

{95k }iem 0<k<ss,

where
Wk (t) = wj(t)gsk(t) (4)

consists of smooth orthogonal windows w; modulated by cosine4 functions.
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Figure 1: Smooth cosine4 basis function

The smooth spectrum of f over I = [a;, a;41] is the set of coefficients
Ci={cjr:0< k< {;}

of the signal decomposition:

F#) =" cjn¥;k(t),

€L

keEN
where

ik =(f,¥k) = (f,9;95k) (5)
is the smooth cosinej transform.
Since
cjk = Uf U ax1,95k) = (Faja;005 95.k);

the smooth cosine transform c; x = (f, U; ) is equal to the block cosine transform of the folded signal

i = (Faj,a541:95,k)- (6)

3. Fang’s segmentation algorithm

Fang’s segmentation algorithm computes the local mazima of a frequency change function. This function
is the average of an instantaneous frequency change function that oscillates even when the signal has constant
frequencies.

3.1. Instantaneous frequency change function

This function can be obtained using the signal spectrum computed with either the block or the smooth
cosine4 transform. This function is the difference between the flatness of the spectrum over an interval



[n — ¢,n + £] with fixed £ > 0 and the flatness of the combined spectra over [n — £,n] and [n,n + £]. This
flatness can be measured with one of the following cost functions:

m—1
Azo, 21, ., &m) = le‘k| (7)
k=0

or
m—1
A@o, @1, - am) = — 3 |ag|*log(|ax]?). (8)
k=0
where (zg,21,...,&m) is a point of R™.
Let A,, By, and C,, denote the cosine spectrum over [n — £, n+ €], [n — £,n], and [n,n + £]. Then
TFC(n) = MCn) — (AMAn) + A(Bn)) (9)

is called the instantaneous frequency change function, where n € {n+£,...,N —n—(}, 0 < n < 2¢, and
1 = 0 if the block cosine4 is used.

This function oscillates even when the signal is periodic as shown in Fig.1. The IFC function is plotted
in the bottom and its average, the AFC function, is plotted in the middle. The signal over [n — £, n + £]
changes with n.

Figure 2: IFC and AFC frequency change functions

3.2. Segmentation algorithm

This algorithm consists of the following five steps:

1. Compute IFC(n) for n €){ +n, N — £ — n[= I as follows:
Consider IFC(n) = 0 Vn € I and compute Cy,, the detf transform of the signal over [n — ¢, n + €], and
B, the dct/ transform of signal over [n,n + £]. Then

IFC(n) = IFC(n) + A(Cy) — A(By),

and

IFC(n+{) =IFC(n+{) — XB,),
since Ap4r = By
2. Filter IFC(n),er to obtain an averaged frequency change function AFC(n)ner.
3. Find the local mazima by detecting zero crossings of the adjacent differences of AFC(n)ner.

4. Squelch the local maxima above some threshold.



5. Improvement
We consider only the local maxima of AFC such that its second derivative is lower than a given
negative threshold. This condition eliminates those maxima that are too flat.

There are three parameters to set:

1) the adjacent window overlap 5,

2) the window size ¢,

3) the number d of iterations of the lowpass filter H.

Fig.3 shows the first half of a second of a flute signal plotted in the top. It was segmented with Fang’s
algorithm near elementary structures using n = 16, £ = 256, and d = 7. The IFC function is shown in the
bottom. Its average, the AFC function, is in the middle. Vertical lines are plotted at segmentation points
given by AFC local maxima.

si gnal

N — T N AT N T

I FC

Figure 3: Music signal segmentation

4. Smooth spectrum near local structures

In previous papers, we analyzed speech signals first [9] using the orthonormal cosine4 Best Basis algorithm
which computes the smooth local spectrum over dyadic segments. We then compute the smooth local spectrum
of speech signals near phonemes[10][11] using Fang’s segmentation algorithm.

In this paper, we compute smooth spectrum near elementary structures. We first fold the signal at
segmentation points and takes it’s restriction over each interval

Fajyaj+1 = XIjUjUj+1f-

The smooth spectrum
¢k = (k)

over I; = [aj,a;41] is then computed using the block cosine/ transform

¢k = (Fajaj41: 9ik)
of the folded signal, where 0 < k < [; is the frequency variable. This spectrum is constant over each segment
I; = [a;,aj41]; we say that this spectrum is near elementary structure.

Fig.4 shows this spectrum in absolute value separated by vertical lines at time segmentation points. Each
segment in the bottom of this graph represents the whole frequency interval. The previous segmented signal
is shown in the top.
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Figure 4: Smooth local spectrum near elementary structures

5. Non linear approximation

Each signal was approached using p percent of the smooth local spectrum, choosing the largest energy
coefficients.

Let us denote

o ko the integer part of ¢; * p/100,

o (sj )k the sequence (|c;x|)x sorted in decreasing order,

o T =55k,

i ciw Af fejrl > Tj

Cijk =

0 it eju] < Tj.

Each folded signal is approached using p percent of the coefficients:
Fajajen = Sopen Gikgjk(t)  therefore  f,(t) = 3 sez Gik(t).

The approximation error error(p) = ||f — f~’p||2, is less for the local spectrum near elementary structure than
for the Best Basis representation. Fig.5 shows this performance for p between 0 and 40.

6. Conclusion

The cosine4 time-frequency representation has better approximation using Fang’s segmentation algorithm
then the Best Basis dyadic segmentation. It has less reconstruction distortion, however the number of
operations is O(N?) instead of O(NlogN).
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Figure 5: Comparison between Best Basis and local spectrum error approximation
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