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1 The Selections

Over the past decade, wavelet transforms have been widely applied. Good implementations of the discrete
wavelet transform (DWT) were built into software systems such as Matlab and S-Plus, and DWT became a
frequently-used tool for data analysis and signal processing. There are certain problems, though, on which
this tool works particularly well. The most common ingredient in those problems is some complicated object
that can be closely approximated by a few superposed wavelets. This compilation includes four seminal
articles that introduced some of these stand-out DWT applications. I have taken a random and sparse
sampling of relevant articles and books published around the same time, in order to place the results in
context and illustrate their influence.

2 Fast Evaluation of Singular Integral Operators

Discrete wavelet transforms are fast algorithms, costing O(1) arithmetic operations per output regardless of
the number of inputs. This is even better than the fast Fourier transform, which costs O(log V) operations
per output given N inputs, as much as a complete wavelet packet or multiscale local cosine analysis. A
general linear transformation of N inputs, by contrast, costs O(N) operations per output. It was seen right
away that DWTs could be advantageous in high-dimensional problems.

An example is the evaluation of an integral operator f +— T'f with

Tf(z) = / () () dy,

where ¢ is a smooth function except on some thin subset of its domain. The gravitational potential, with
t(z,y) = 1/|z—1yl, is one such operator. To simulate the time evolution of a many-particle system interacting
by gravitation requires repeated recomputation and then evaluation of 7. A great deal of work in the 1980s
[4, 6, 66] culminated in V. Rokhlin’s fast multipole algorithm [32, 17].

The seminal 1991 article in this compilation, “Fast Wavelet Transforms and Numerical Algorithms I”
by Beylkin, Coifman and Rokhlin, shows that the fast multipole hierarchical decomposition is in essence a
multiresolution analysis. It may be performed fast by an orthogonal pair of conjugate quadrature (mirror)
filters. Sparsity of the resulting matrix is guaranteed for Calderon—Zygmund singular integral operators [52]
such as the gravitational potential, if the underlying wavelets representing the operator have many vanishing
moments.

Subsequently, more complex wavelet-like transforms were brought to bear on ever nastier linear operators
to get sparse matrix approximations [3, 7, 2, 65, 53]. Sparse matrix multiplication makes linear algebra feasi-
ble even in very high dimensions. The wide class of operators that reduce to sparse matrices in wavelet bases
made possible fast algorithms for such difficult problems as numerical homogenization [14], electromagnetic
scattering [55], general trigonometric approximation [8], Hilbert transforms [11, 12], The special properties
of wavelets also permit linear superpositions to be used in nonlinear functions [22, 10, 9]

Multiresolution decomposition into wavelets with many desirable analytic properties has provided an
elegant path into operator theory. The existence of fast discrete wavelet transforms has made this a smooth
path to efficient numerical methods as well.



3 Improved Transform Coding Image Compression

Digital images also have the potential to be enormously complicated, but when they are pictures of interest to
humans they must actually be relatively simple. Among many techniques for efficient storage or transmission
of such pictures is transform coding image compression [64]. The Joint Photographic Experts Group (JPEG)
algorithm [39, 40, 63] is perhaps the most common, since it is used in the JPG files found throughout the
World Wide Web. But JPEG is an approximation algorithm. The errors it introduces, while nearly invisible
to the eye, interfere with edge detection and similar image analysis.

The advantages of wavelets are nicely explained in Devore, Jawerth and Lucier’s foundation article,
“Image Compression Through Wavelet Transform Coding” [24], which is reprinted in this compilation. The
absence of JPEG’s block artifacts allows compressed images to be used for automatic fingerprint identification
systemns, and so the United States Federal Bureau of Investigation (FBI) and Great Britain’s Scotland Yard
collaborated to design a custom wavelet and scalar quantization (WSQ) image compression standard [36, 13].
This relied on symmetric biorthogonal wavelets that were verified as suitable for high resolution images
[18, 51], and for which a convenient boundary treatment existed [15].

Subsequently, a more efficient implementation of the biorthogonal wavelet transform used in WSQ was
found by Sweldens [61]. Also, redundancy removers that partitioned wavelet coefficients into hierarchical
subsets called zero-trees [57, 56] were matched to this family of transforms, producing a remarkably simple
and efficient coder. The result became a new standard, called JPEG-2000 [41].

There are other boundary treatments using wavelets on intervals [19], more general transforms such as
wavelet packets [21], lapped orthogonal transforms [48], and multiwavelets [60], plus various methods for
progressive transmission and error correction coding of wavelet-compressed images that are making their
way into proprietary, state-of-the-art coders for pictures and video. It is safe to say that every advantage of
wavelets will be exploited in the fierce competition for better image quality and coding efficiency.

4 Easy Generic “De-Noising”

Digitally sampled signals that vary smoothly with time appear rough and may be hard to detect when
measurement errors are present in each sample. The model of identically distributed independent normal
errors, or “additive Gaussian white noise,” is an extreme case of rough noise that is frequently used in
practice. There are classical digital signal processing algorithms (DSP) to compute Gaussian white noise
power, based on the discrete Fourier transtorm (DFT). With knowledge of the signal, we may design matched
filters in the frequency domain and obtain minimax linear estimators for signal detection [37, 67]

But there are examples where the signal to be detected contains added noise that is correlated in time
from sample to sample. Such noise may be smoother than Gaussian white noise, though still rougher than
the signal. In addition, the signal itself or even its smoothness may be unknown. In these cases, very
complicated estimators have been devised [59].

A much simpler way to build estimators was described in Donoho and Johnstone’s “Adapting to unknown
smoothness by wavelet shrinkage” [28], which is reprinted in this compilation. It followed a number of papers
[25, 26, 27] on the remarkable properties of wavelet coefficient thresholding, the bounded nonlinear operation
of reducing or removing small-amplitude wavelet components of a noisy signal.

In practice, there still remains the problem of setting a threshold for wavelet shrinkage. There is a
universal value that depends on the noise power, and there are techniques to adjust for correlated noise [44].
When the signal to be detected is known, there is the oracle method which selects a threshold to minimize
the estimator variance [20, 16, 23].

Other wavelet transforms, principally the continuous wavelet transform [62], have also found use in
signal estimation and detection. Examples include speech and music [47, 33], NMR spectra [34], and even
gravitational waves [38].



5 Roughness, Volatility, and Turbulence

How do we estimate the roughness of a continuous function? One way is to calculate the Holder exponent
at each point. Jaffard’s seminal 1989 paper “Exposants de Holder en des Points Donnés et Coéfficients
d’Ondelettes” [42], included in this compilation, describes an elegant way to estimate the exponents from
the asymptotic decay of wavelet coefficient amplitudes as scale tends to zero. The slower the decay, the
smaller the exponent and the rougher the function. This fact leads to an elegant proof [35, 43] of Gerver’s
famous result on the almost nowhere differentiability of Riemann’s function [31].

For a more detailed analysis of roughness, we may inquire about the distribution of Holder exponents
over the domain of a function. The singularity spectrum is one way to describe this distribution; it gives
the fractal dimension [49] of domain subsets where the function has a particular Holder exponent. This
spectrum is useful in distinguishing physical phenomena [58], and it can be computed efficiently from time
series using DW'T [54]. The asymptotic behavior of wavelet coefficients can also be used to detect fractional
Brownian motion, or to synthesize examples [30, 1] which are used in mathematical finance [50].

When a theory predicts a certain degree of roughness, wavelet coefficient asymptotics may be used to
test it. Kolmogorov’s famous —5/3 power law for the velocity power spectrum in fully developed turbulence
[45, 46] may be tested this way. We may also compute the singularity spectrum of portions of simulated or
measured flows to determine if they are turbulent or laminar [5, 29, 68], for example.
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