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ABSTRACT 
This paper addresses the problem of estimating, analyz- 
ing and tracking objects moving with spatio-temporal rota- 
tional motion (spin or orbit). It is assumed that the digital 
signals of interest are acquired from a camera and struc- 
tured as digital image sequences. The trajectories in the 
signal are two-dimensional spatial projections in time of mo- 
tion taking place in a three-dimensional space. The purpose 
of this work is to focus on the rotational motion i.e. estimate 
the angular velocity. In natural scenes, rotational motion 
usually composes with translational or accelerated motion 
on a trajectory. This paper shows that trajectory parame- 
ters and rotational motion can be efficiently estimated and 
tracked either simultaneously or separately. The final goal 
of this work is to provide selective reconstructions of moving 
objects of interest. This paper constructs new continuous 
wavelet transforms that can be tuned to both translational 
and rotational motion. The parameters of analysis that are 
taken into account in these rotational wavelet transforms 
are space and time position, velocity, spatial scale, angular 
orientation and angular velocity. The continuous wavelet 
functions are finally discretized for signal processing. The 
link between rotational motion, symmetry and critical sam- 
pling is also presented. Applications are presented with 
tracking and estimation. 

1. INTRODUCTION 
In this paper, we present new spatio-temporal continuous 
wavelet transforms that are tuned to rotational and trans- 
lational motion. These wavelets extend our previous work 
done on the Galilean wavelet transforms that are tuned to 
the velocity. The analysis that we propose in this paper is 
performed according to criteria based on spatial and tempo- 
ral position, angular orientation, velocity, angular velocity 
and spatial scale. The definition of a rotational motion de- 
pends upon the axis around which rotation takes place. If 
the axis is the center of gravity of the object, the motion 
refers to a spin (ball, whirl). If the objet revolves around 
an external axis, the motion refers to an orbit. This paper 
will mainly focus on spinning and translation in digital im- 
age sequences i.e. two-dimensional space and time signals 
acquired by a camera or a planar sensor. Some principles 
about sampling and symmetries will be clearly evidenced in 
this paper from Fourier spectra since the purpose of these 
continuous wavelets is to be discretized to analyze digital 
signals acquired by imaging sensors or radars. 

'This material is based upon work supported in part 
by a grant AFOSR F49620-96-1-0287 and Southwestern Bell 
Foundation. 
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The approach of motion filtering considered in this paper 
differs fundamentally from other techniques that have been 
proposed in the literature such as those based on optical 
flow, pel-recursive, block matching and Bayesian models. 
The continuous wavelet transform provides motion estima- 
tions that are robust not only against image noise and blurr 
but also against motion noise (i.e. jitter) [3], [6] ,  [7] .  More- 
over, as a result of both the spatio-temporal filtering and the 
interpolation wavelet properties, the wavelet technique can 
resolve temporary occlusion problems. It has been demon- 
strated that the wavelet transform behaves as a matched 
filter and performs minimum-mean-square error estimation 
of the motion parameters [7] [6]. 

The study of the rotational motion is part of the har- 
monic oscillator. The study of the translational or linear 
motion belongs to the Galilean wavelet. Translational mo- 
tion composes with the rotational motion to put the har- 
monic oscillator on a trajectory (i.e. spinning on a tra- 
jectory). Fourier analysis shows that both motions keep 
distinct signatures and that trajectories can be built inde- 
pendently from the spinning motion whose estimation can 
be addressed afterwards. A tracking algorithm is eventually 
presented that exploits a Lie algebra for damped harmonic 
oscillator, a Kalman filter, the Galilean and the rotational 
wavelet transforms separately. 

2. ROTATIONAL MOTION AND 

The next five sections are devoted to describe the spatio- 
temporal transformation for the rotational and the trans- 
lational motion respectively. The aim is first to show intu- 
itively that the spectrum of those transformations are signif- 
icantly apart. Consequently, translational motion v' is mea- 
surable independently from the rotational motion 6. Sev- 
eral fundamental consequencies can be deduced from these 
observations in terms of wavelet and signal processing. 

To study the relations of symmetry between space and 
time domain and Fourier domain, let us consider a square- 
shape signal spinning with uniform angular velocity B about 
its center of gravity. The still square shape is defined as 

= 0 otherwise 

SYMMETRIES 

(1) 
xc(Z,t) = 1 -1 5 2(1),2(2) 5 +1 

The rotational transformation reads as 

cos et 
b t  = ( sinet ;21t ) 

The Fourier transform of the rotating square is then 
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(4) 
dt e- iwt  sin [kl  cos B t  + kz sin Bt ]  = / ,  kl cos Bt + k2 sin Bt 

(5) 
sin [ k ~  cos 6t - k1 sin et] 

k2 cos Bt  - ]E1 sin Bt 
X 

where we use - and A for moving signal and Fourier trans- 
form respectively. w and are the temporal and the spatial 
frequencies. If t tends to zero, the Fourier transform is that 
one of the still square with 9 functions. To provide a 
simple representation of the spectrum, let us section ac- 
cording to kz = 0 and expand into series both functions 
sin[z] x x - $, the Fourier transform simplifies as 

where C i s  a calculation constant. This shows the existence 
of one component in the plane w = 0 (in the left term) 
and two components equally distant from the kl-axis (in 
the right term). The distance of these components with the 
plane w = 0 is 4 x 8. If a square is rotating with an angular 
velocity of 6 = 45" per image (i.e. between two consecutive 
image), the spectrum reaches the Shannon sampling bound 
beyond which the spectrum is undergoing aliasing (Figures 
3 4 5). The spin of any symmetrical polygon of 2n edges 
will then reach the bound at 2. 

3. ROTATIONAL MOTION 
The transformation of the rotational motion that has been 
stated in Equation 2 is part of the harmonic oscillator which 
belongs to the Weyl-Heisenberg group [5]. The group ele- 
ment and the matrix representation are defined as 

1 0 eo 

0 0  1 
where 00, 8 and 7 1  E R stand for initial angular orientation, 
angular velocity and time translation respectively. The law 
of composition and the inverse element are defined by the 
corresponding matrix multiplication. The group represen- 
tation T in the temporal Hilbert space of the signal reads 

= {eo,e,-r,} 3 ( o 1 Tl ) (7) 

[T(g)lk](t) = ermeo etet * (t  - 7 1 )  (8) 
where m E R. This representation is unitary, irreducible 
and but not square integrable. Sectioning the group with 
Bo, i.e. loosing the initial angular position, yields a square 
integrable representation then wavelet transforms with rep- 
resentation 

[ ~ ( g ) ~ k ]  ( t )  = e"' Q (t - r1) (9) 
These wavelet transforms are tuned to the angular velocity 
of interest B t .  The harmonic oscillator will be now put into 
motion on a trajectory. 

4. TRANSLATIONAL MOTION 
The spectrum of the translational or linear motion also oc- 
cupies a particular part of the Fourier domain [3], it is lo- 
cated in a plane orthogonal to the velocity vector (5,l) of 
equation w + ik = 0. The wavelet tuned to translational 
motion are also located in this plane, they have been de- 
scribed in [3], [SI, [7]. A simplified version is considered here 
that takes into account spatial scale a E R+\{O}, spatial 

translation b' E R2, temporal translation 7 2 ,  spatial orienta- 
tion Too E SO(2) and velocity 3 E R2. The group element 
reads 

The group representation in the spatio-temporal Hilbert 
space of the signal reads [7] 

This representation is unitary, irreducible and square in- 
tegrable at the expense of considering the group extension 
(to be interpretated as the uncertainty between velocity and 
translation [7]). This generates the family of the Galilean 
wavelets that are tuned to all the local parameters of the 
motion. The parameter of the local spatial orientation that 
is provided in reo allows estimating any local value of B at 
any time; this solves the problem opened in previous section 
after sectioning with BO. 

5. COMPOSING BOTH TRANSFORMATIONS 
To derive the group that takes into account the harmonic 
oscillator on the trajectory, we need to compose both trans- 
formations i.e. 

P !) 
0 1  

0 
1 
0 

This provides the law of composition of a new group with 
representation in space and time domain 

[T(g)@] (2,t)  = a-3 '$ (~~o~r(t9t )S-  Ct - g, t - T) (13) 

These representations are still unitary, irreducible and 
square integrable. These are the spatio-temporal rotational 
continuous wavelet transforms fitting to our analysis pur- 
pose. 

6. ROTATIONAL WAVELET TRANSFORM 
Let the signal subject to analysis be S ( I ,  t )  and be defined in 
the Hilbert space L2(R2 xR, d2Zdt). The wavelet transform 
W[S;  gt], with gt = { g ,  r, 3, a, BO, 0 )  is defined as an inner 
product 

d25dtGgt (5, t )  S (5, t )  

The 
con- 

where the overbar - stands for the complex copjugate. 
wavelet, 9, is a mother wavelet. It must satisfy the 
dition of admissibility calculated from square integrability 
171 
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7. TRACKING OF ROTATIONAL MOTION 
In this section, we develop an algorithm combining Kalman 
filter, rotational and translational wavelet transforms, and 
a dynamical structure (a Lie algebra) for the damped, har- 
monically driven, harmonic oscillator. According to the pre- 
vious sections, the estimation and the tracking may be done 
globally on all the parameters or split into two parts focus- 
ing first on the trajectory and secondly, if there is interest, 
on the spinning motion. That kind of tracking is obtained 
by diagonalizing the prediction matrix. Let the state equa- 
tion of the system be given by 

c(t) = {z ( t ) , v ( t ) ,  cos[wt], s i n [ w t ~ ) ~  

.i;(t+ 7) = etn-ii(t) = e tATi i ( t )  

(14) 

(15) 

The evolution is given by the prediction equation 

where Cl is an operator of the Lie algebra (a subalgebra of 
gZ(4, R) and A is a 4 x 4 matrix obtained from the operator 
R. It can be formulated as 

f 0  -a 0 o \  

we have also 

To yield an interesting closed form of the prediction equa- 
tion that splits translational motion from rotational motion, 
it is desirable to diagonalize the matrix e t A T .  Eventually, 
the calculations lead to  two 2-component relations 

with D1 = diag(exlt,exzt), Dz = diag(eiwt,e-iwt) two di- 
agonal matrices, and 

v = ( 2.’ 1’) , U =  - x2 ) (20) 2 ( -A1 

It is possible to check in 18 that differentiating Z(t  f T )  

yields v’(t + T). The tracking strategy is based on combin- 
ing Kalman filters and wavelet transform. The state of the 
Kalman filter is currently composed of some 14 or all the 
wavelet parameters ([7] for translational case). 

The observation equation also exploits the wavelet trans- 
form as a motion-based extraction tool tuned to the current 
exact state parameters. The CWT captures and isolates the 
selected objects from the scene S to provide a display I, 

I($, T) = < 1s + v > . (21) 
I is the segmented image of the selected object, displayed 
alone at its correct location; S is the original signal under 

analysis, V($, T) is the noise produced by the optical sensors 
and gopt  is the set of optimal parameters corresponding to 
the estimation of state parameters which is performed with 
Morlet wavelets as described in the next section. 

8. MORLET WAVELET AND APPLICATIONS 
The applications presented in this paper are based on Mor- 
let wavelets. An anisotropic Morlet wavelet is admissible 
as an continuous wavelet in the rotational and translational 
family; it defines a non-separable filter 

W.’lt) - - e&z e-i<2 1 CZ> - e - i < ~ ~  I DBo> , - i < x l C R >  

where 2 = (.’,t)T E R2 x R, C is a positive def- 
inite matrix and, D = C-’. For 2 0  + T signals, [. = ( 0 l/e, 0 )] where the e factors intro- 

duce anisotropy in the wavelet shape. Figures 3, 4, 5 
presents three configurations of rotational wavelets: four 
symmetrical Morlet wavelets are considered in the space 
and time domain, and successively put in rotational mo- 
tion, put into velocity and transformed in the Fourier do- 
main where the inner product with signal is taking place. 
Figure 6 presents the detection of scale and angular veloc- 
ity using the square of the modulus of the rotational Morlet 
wavelet. This estimation is performed by integrating over 
the whole image sequence the square modulus of wavelet 
transform at velocity $0 = (-2.7, -0.1) to determine 

l/c, 0 0 

0 0 1/€t 

9. CONCLUSIONS 
This paper has presented a new practical and efficient way 
of estimating and tracking trajectories with new spatio- 
temporal wavelets. The technique is robust against image 
noise, motion jitter and temporary occlusions [3], [6], [7]. 
The motion analysis performed by the wavelet transform 
may be split into two distinct parts: the first estimates 
locations and velocities and tracks the trajectory, the sec- 
ond estimates the angular velocity. The object in motion 
is clearly subject to two distinct motions, a displacement 
and a spinning. This analysis is supported by the Fourier 
signatures of these motions. Some further theoretical work 
about this new wavelet family is going to be presented to 
demonstrate the link between the classical Lie groups, the 
rotation in 2D and 3D, the harmonic oscillator, the wavelet 
representation Kalman filtering and the symmetry prop- 
erties. The work also generalizes the previous works that 
have been done on the Galilean wavelets [3], [6], [7]. Further 
numerical work to be presented will also include selective 
reconstructions of rotating objects. 

REFERENCES 
[l.] D. H. Sattinger, 0. L. Weaver “Lie Groups and Algebras with 
Applications to Physics, Geometry, and Mechanics”, Springer- 
Verlag, 1986. 

[2.] A. 0. Barut and R. Raczka “Theory of Group Representations 
and Applications”, PWN - Polish Scientific Publishers, 1985. 

[3.] J .-P. Leduc “Spatio-Temporal Wavelet Transforms for Digital 
Signal Analysis”, Signal Processing, Elsevier, Vol. 60 (I), pp. 
23-41, July 1997. 

2779 



[4.] 1. M. Gel’fand, R. A. Minlos, and Z. Ya. Shapiro “Representa- 
tion of the Rotation and Lorentz groups and their applications”, 
The Macmillan Company, New York, 1963, part I ,  pp.  1-153. 

[5.] B. Torrksani “Wavelet Associated with Representations of 
the Affine Weyl-Heisenberg group”, Journal of Mathematical 
Physics, Vol. 32, No. 5,  May 1991, pp.  1273-1279. 

[6.] J.-P. Leduc, F. Mujica, R. Murenzi, M. J. S .  Smith “Spatio- 
Temporal Wavelet Transforms for motion tracking”, ICASSP-97, 
Munich, Germany, 20-24 April 1997, Vol. 4 ,  pp.  3013-3017. 

[7.] J.-P. Leduc, F. Mujica, R. Murenzi, and M.  Smith “Spatio- 
temporal Wavelets: a Framework for Motion Estimation and 
Traking”, submitted in IEEE Transactions on Information The- 
ory in October 1997. 

Figure 1. Image 15 in the Caltrain sequence ([256 x 2561 x 
32 images): analysis of the ball which is spinning (four white 
spots), and moving on a quasi-horizontal trajectory: decelera- 
tion from images 1 to 14 followed by acceleration from images 
15 to 32. 

Figure 2. Analysis of the velocities contained in the ball a t  
image 18. The ball is windowed and the square modulus of 
the Galilean wavelet is integrated on the ball domain at  image 
18: two signatures are visible, the two symmetric peaks for 
the rotational motion and a ”domed wall” for the accelerated 
motion. 

-...-.- 
Figure 3. Four symmetrical rotational Morlet wavelet functions 
close to B t  = (7r/4)t, and v‘= { O , O } :  square modulus in plane 
of the ( w , k z )  axes i.e. k ,  = 0. This yields critical temporal 
sampling. 

Figure 4. Four symmetrical rotational Morlet wavelet function 
at  B t  = (n/lO)t, and v’ = { O , O } :  contours of the square 
modulus in plane of the (w,IC,) axes i.e. IC, = 0. This yields 
4 x z/lO on the temporal frequency axis. 

4 .I .I 0 I I 1 
--.--I 

Figure 5. Four symmetrical rotational Morlet wavelet functions 
at  B t  = (7 r /S ) t ,  and v‘ = {l ,O}:  square modulus in plane of 
the (w,k,) axes i.e. k, = 0. 

. $1’ 

Figure 6. Estimation with rotational wavelets of the angular 
velocity and the scale of the rotating ball in caltrain sequence. 
The diagram sketches the square of the modulus of the wavelet 
transform at  U’ = {-2.7,0.1}. The component a t  B = 0 
stands for the non rotating structures. The component a t  B = 
0.045, a = 3.3 is the actual ball contribution which is observed 
rotating of n/2 over 32 images. B = 0.09 is a harmonic. 

-- 
Figure 7. Tracking of the moving ball position in the Caltrain 
sequence with Galilean wavelets. At  image 15, the ball is 
pushed and keeps constant speed. Coordinates decreases as 
a result of the motion steering to the left. 
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