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Abstract 
The  purpose of this paper is  to  develop a motion- 

based segmentation f o r  digital image sequences that 
is  based o n  continuous wavelet transform. Continu- 
ous wavelet transform allows estimating the motion 
parameters o n  all the moving discontinuities, edges 
and boundaries in the image sequence. The impor- 
t an t  fact  an our case is  that this technique provides all 
the information of motion parameter estimates and 
edge locations a t  once without going back and forth 
refining the segmentation and the motion parameter 
estimation. Also, this is  achieved without involving 
any point/block corresponding techniques in our al- 
gorithm. T h e  edges and the motion parameter es- 
t imates are calculated locally o n  small windows or 
pixels in the image planes by maximizing the square 
of the modulus of  the wavelet transform. A clustering 
procedure allows separating all the detected edges into 
clusters of homogeneous motion. Building a ridge- 
skeleton o n  the reconstructed edges in each cluster 
provides the ultimate motion-based segments or par- 
tition. T h e  algorithm was simulated using real traf- 
fic image sequences acquired b y  a mobile camera and 
proved to  be accurate and robust. 

1 Introduction 
In this paper, we present a motion-based segmen- 

tation of image sequences [I] using spatio-temporal 
continuous wavelet transforms [ll]. The goal is to  
partition the image sequence into segments that have 
different motion characteristics and properties. It 
is assumed that the digital signals of interest are 
acquired from a moving camera or a planar sensor 
and structured as digital image sequences. The mo- 
tion studied in the signal are two-dimensional spa- 
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tial projections in time of motion taking place in a 
three-dimensional space. For example in Figures 1 
and 4, the three-dimensional translational motion of 
the cars on the horizontal plane of the road is trans- 
formed in the image sequence into an translational 
and deformational motion. In this case, the defor- 
mational component is an expansion related to  the 
velocity component orthogonal to  the camera. 

The spatio-temporal continuous wavelets that are 
used in this paper are the Galilean wavelets that 
have been described in[ll]. These wavelets be- 
have as matched filters and perform minimum-mean- 
squared-error estimations of velocity, orientation, 
scale, spatio-temporal positions [ll]. They actually 
act upon the signal as a probe (a spatio-temporal 
band-pass filter) that estimates simultaneously the 
accurate edge locations, the orientation and the ve- 
locity up to the related uncertainties of all the mov- 
ing discontinuities in the scene. Therefore, this 
method is not subject to  the classic chicken-and-egg 
problem described in [3] where the algorithm pro- 
ceeds back and forth in between the motion estima- 
tion and the motion-based segmentation. Indeed, 
in our case, both information of motion and edges 
are computed from the wavelet transform simulta- 
neously. The edge location, velocity and orientation 
correspond to the maxima of the squared modulus 
of the continuous wavelet transforms. A clustering 
process is then necessary to perform the region ex- 
traction of all the moving features as maximum re- 
gions satisfying motion-related homogeneity. In this 
paper, we extend the application of the continuous 
wavelet transforms to complex motions simultane- 
ously involving translational and deformational mo- 
tion and moving camera. As consequence, the veloc- 
ities are significantly changing with time and with 
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the position along the feature boundary. Neverthe- 
less, the Galilean wavelet remains quite accurate in 
the determination of all the velocities and edge loca- 
tions. It turns out from this work that the Galilean 
wavelet is a very efficient tool. 

The approach of motion filtering based on contin- 
uous wavelet transforms considered in this paper dif- 
fers fundamentally from other techniques that have 
been proposed in the literature such as those based 
on gradient-based optical flow, block matching, pel- 
recursive, Bayesian model and Markov random field 
(MRF) models[2], [4], [ 5 ] ,  [6], [7]. The continuous 
wavelet transform provides motion estimations that 
are robust not only against image noise and blur but 
also against motion noise (Le. jitter) [ll]. More- 
over, as a result of both the spatio-temporal filtering 
and the interpolation wavelet properties, the wavelet 
technique can resolve temporary occlusion problems. 
The continuous wavelet transform presented in this 
paper are squared integrable Lie group representa- 
tions of the Galilei group. 

Eventually, simulation results are presented on 
real image sequences involving traffic analysis ob- 
served by a moving camera (Figures 1 and 4). Fur- 
ther work to  be presented deals with the analytical 
calculations to  sketch the sensitivity, the selectivity 
and the accuracy of the motion estimation. The un- 
certainties embedded in the signal between transla- 
tion, velocity and orientation are given in [lo], [12]. 

2 General Algorithmic Aspects 
The algorithm is based on three steps without 

feedback. It allows us to derive a motion-based seg- 
mentation in any image plane of the scene. The 
first step consists in applying the continuous wavelet 
transform to estimate the velocity and the edges in 
small neighborhoods. For that purpose, the image 
is partitioned into grids of small square areas on 
which edges are detected and reconstructed and on 
which velocity and orientations are simultaneously 
estimated. The practical size of these square areas 
(blocks or windows) may vary from four by four, two 
by two or even one single pixel. At this stage, we get 
the entire information in the image plane concerning 
all the edge locations with an estimate of orientation 
and velocity. 

The second step consists in clustering and par- 
titioning the images in terms of their motion con- 
tent. This part of the algorithm extracts the moving 
features out of the background. The segmentation 
of interest in our case is not object-based but in- 
stead motion-based to insulate features of coherent 
motion. This further allows classifying the scene in 

terms of its motion content. Hierarchical clustering 
may be achieved when a rank is stated on the motion 
interest. The clustering thresholds are the only pa- 
rameters that need to be adjusted in this algorithm. 
Alternatively, the number of clusters can also be im- 
posed. The clustering defines a partition of windows 
on the image plane where the moving features have 
to  be located. 

The third step consists in locating the moving fea- 
tures within the clusters by building connected ridge 
skeletons in each clustereld windows. Indeed, all the 
edge locations correspond to the locus of maxima of 
the square modulus of the wavelet transform tuned 
to  the optimum motion parameters. 

3 Spatio-temporal Continuous 
Wavelet Transform 

The Galilean wavelet referential transformation is 
given by (!)+ a R ( 4  E)(;) (1) 

0 1  

where the parametys of interest in our case are the 
spatial translation b E R2, the temporal translation 
T E R, the velocity v' E 1R2, the scale u E R+\{O}, 
the orientation E [0,2n). 

Let g = { g , ~ , v ' , u , 8 }  be a group element. The 
group representation in the spatio-temporal Hilbert 
space is: 

where the hat A stands for Fourier transform, i and 
w stand as the spatial and the temporal frequencies, 
the wavelet 9 is a mother wavelet, it must satisfy 
the condition of admissibi.lity calculated from square 
integrability [12]. 

The applications presented in this paper are based 
on Morlet wavelets. An anisotropic Morlet wavelet 
is admissible as a continuous wavelet in the rota- 
tional and translational family. The still 2D+T Mor- 
let wavelet defines a non-separable filter 

+ ( i , W )  = +(2) 
= I d e t ( q i  (e-t(A-Ro)TD(R-A;.o) (3) 

1 -,-&I?~ D&,- +AT 02 

where I? = ( I C ' , W ) ~  E R2 x R, l?~ = (ICOz,koy,wo)T, 
D is a positive definite matrix. For 2 0  + T signals, 

where the E factors intro- 
L \ O O Q / l  

duce anisotropy in the wi5velet shape. 
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The Galilean wavelet transform W[s;  g] of the sig- 
nal s(2, t ) ,  with group element g is defined as an inner 
product that is computed in the Fourier domain. It 
is defined in [ll] as 

Wb;gl = e2 < %,T,8,a,e I s^ > 
- - c;1'2 / d2Zdw[T,tb] (Z, w )  5 (Z, 4 4 )  

R ~ X R  

where the overbar -stands for the complex conjugate. 

4 Motion Estimation and Image Re- 
construct ion 

The image plane is divided into a grid of small 
windows or square blocks whose size is four by four, 
two by two or one pixel according to the requested 
accuracy. Let Bij be the ( i , j ) th  block on the nth 
image plane r = tn at  a given scale a = a,, the 
estimated velocity and orientation are obtained as 

(? ,e*)  = yy I < %,7=tn,v',a=a,,eIs > l 2  
k B i ,  

(5) 
i.e. by summing the square modulus of the wavelet 
transform (computed on the whole sequence) on the 
small windows Bij of interest at image r = t,. 

To reconstruct the edges in the windows Bij of 
interest at image r = t,, the intensities I(b) of the 
wavelet transform of the optimum velocity and orien- 
tation are stored inside the windows Bij ,  this means 

Performing the reconstruction on all the blocks of 
the image leads to a reconstructed image. Examples 
are provided in Figures 2 and 5. 

5 Motion-based Clustering 
In this step, we cluster the space of the opti- 

mum parameters derived from the previous section. 
This space is made of the optimum velocities and 
the coordinates of the blocks in the image plane. 
Scale is fixed and orientation is optimized with ve- 
locity. A preliminary procedure consists in remov- 
ing all the blocks with small reconstructed image 
intensities below a threshold. These blocks do not 
contain any significant edges and any useful veloc- 
ity information. Consequently, our clustering con- 
sJsts in partitioning the four-dimensional space of 
b = (z, y), v" = (v:, v;). This procedure is performed 
in each image plane Le. at  any time r = t, on the 
scene. According to the Huyghen's principle of de- 
composing the variance, we look for the minimum set 
of clusters that maximizes the internal cluster homo- 
geneity and the external cluster heterogeneity. 

The partition obtained by the clustering locates 
the areas of the features moving with similar motion 
properties as shown in Figure 3. 

6 Motion-based Segmentation 
The motion-based segmentation operates on the 

areas defined by the clustering procedure to extract 
location of the moving feature contours. In each 
cluster, the contours of the moving feature corre- 
spond to the ridges of intensity defined on the re- 
constructed images obtained in Section (4) Equation 
(6). The edges obtained from the reconstructed im- 
age are blurred as a result of the band-pass filtering 
effect of the wavelet[8],[9]. To detect the exact loca- 
tion of those edges, we introduce a sliding window 
technique. The sliding direction is that computed 
from the optimum local orientation, 8*, during the 
wavelet analysis and we record the maximum value 
of the intensity inside the sliding window. This leads 
to isolating the different segments in motion. The 
exact boundaries of two moving features have been 
processed in Figure 6 .  Iterating the procedure of the 
motion-based segmentation on each image plane of 
the scene allows us to build the motion tube corre- 
sponding to each car separately. The tube is then 
a segment of coherent motion that spans over the 
scene and lasts until the feature leaves the conic field 
of visibility of the sensor plane. Building these seg- 
ments allows performing further motion-adapted sig- 
nal processing in the tube: temporal interpolation, 
de-noising, predicting or coding. 

7 Analysis and Calculation 
Even in case of signals with complex motion, ve- 

locity Cis still constant within small neigborhoods of 
time, motion is locally translational in the first order 
of the Taylor expansion. Let A be a short period 
around time r ,  we show that the Fourier transform 
is still centered on the exact velocity plane. This 
shows the robustness of the Galilean wavelet in per- 
forming motion estimation at any r .  The accuracy 
of the estimation is related to the sampling density. 
Let 

z' = x-v , ( t  -T) 

y' = y - v y ( t - T )  
t' = t - T  

Let s(Z, t )  be the 2D+T still signal, and s"(2, t )  be its 
moving version. Then the Fourier ;(& w )  
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= J J J-’,” dz’dy‘dt‘ S ( d ,  y‘) [u( t ‘  + 4) - u(t’ - $)I 
e--i(k. ( z f + v s t O + k y ( d + v y t f  ) + w ( t ’ + r ) )  

e - i w r  I I-’,” d$dyr s(21, y’) e - i ( k = X f + k ~ d )  

[I-’: dt‘ [u(t’ + $) - u(tl - $)] e - i [ ( v = k * + v ~ k ~ + w ) t  

- - 

= 3(k , ,  k , )  . A .  Sa(+) e-iwr 
(7) 

where w’ = v,k, + vyky + w ,  Sa(%) is a sinc func- 
tion defined by Sa(s) = q. Hence, the Fourier 
transform is centered still around w’ = 0, which cor- 
responds to the velocity plane. When A -+ 0, A . 

If we assume that both camera and tracked ob- 
ject are moving at constant velocity on a horizontal 
plane, then the component of the relative velocity or- 
thogonal to the sensor plane transforms in the image 
sequence into an initial scale and expansion as v, + 
a(t)  = ao(l+‘& s k t k )  and the twoother components 
of the relative velocity v’ = (v,, vY) are captured in 
the scene up to a scaling factor. The sensor field of 
visibility is a cone. Basic calculations from projec- 
tive geometry show that the scale at time t = 0 is 
a0 = f- i.e. the ratio of the visible width of the 
rigid object and the diameter of the visibility cone 
at the initial location. At time t = t,, the scale 

The signal captured by the camera; from the rigid 
object in motion has the form s(Z , t‘) with Z = 
ao(l+Ck sktk)Z-i7t-cand t f  = t--7. The Galilean 
wavelet matches to (and estimates) the first order of 
the temporal Taylor expansion i.e. to the apparent 

S a ( Y )  + S(w’). 

1 1s a,  = aol-(at-)  = ao(1 + f t n  + + ... ). 

edge velocity v” 
= a o ( 3  + CE 

= ao(si + CLl(k + l)sk+lti)Z+ ii 
:, (L + 1)(9)~++’t‘)~ + v’ a function 

of position and time that corresponds to the experi- 
mental observations. The same reasoning applies for 
objects moving with any translational and/or rota- 
tional motion involving constant or accelerated com- 
ponents of motion. Similarly, accelerated wavelet 
transforms defined in [lo] will match to (and esti- 
mate) the apparent accelerations corresponding to 
the higher orders of temporal Taylor expansion. 

8 Conclusions 
In this paper, we are developing a new method to 

achieve motion-based segmentation of real images. 
The method is original in the sense that it is based 
on a spatio-temporal continuous wavelets that pro- 
vide velocity, location and orientation of all the dis- 
continuities embedded in the digital scene simulta- 
neously. The technique has been shown to be robust 
against image noise, motion jitter and temporary oc- 
clusion [12]. Further studies will develop projective 

continuous wavelet transforms that optimally esti- 
mate, track, segment and reconstruct moving object 
according to their actual motion parameters in 3- 
D+T made of translational and rotational compo- 
nents. 
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Figure 1: The 15th image of the traffic image se- 
q uences. q uences . 

Figure 4: The 20th image of the trafFic image se- 

Figure 2: The reconstructed 15th image for the se- 
quences according to  Equation (6). 

Figure 5: The reconstructed 20th image for the se- 
quences according to  Equation (6). 

Figure 3: The clustering of the 20th image according 
to  velocity and position. 

Figure 6: The exact boundaries for both moving cars 
in the 20th image. 
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