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Abstract— In the perspective of optimizing the control and Normally a high number of measurements are generated
operation of large scale process plants, it is important to étect  from a large-scale power/process plant. Meaning that mea-
and to locate oscillations in the plants. This paper presest g rements are available from different places in the plant.
a sc_heme for detecting and localizing multiple oscillatioa in It miaht b ferable to b th illation detecti
multiple measurements from such a large-scale power plant. mig . € preterable 10 base the oscillation detec '9” on
The scheme is based on a Karhunen-Live analysis of the the entire set of measurements or a subset of these, instead
data from the plant. The proposed scheme is subsequently of analyzing these measurement signals independently, as
tested on two sets of data: a set of synthetic data and a the previous methods suggest. The approach has a number
set of data from a coal-fired power plant. In both cases the 4 aqyantages. More than one oscillation might occur at a
scheme detects the beginning of the oscillation within onla . . h .
few samples. In addition the oscillation localization has lso given t'me_'n a large'scale pr_oce_ss plant. However, the rati
shown its potential by localizing the oscillations in both @ta  Of energy in the different oscillations can be assumed to be
sets. non constant in the different measurements, due to differen

dynamic behavior of the parts of the plant. This means
I. INTRODUCTION that it is possible to separate the different oscillatiortss

can also be used to localize the signal in which the given

'T‘ optimizing Iarge-sc_alt_e [Process pla_nts the focus ha%scillations are occurring and suggest candidates for the
mainly been put on optimizing the nominal performance. -
cause of the oscillation.

then the sec_ond step is to dEtEf\Ct and accommodate NON Another way to extract multiple signal trends (such
?r:egscgega?gfres.gggis|;iltmiz '2 ::rl)eal-pfli?:g A:wg)r(ar?apr:?as oscillations) from a set of signals is to compute a
These non—intgnded bephaviors can have mgn dif?ere I§arhunen-Loéve basis of the data set. In this terminology
o many ignal trends and oscillations are strongly related, in way
appearances. One of these behaviors is oscillating elsmen hat an oscillation is a periodic signal trend. Assume that
Such non-intended oscillations in large-scale procesgpla : : '
the analysis of the signals are performed on sequences

can be problematic. These can be a result of a failure in as samples which maximal contain a few periods of the
part of the plant which can spread out to the entire plant. It

; : . - "oscillation. Consequently signal trends and oscillaticaus
is as consequence highly important to detect such oscill 9 ysig

) . S : %e assumed to be non-separable.
tions. Unfortunately, detection of the_se OSC'”at'OUS%aB The general trends in the signal set will be approximated
easy as it seems. The measured signals contain numeroys

. . . S only a few most approximating vectors in the Karhunen-
other signals parts than just the possible oscillationsieso y ony bp 9

examples on other non-expected part signal components alr'é)éve basis, see [9] and [10]. In [11] and [12] a method
xamp . P P '9 P is” developed for oscillation localization by analyzing the
noise and disturbances.

L . measurements shifted to the frequency basis. This is done
The research in this area has been focused on time and/BE\sed on the assumption that an oscillation has been

Ztatll_stlc b_aﬁed OSC'”‘?‘“Ifn detlecyonf methqu. IMOSt oit i detected. In this work the principal component analysis is
€aling with sequentially ana ysSIS of one signal. In [1]_(zer used, which is method strongly related to the Karhunen-
crossings are used to detect oscillations, by integratieg t | 5 o pasis analysis

absolute control error of a number of intervals between zero However, using a.Karhunen-Loéve basis of the time

crossings. A method based on the auto-correlation funCtio'aomain signals can be used to detect the oscillations as

was presented in [2]. All these methods analyze the dif'w Il as localize the oscillation. The localization is done b

Ierzntt mteasulrtgrrents I_ndtependﬁ'ntly, and are not de3|g|;n<ﬁ ding a set of candidate signals representing the possible

° ehec muf lpde tos<t:_| a 'OnTt'. | oweyﬁr,t_some E'T)(":";np‘lesroots of the oscillation. This method will succeed if the

05n S% emgs7or etecting multiple oscillations are: [3], [ oscillations are the dominating components in the analyzed

[51. (6] and [7]. signals. l.e. the remaining signal components can either be
. : _ neglected or are not repeated through the signals. This idea
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localizing oscillating elements. The oscillation detenti minimizes the average linear approximation error of the
and localization schemes are subsequently applied to wectors in the set, [9]. Another advantage of the Karhunen-
couple of examples. In the end a conclusion is drawn. Loéve basis is that it approximates the general structures
of all the signals inY with just a few basis vectors, see
o ) [9] and [10] and [13].

The system in mind in this paper, is a large-scale power The Karhunen-Loéve basis is computed basedYan
plant, where oscillations are required to be detectedtjrec it of all it is assumed that the row vectors ¥i has
from the sensors signals measured at different locationgg, mean, if not a preliminary step is introduced in order

at the plant. However, the performance of the oscillationg ffill that assumption. The Karhunen-Loéve basig
detection is highly decreased if the signals contain tranggn pe defined as

sients like step response etc. This means that in most cases
it is preferable to feed the oscillation detection algarith K={v1, - ,om}, 3)

with residuals of the measurements and estimated sens%r is an orthonormal basis of eigenvectors of the matrix

values. In _order to .reach the. potential of this algpnthm,YYT’ ordered in such a way that, is associated with

the detection algorithm requires a number of different ; o )
L tge eigenvalue\,,, and\; > \; for i > j. A matrix of the

measurements. In which it is assumed that the repeate0 : =7 .

. . ) . basis vectors can following be defined as

signal components from the signal is the trends (oscilla-

tions) in the signal, which the algorithm shall detect. Rhas Ky = [v1,- ,vm] . (4)

delays between these measured signals are not considered . o )

in this work. It is also assumed that the remaining signafn Other words the Karhunen-Loéve basis is the eigenvec-

components are disturbances and noise. The time sequend@5S Of the autocorrelation of. The eigenvalues of the

of these are not repeated in the different sensor signais. Thautocorrelation takes the values of the variances of the

Il. SYSTEM DESCRIPTION

means that the system can be described by (1). related Karhunen-Loéve basis vectors. The approximating
properties of the Karhunen-Loéve basis vectors are sorted

yln] = Z Yo.[n] + nm[n], (1)  inincreasing or(_jer, that means that if the ba_S|s c_onsms_of

0T vectors the basis vectgris the most approximating basis

L ) vector, and the corresponding eigenvector has the largest
wherey[n] € R" is a vector of the analyzed signal at the \,5)ye. In addition the general structures in all the vectors

discrete timen, k is the number of sampled and analyzed;, v re represented by only a few basis vectors. The

measurements;, ;[n] is thei'th vector of oscillating signal  emaining basis vectors represent the signal parts which

component,o 2. Yoiln] is the sum of vectors of the are not general foly, i.e. noise in the signal, etc.
<i<<m

oscillation signal components, amgh[n] is a vector of the A high eigenvalue means that the corresponding eigen-
remaining signal components, which are uncorrelated andector supports a large part of the energy of the row
are assumed to be normal distributed with zero mean an#ectors in the matrixy'. This means that the basis vectors
the variancel. (eigenvectors) which approximate general trends in the
In the following the measured data will be analyzed asdata set have eigenvalues of high numerical value, and
a block of data, with data sampled at timeas the newest the remaining basis vectors which support the noise or
elements. If the length of the data block is denatédthe ~ non-repeated signal components have eigenvalues of low

data blockY[n] can be defined as in (2). numerical values. This can be illustrated by Example I11.1.
pn—M+1 pn—M+2 - n Example 1ll.1 Given a matrix of data with 20 measure-
yaln — M +1] y2ln—M+2] - yo[n] ments, each with 10 samples. 15 of the measurements
Yi[n| = : J contain only noise, the remaining 5 measurements contain
yeln — M + 1] yk[n_'MJrQ] e yln) as well an oscillation of a given frequency. Applying a

Karhunen-L&ve analysis on this matrix of data will result
in which all the ¥ measurement are stored for the lastin: one basis vector supporting the general trend, which
M samples. l.e. the first row contains tdé most recent is the oscillation, and the corresponding eigenvalue would
samples of measurement 1, the second row containafthe take a high numerical value. All the remaining eigenvectors
most recent samples of measurement 2, etc. would support the noise in the data matrix and their related

N eigenvalues would take low numerical values.
I1l. K ARHUNEN-LOEVE ANALYSIS

The core of this algorithm is the Karhunen-Loéve anal- The opposite situation is illustrated by Example I11.2.
ysis which consists of computing a Karhunen-Loéve basis
and its related eigenvalues. Given a matik, of £k row  Example Ill.2 Given matrix of data with 20 measure-
vectors inR™, wherek > m, the Karhunen-Loéve basis ments, each with 10 samples. All the measurement vectors



contain only noise. An applied Karhunenéwe analysis and hereby corresponds to the second last elemeXitin
of this matrix would result in basis vectors supporting theetc.
noise and eigenvalues would be close in numerical values This means that the number of oscillations in the data
to each other. can be found by stepping back througin] as long as
the elements in\[n] are higher than a threshokl The
IV. METHOD thresholdx also need to be determined based on the appli-
By the definition of the Karhunen-Loéve basis, it would cation. This can be formulated as an algorithm, in which
approximate oscillations and other signal trends with onlyj is @ counting variableNN, is the number of oscillations
a few bases vectors, given the basis supporting the trends the data, and\,,[n] denotes then'th element inA[n].
in the sampled data set. The algorithm for counting the number of oscillations in
. . the data can be written as
A. Oscillation Detection
A Karhunen-Loeve analysis is subsequently performe __00
. ; - 0=
on the data matrixY[n|, meaning that the analysis is WHILE A, i[n] > 5,
performed on thelM/ most recent samples of each of the i1 J
measurements. The outcome of this is a basis contained ?\7_—] X] 1
in the matrix K, [n], and A[n] which is a vector of the o=HNot
. . X . END.
eigenvalues corresponding to basis vector¥inn]. A\[n]
contains information of the occurrence of oscillations or
other general signal trends i¥[n]. A way to transform The ordering ofA[n] automatically gives the basis vec-
this information into a scheme for detecting oscillationstors supporting the oscillations. The oscillations in tlaad
is to compare the variance of[n] with a thresholde.  are supported by théV, last column vectors inK [n].
The variance of\[n] will depend on the number of high The set of basis vectors supporting the oscillation can be
numerical valued elements ik[n]. |.e. the occurrence of extracted to those shown in (6).
one or more oscillations or other general trendsYim]
will result in a variance of\[n] which is higher thare, Vm—not1[n], -+, vim[nl} 6)
whereas the variance offn] will be lower thane in the These vectors supporting the oscillations in the plant,
case of none oscillations in the data matrix, since the gnergmight be very useful for the operators and engineers,
in the signals will be supported by numerous basis vectorgyho have to handle the oscillations in the system. Since
resulting in eigenvalues close to each other in numericalhese vectors show the oscillations, the operator might
values. As in Example 1.2, the variance will Consequentl)/get a better understanding of the probiem Causing the
be close to zeroe depends on the number of oscillations gscillations. Additional signal analyzes can help lodaliz
in the signals, meaning it is needed to adapt the thresholdome candidates as origin of the oscillation, but that is not
to the given application. This means that a detection can bgjways enough for finding the cause of oscillation.
formulated like in (5).0q[n] is a detection signal, which £ g. the problem might be localized to be in a given
takes the value 1 if an oscillation is detected and the Valu%ump’ but does not say anything about the cause of the

0 if not. oscillation in the pump. However, seeing the basis vector
. supporting the oscillation might help the operators and
Odln] = 1 if var(A[n]) >, _ (5) engineers understanding the cause of the problem in this
0 ifvar(\[n]) <e given pump.
B. Extraction the oscillations as well as the number of C. Localization of oscillations
oscillations The oscillations can be located in the measurements by
In terms of finding the number of oscillations in the computing the inner product of each vector of measure-
data matrixY[n] the attention is again addressedX]. ments with the basis vectors supporting the oscillations,
The elements in\[n] would as stated previously have see (7).
high numerical values if their corresponding eigenvectors Co=Y [meNoH[n] vm[n]] 7 @)

contain a general trend from the data matrix. The task

can be done counting the number of elements\jn]  whereC, is a matrix of the oscillation coefficients. The
which takes high numerical value. In the vectgn| the  row vectors inC, contain the different coefficients for each
elements are sorted in increasing order. Meaning that themeasurement.

most approximating vector is the last one and hereby High values of these inner products mean that oscilla-
corresponds to the last element Njn], and the second tions are present in the given signal. However, due to gains
most approximating basis vector is the second last onend feedback loops in the plant, the highest coefficient of a
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given oscillation does not mean that origin of the oscitiati
is at the location of the corresponding measurement.
A way to use these coefficients of oscillations in the
given measurement signal, is to take out a number of signals
with the largest coefficients and view these as candidates
causing the oscillation. The next step is to use knowledge
of the plant to rule out some candidates for causing the
oscillation. It could be to determine if any of the candidate
depend directly one of the other candidates etc.
This means that localization scheme is given as follows
1) Compute the oscillation coefficientss, = Y -
[Ki[n]{s;m — No+1} -+ Ki[n]{:,m}].

2) For each oscillation find the measurements with the
highest coefficients by sorting the column vectors of -5, 0 70 - o - 00
Co. Samples [n]

3) Eliminate elements in the candidate groups baseGig. 1. Plot of the synthetic measurement data. The starthef t
on knowledge of the plant. E.g. if oscillations are oscillations at sample 101 is slightly visible.
detected in both part A and B where B directly
depends on A, then eliminate B from the candidate

Synthetic measurements
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This algorithm leads to a group of candidates of the origin . by 3 * o ot
of each oscillation inY[n]. 1} EQEE Ut oy ggiﬁg Sh
; o MY ok ag%% R Oh
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Before the detection and localization algorithm is applied 3 } o %ﬁ* ¥ ;ﬁ* s;gg;&ggg* * j,;ﬁ%% X
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to the data matrix. Each measurement (in each row vectors), £ ® Rt T R v S A i}fi
shall be preprocessed in order to achieve zero mean of~ * ff * : o L
L ¥ :

the row vectors, and normalized by the maximum possible
value of each measurement. The first requirement is due .|
to the Karhunen-Loéve analysis, the second is in order to

localize the root of the oscillation. 2f %
V. EXAMPLES 0 ;

In this section the oscillation detection method is applied

to two data sets: a set of synthetic data and a set of daﬁg. 2. Plot of the variance of[n], for the synthetic data. It can be seen

from a coal-fired power plant. that the oscillations are detected just a few samples afeeoscillations
start, since the oscillations are detected at sample 106.

I I I I
0 100 200 300 400 500 600
Samples [n]

A. Detecting harmonics in random noise
The data set consists of 40 vectors each of 600 sam-
ples. One sine signal (2.2 Hz sampled at 16Hz) signal is The two basis vectors supporting the two oscillations in
occurring in the first 10 vectors and another sine signathe data set can be seen in Fig. 3. From this plot the sine
(3.1 Hz sampled again at 16 Hz) is occurring in the nextsignals are easily identified. l.e. the algorithm can detect
10 vectors. All these oscillations have different amplésd these multiple oscillations.
Random noise added to all the elements in the data matrix. The localization algorithm was tested as well on this
Both oscillations start at sample 101 and they reach theidata set, and the result was clear. The algorithm sorted the
maximal amplitude at sample 150, see Fig. 1. measurement correct such that the 10 measurement vectors
The detection algorithm is subsequently applied to thiscontaining the first sine signal were grouped in one group,
set of synthetic data. In this detection the window lengththe 10 measurement vectors containing the second sine
has been set to 14. (Notice it is the window length, whichsignal was as well grouped in another group.
is required to be smaller than the number of measurements ) o ) )
and not the length of the entire data block). The variancé®: Detecting oscillations in data from a coal-fired power
of An] for this given data set can be seen in Fig. 2. It canP!ant
be seen that the oscillations are detected just a few samplesin this example a data set from a coal-fired power plant
after the beginning of the oscillations. The oscillatioms a is used. An oscillation starts approximately at sample 90,
detected at sample 106. somewhere in a coal mill in the plant, 85 measurements
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Fig. 3. Plot of the two basis vectors supporting the osaitatwhen the ~ Fig. 5. Plot of the variance of for the power plant data. It can be seen
oscillations are occurring at their maximum strength. that the oscillation is detected at sample 94.
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Fig. 4. Plot of the measurement data from a coal fired powentpla  Fig. 6.  Plot of the basis vector supporting the oscillation the
measurements.

are provided from different parts of the plant. The data set
is prepared for the oscillation detection by removing mearpf the plant is oscillating.
values of the data vectors and scale each data signal by theThe next step is to locate the cause of the oscillation.
maximal value of the corresponding sensor. The data sefhe oscillating coefficients are shown in increasing order
can be seen in Fig. 4. in Fig. 7, together with measurement numbers. From the
The oscillation detection scheme is subsequently appliefigure it can be seen that there is one clear candidate for the
to the data set by using data window lengths of 14 samplesause of the oscillation. The measurement with the largest
l.e. M = 14. The achieved variance of can be seen in oscillation coefficient, is a power measurement of the motor
Fig. 5. From this plot it can be seen that the oscillation isin one of the coal mills which pulverize the coal before it is
detected at sample 94 this is only a few samples later thablown into the furnace in the power plant. This is the same
where the oscillations start to raise in the signals. Its®al conclusion given by a more detailed analysis and physical
worth mentioning that the oscillation detection algorithm inspection performed on the power plant in order to find
does not give any false detection. In the meaning that it doethe root of the oscillation.
not give indications of an oscillation at time locations e This example shows the potential of this algorithm to
no oscillations are occurring. The basis vector supportingletect oscillation in a data set containing measured data
the oscillation at sample 200 can be seen in Fig. 6. Thifrom a power plant, and it can locate a number of candi-
figure shows a harmonic signal, which indicates that a partiates for being the cause of the oscillation. Even though
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