
Karhunen-Loéve (PCA) based detection of multiple oscillations in multiple measurement signals
from large-scale process plants

P. F. Odgaard and M. V. Wickerhauser

Abstract— In the perspective of optimizing the control and
operation of large scale process plants, it is important to detect
and to locate oscillations in the plants. This paper presents
a scheme for detecting and localizing multiple oscillations in
multiple measurements from such a large-scale power plant.
The scheme is based on a Karhunen-Lòeve analysis of the
data from the plant. The proposed scheme is subsequently
tested on two sets of data: a set of synthetic data and a
set of data from a coal-fired power plant. In both cases the
scheme detects the beginning of the oscillation within onlya
few samples. In addition the oscillation localization has also
shown its potential by localizing the oscillations in both data
sets.

I. I NTRODUCTION

In optimizing large-scale process plants the focus has
mainly been put on optimizing the nominal performance.
Often the second step is to detect and accommodate non-
intend behavior such as faults in the plant. An example
on such a large-scale-plant is a coal-fired power plant.
These non-intended behaviors can have many different
appearances. One of these behaviors is oscillating elements.
Such non-intended oscillations in large-scale process plants
can be problematic. These can be a result of a failure in a
part of the plant which can spread out to the entire plant. It
is as consequence highly important to detect such oscilla-
tions. Unfortunately, detection of these oscillations is not as
easy as it seems. The measured signals contain numerous
other signals parts than just the possible oscillations, some
examples on other non-expected part signal components are
noise and disturbances.

The research in this area has been focused on time and/or
statistic based oscillation detection methods. Most of it is
dealing with sequentially analysis of one signal. In [1] zero
crossings are used to detect oscillations, by integrating the
absolute control error of a number of intervals between zero
crossings. A method based on the auto-correlation function
was presented in [2]. All these methods analyze the dif-
ferent measurements independently, and are not designed
to detect multiple oscillations. However, some examples
on schemes for detecting multiple oscillations are: [3], [4],
[5], [6] and [7].
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Normally a high number of measurements are generated
from a large-scale power/process plant. Meaning that mea-
surements are available from different places in the plant.
It might be preferable to base the oscillation detection on
the entire set of measurements or a subset of these, instead
of analyzing these measurement signals independently, as
the previous methods suggest. The approach has a number
of advantages. More than one oscillation might occur at a
given time in a large-scale process plant. However, the ratio
of energy in the different oscillations can be assumed to be
non constant in the different measurements, due to different
dynamic behavior of the parts of the plant. This means
that it is possible to separate the different oscillations.This
can also be used to localize the signal in which the given
oscillations are occurring and suggest candidates for the
cause of the oscillation.

Another way to extract multiple signal trends (such
as oscillations) from a set of signals is to compute a
Karhunen-Loève basis of the data set. In this terminology
signal trends and oscillations are strongly related, in way
that an oscillation is a periodic signal trend. Assume that
the analysis of the signals are performed on sequences
of samples which maximal contain a few periods of the
oscillation. Consequently signal trends and oscillationscan
be assumed to be non-separable.

The general trends in the signal set will be approximated
by only a few most approximating vectors in the Karhunen-
Loève basis, see [9] and [10]. In [11] and [12] a method
is developed for oscillation localization by analyzing the
measurements shifted to the frequency basis. This is done
based on the assumption that an oscillation has been
detected. In this work the principal component analysis is
used, which is method strongly related to the Karhunen-
Loève basis analysis.

However, using a Karhunen-Loève basis of the time
domain signals can be used to detect the oscillations as
well as localize the oscillation. The localization is done by
finding a set of candidate signals representing the possible
roots of the oscillation. This method will succeed if the
oscillations are the dominating components in the analyzed
signals. I.e. the remaining signal components can either be
neglected or are not repeated through the signals. This idea
is similar to dynamic PCA, e.g. see [8].

In this paper the plant is first defined and described. The
subsequent section describes the Karhunen-Loève basis and
the computation of it. This leads to an oscillation detection
scheme presented in this paper, as well as a scheme for



localizing oscillating elements. The oscillation detection
and localization schemes are subsequently applied to a
couple of examples. In the end a conclusion is drawn.

II. SYSTEM DESCRIPTION

The system in mind in this paper, is a large-scale power
plant, where oscillations are required to be detected directly
from the sensors signals measured at different locations
at the plant. However, the performance of the oscillation
detection is highly decreased if the signals contain tran-
sients like step response etc. This means that in most cases
it is preferable to feed the oscillation detection algorithm
with residuals of the measurements and estimated sensor
values. In order to reach the potential of this algorithm,
the detection algorithm requires a number of different
measurements. In which it is assumed that the repeated
signal components from the signal is the trends (oscilla-
tions) in the signal, which the algorithm shall detect. Phase
delays between these measured signals are not considered
in this work. It is also assumed that the remaining signal
components are disturbances and noise. The time sequences
of these are not repeated in the different sensor signals. This
means that the system can be described by (1).

y[n] =
∑

0<i<m

yo,i[n] + nm[n], (1)

wherey[n] ∈ Rk is a vector of the analyzed signal at the
discrete timen, k is the number of sampled and analyzed
measurements,yo,i[n] is thei’th vector of oscillating signal
component,

∑

0<i<m

yo,i[n] is the sum of vectors of the

oscillation signal components, andnm[n] is a vector of the
remaining signal components, which are uncorrelated and
are assumed to be normal distributed with zero mean and
the varianced.

In the following the measured data will be analyzed as
a block of data, with data sampled at timen as the newest
elements. If the length of the data block is denotedM , the
data blockY[n] can be defined as in (2).

Y[n] =









y1[n − M + 1] y1[n − M + 2] · · · y1[n]
y2[n − M + 1] y2[n − M + 2] · · · y2[n]

...
yk[n − M + 1] yk[n − M + 2] · · · yk[n]









,

(2)
in which all the k measurement are stored for the last
M samples. I.e. the first row contains theM most recent
samples of measurement 1, the second row contains theM

most recent samples of measurement 2, etc.

III. K ARHUNEN-LOÈVE ANALYSIS

The core of this algorithm is the Karhunen-Loève anal-
ysis which consists of computing a Karhunen-Loève basis
and its related eigenvalues. Given a matrix,Y, of k row
vectors inRm, wherek > m, the Karhunen-Loève basis

minimizes the average linear approximation error of the
vectors in the set, [9]. Another advantage of the Karhunen-
Loève basis is that it approximates the general structures
of all the signals inY with just a few basis vectors, see
[9] and [10] and [13].

The Karhunen-Loève basis is computed based onY.
First of all it is assumed that the row vectors inY has
zero mean, if not a preliminary step is introduced in order
to fulfill that assumption. The Karhunen-Loève basis,K,
can be defined as

K = {v1, · · · , vm}, (3)

K is an orthonormal basis of eigenvectors of the matrix
YYT , ordered in such a way thatvn is associated with
the eigenvalueλn, andλi ≥ λj for i > j. A matrix of the
basis vectors can following be defined as

KL =
[

v1, · · · , vm

]

. (4)

In other words the Karhunen-Loève basis is the eigenvec-
tors of the autocorrelation ofY. The eigenvalues of the
autocorrelation takes the values of the variances of the
related Karhunen-Loève basis vectors. The approximating
properties of the Karhunen-Loève basis vectors are sorted
in increasing order, that means that if the basis consists ofp

vectors the basis vectorp is the most approximating basis
vector, and the corresponding eigenvector has the largest
value. In addition the general structures in all the vectors
in Y are represented by only a few basis vectors. The
remaining basis vectors represent the signal parts which
are not general forY, i.e. noise in the signal, etc.

A high eigenvalue means that the corresponding eigen-
vector supports a large part of the energy of the row
vectors in the matrixY. This means that the basis vectors
(eigenvectors) which approximate general trends in the
data set have eigenvalues of high numerical value, and
the remaining basis vectors which support the noise or
non-repeated signal components have eigenvalues of low
numerical values. This can be illustrated by Example III.1.

Example III.1 Given a matrix of data with 20 measure-
ments, each with 10 samples. 15 of the measurements
contain only noise, the remaining 5 measurements contain
as well an oscillation of a given frequency. Applying a
Karhunen-Lòeve analysis on this matrix of data will result
in: one basis vector supporting the general trend, which
is the oscillation, and the corresponding eigenvalue would
take a high numerical value. All the remaining eigenvectors
would support the noise in the data matrix and their related
eigenvalues would take low numerical values.

The opposite situation is illustrated by Example III.2.

Example III.2 Given matrix of data with 20 measure-
ments, each with 10 samples. All the measurement vectors



contain only noise. An applied Karhunen Loève analysis
of this matrix would result in basis vectors supporting the
noise and eigenvalues would be close in numerical values
to each other.

IV. M ETHOD

By the definition of the Karhunen-Loève basis, it would
approximate oscillations and other signal trends with only
a few bases vectors, given the basis supporting the trends
in the sampled data set.

A. Oscillation Detection

A Karhunen-Loève analysis is subsequently performed
on the data matrixY[n], meaning that the analysis is
performed on theM most recent samples of each of the
measurements. The outcome of this is a basis contained
in the matrix KL [n], and λ[n] which is a vector of the
eigenvalues corresponding to basis vectors inKL [n]. λ[n]
contains information of the occurrence of oscillations or
other general signal trends inY[n]. A way to transform
this information into a scheme for detecting oscillations
is to compare the variance ofλ[n] with a thresholdǫ.
The variance ofλ[n] will depend on the number of high
numerical valued elements inλ[n]. I.e. the occurrence of
one or more oscillations or other general trends inY[n]
will result in a variance ofλ[n] which is higher thanǫ,
whereas the variance ofλ[n] will be lower thanǫ in the
case of none oscillations in the data matrix, since the energy
in the signals will be supported by numerous basis vectors
resulting in eigenvalues close to each other in numerical
values. As in Example III.2, the variance will consequently
be close to zero.ǫ depends on the number of oscillations
in the signals, meaning it is needed to adapt the threshold
to the given application. This means that a detection can be
formulated like in (5).Od[n] is a detection signal, which
takes the value 1 if an oscillation is detected and the value
0 if not.

Od[n] =

{

1 if var (λ[n]) ≥ ǫ,

0 if var (λ[n]) < ǫ
. (5)

B. Extraction the oscillations as well as the number of
oscillations

In terms of finding the number of oscillations in the
data matrixY[n] the attention is again addressed toλ[n].
The elements inλ[n] would as stated previously have
high numerical values if their corresponding eigenvectors
contain a general trend from the data matrix. The task
can be done counting the number of elements inλ[n]
which takes high numerical value. In the vectorλ[n] the
elements are sorted in increasing order. Meaning that the
most approximating vector is the last one and hereby
corresponds to the last element inλ[n], and the second
most approximating basis vector is the second last one,

and hereby corresponds to the second last element inλ[n],
etc.

This means that the number of oscillations in the data
can be found by stepping back throughλ[n] as long as
the elements inλ[n] are higher than a thresholdκ. The
thresholdκ also need to be determined based on the appli-
cation. This can be formulated as an algorithm, in which
j is a counting variable,No is the number of oscillations
in the data, andλm[n] denotes them’th element inλ[n].
The algorithm for counting the number of oscillations in
the data can be written as

j = 0
No = 0
WHILE λm−j [n] ≥ κ,

j = j + 1
No = No + 1

END.

The ordering ofλ[n] automatically gives the basis vec-
tors supporting the oscillations. The oscillations in the data
are supported by theNo last column vectors inKL[n].
The set of basis vectors supporting the oscillation can be
extracted to those shown in (6).

{vm−No+1[n], · · · ,vm[n]} , (6)

These vectors supporting the oscillations in the plant,
might be very useful for the operators and engineers,
who have to handle the oscillations in the system. Since
these vectors show the oscillations, the operator might
get a better understanding of the problem causing the
oscillations. Additional signal analyzes can help localizing
some candidates as origin of the oscillation, but that is not
always enough for finding the cause of oscillation.

E.g. the problem might be localized to be in a given
pump, but does not say anything about the cause of the
oscillation in the pump. However, seeing the basis vector
supporting the oscillation might help the operators and
engineers understanding the cause of the problem in this
given pump.

C. Localization of oscillations

The oscillations can be located in the measurements by
computing the inner product of each vector of measure-
ments with the basis vectors supporting the oscillations,
see (7).

Co = Y ·
[

vm−No+1[n] · · · vm[n]
]

, (7)

whereCo is a matrix of the oscillation coefficients. The
row vectors inCo contain the different coefficients for each
measurement.

High values of these inner products mean that oscilla-
tions are present in the given signal. However, due to gains
and feedback loops in the plant, the highest coefficient of a



given oscillation does not mean that origin of the oscillation
is at the location of the corresponding measurement.

A way to use these coefficients of oscillations in the
given measurement signal, is to take out a number of signals
with the largest coefficients and view these as candidates
causing the oscillation. The next step is to use knowledge
of the plant to rule out some candidates for causing the
oscillation. It could be to determine if any of the candidates
depend directly one of the other candidates etc.

This means that localization scheme is given as follows
1) Compute the oscillation coefficients:Co = Y ·

[

KL[n] {:, m − No + 1} · · · KL[n] {:, m}
]

.
2) For each oscillation find thep measurements with the

highest coefficients by sorting the column vectors of
Co.

3) Eliminate elements in the candidate groups based
on knowledge of the plant. E.g. if oscillations are
detected in both part A and B where B directly
depends on A, then eliminate B from the candidate
list.

This algorithm leads to a group of candidates of the origin
of each oscillation inY[n].

D. Data preprocessing

Before the detection and localization algorithm is applied
to the data matrix. Each measurement (in each row vectors),
shall be preprocessed in order to achieve zero mean of
the row vectors, and normalized by the maximum possible
value of each measurement. The first requirement is due
to the Karhunen-Loève analysis, the second is in order to
localize the root of the oscillation.

V. EXAMPLES

In this section the oscillation detection method is applied
to two data sets: a set of synthetic data and a set of data
from a coal-fired power plant.

A. Detecting harmonics in random noise

The data set consists of 40 vectors each of 600 sam-
ples. One sine signal (2.2 Hz sampled at 16Hz) signal is
occurring in the first 10 vectors and another sine signal
(3.1 Hz sampled again at 16 Hz) is occurring in the next
10 vectors. All these oscillations have different amplitudes.
Random noise added to all the elements in the data matrix.
Both oscillations start at sample 101 and they reach their
maximal amplitude at sample 150, see Fig. 1.

The detection algorithm is subsequently applied to this
set of synthetic data. In this detection the window length
has been set to 14. (Notice it is the window length, which
is required to be smaller than the number of measurements
and not the length of the entire data block). The variance
of λ[n] for this given data set can be seen in Fig. 2. It can
be seen that the oscillations are detected just a few samples
after the beginning of the oscillations. The oscillations are
detected at sample 106.
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Fig. 1. Plot of the synthetic measurement data. The start of the
oscillations at sample 101 is slightly visible.
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Fig. 2. Plot of the variance ofλ[n], for the synthetic data. It can be seen
that the oscillations are detected just a few samples after the oscillations
start, since the oscillations are detected at sample 106.

The two basis vectors supporting the two oscillations in
the data set can be seen in Fig. 3. From this plot the sine
signals are easily identified. I.e. the algorithm can detect
these multiple oscillations.

The localization algorithm was tested as well on this
data set, and the result was clear. The algorithm sorted the
measurement correct such that the 10 measurement vectors
containing the first sine signal were grouped in one group,
the 10 measurement vectors containing the second sine
signal was as well grouped in another group.

B. Detecting oscillations in data from a coal-fired power
plant

In this example a data set from a coal-fired power plant
is used. An oscillation starts approximately at sample 90,
somewhere in a coal mill in the plant, 85 measurements
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Fig. 3. Plot of the two basis vectors supporting the oscillation, when the
oscillations are occurring at their maximum strength.
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Fig. 4. Plot of the measurement data from a coal fired power plant.

are provided from different parts of the plant. The data set
is prepared for the oscillation detection by removing mean
values of the data vectors and scale each data signal by the
maximal value of the corresponding sensor. The data set
can be seen in Fig. 4.

The oscillation detection scheme is subsequently applied
to the data set by using data window lengths of 14 samples
I.e. M = 14. The achieved variance ofλ can be seen in
Fig. 5. From this plot it can be seen that the oscillation is
detected at sample 94 this is only a few samples later than
where the oscillations start to raise in the signals. It is also
worth mentioning that the oscillation detection algorithm
does not give any false detection. In the meaning that it does
not give indications of an oscillation at time locations where
no oscillations are occurring. The basis vector supporting
the oscillation at sample 200 can be seen in Fig. 6. This
figure shows a harmonic signal, which indicates that a part
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Fig. 5. Plot of the variance ofλ for the power plant data. It can be seen
that the oscillation is detected at sample 94.
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Fig. 6. Plot of the basis vector supporting the oscillation in the
measurements.

of the plant is oscillating.
The next step is to locate the cause of the oscillation.

The oscillating coefficients are shown in increasing order
in Fig. 7, together with measurement numbers. From the
figure it can be seen that there is one clear candidate for the
cause of the oscillation. The measurement with the largest
oscillation coefficient, is a power measurement of the motor
in one of the coal mills which pulverize the coal before it is
blown into the furnace in the power plant. This is the same
conclusion given by a more detailed analysis and physical
inspection performed on the power plant in order to find
the root of the oscillation.

This example shows the potential of this algorithm to
detect oscillation in a data set containing measured data
from a power plant, and it can locate a number of candi-
dates for being the cause of the oscillation. Even though
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Fig. 7. Plot showing the grouping of signals based on the oscillation. The
upper plot shows the oscillation coefficients in sorted order. The lower plot
shows the measurement numbers in the same order, meaning that signal
with the largest oscillation coefficient is the one to the right.

these examples have shown that the localization algorithm
directly localizes the root of the oscillations, this mightnot
be the case for all data sets. Consequently the algorithm
should be used to generate a set of candidates, which can
be inspected according to their localization order.

VI. CONCLUSION

In this paper a method for detecting and locating multiple
oscillations in data sets from large-scale process plants with
multiple measurements are presented. The method uses a
Karhunen-Loève analysis to detect and localize the multiple
oscillations in the data. The method is subsequently tested
on two sets of data. A synthetic set containing two different
oscillations, and a data set from a coal-fired power plant.
In both cases the oscillation detection scheme detects the
oscillation within a few samples after their beginnings. The
localization scheme has as well localized the oscillationsin
both data sets.
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