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Abstract 
This paper addresses the problem of estimating, ana- 

lyzing and tracking objects moving with spatio-temporal 
rotational motion (i.e. the angular velocity of spinning 
or orbiting motions).  It is assumed that the digital sig- 
nals of interest are acquired from a camera and struc- 
tured as digital image sequences. The trajectories in the 
signal are two-dimensional spatial projections in t ime 
of motion taking place in a three-dimensional space. 
The purpose of this work is to  focus o n  the rotational 
motion i.e. estimate the angular velocity and accel- 
eration. In natural scenes, rotational motion usually 
evolves o n  a trajectory and then composes with trans- 
lational o r  accelerated motion. This paper shows that 
the trajectory parameters and the rotational parameters 
can be eficiently estimated and tracked either simulta- 
neously or  separately. The  final goal of this work is  to  
provide selective reconstructions of moving objects of 
interest. This  paper constructs new continuous wavelet 
transforms that can be tuned to  both translational and 
rotational motion. T h e  parameters of analysis that are 
taken into account in these rotational wavelet trans- 
f o rms  are space and t ime  position, velocity, spatial 
scale, angular orientation and angular velocity. T h e  
continuous wavelet functions are finally discretized fo r  
signal processing. The link between rotational motion, 
symmetry and critical sampling is  also presented. Sim- 
ulations have been performed with estimation, detection 
and tracking o n  natural scenes. 

1 Introduction 
In this paper, we present new spatio-temporal con- 

tinuous wavelet transforms that are maximum likeli- 
hood estimators of rotational and translational motion 
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parameters. These wavelets extend our previous work 
done on the Galilean wavelet transforms dedicated to 
translational velocity and acceleration [9]. The analysis 
that we propose in this paper is performed according to 
criteria based on spatial and temporal position, angular 
orientation, velocity, angular velocity and spatial scale. 
The definition of a rotational motion depends upon the 
axis around which rotation takes place. If the axis is 
the center of gravity of the object, the motion refers 
to a spin (ball, whirl). If the objet revolves around 
an external axis, the motion refers to an orbit. This 
paper will mainly focus on processing digital image se- 
quences i.e. two-dimensional space and time signals 
acquired by a camera or a planar sensor. Some prin- 
ciples about sampling and symmetries will be clearly 
evidenced in this paper from Fourier spectra and Lie 
group theory. 

The approach of motion filtering considered in this 
paper differs fundamentally from other techniques that 
have been proposed in the literature such as those 
based on optical flow, pel-recursive, block matching 
and Bayesian models. The continuous wavelet trans- 
form provides motion estimations that are robust not 
only against image noise and blurr but also against 
motion noise (i.e. jitter) [3], [7], [8]. Moreover, as a 
result of both the spatio-temporal filtering and the in- 
terpolation wavelet properties, the wavelet technique 
can resolve temporary occlusion problems. It has been 
demonstrated that the wavelet transform behaves as 
a matched filter and performs minimum-mean-square 
error estimation of the motion parameters [7] [8]. 

The study of the rotational motion is part of the 
harmonic oscillator. The study of the translational or 
linear motion belongs to the Galilean wavelet. Transla- 
tional motion composes with the rotational motion to 
put the harmonic oscillator on a carrier trajectory (i.e. 
spinning or orbiting on the carrier trajectory). Fourier 
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analysis shows that both motions keep distinct signa- 
tures and that trajectories can be built independently 

dressed afterwards. A tracking algorithm is eventually 
presented that exploits the Lie algebra of a harmonic 
oscillator, a Kalman filter, the Galilean and the rota- 
tional wavelet transforms separately. 

functions of real indices J~(ICT)  

from the spinning motion whose estimation can be ad- Jn(kr)  = - 2', lzn ,-i[nU f krsinu] d '11 (4) 

The integration on the argument r leads to generalized 
Hankel transforms Hn[f, lc] defined as 

2 Rotational Motion and Symmetries Hn[f,k] = f ( r )  Jn(kr)  rdr ( 5 )  

The goal is first to show intuitively that the spec- 
trum of translational and rotational motion are sig- 
nificantly apart. Consequently, translational motion 
v' can be independently estimated from the rotational 
motion 8. This leads to the important fact that the car- 
rier trajectory may be detected, estimated and tracked 
first and then the existence of angular velocity can be 
evidenced. The spectrum of the translational motion 
occupies a particular part of the Fourier domain [3] ,  it 
is located in a plane o5thogonal to the velocity vector 
(v', 1) of equation w + IC . v' = 0. 

Let us consider rotational motion in two- 
dimensional space and time R2 x R. Let f(2) 
of space R2 be a function. If the function is orbiting 
around the origin with a uniform angular velocity 8. 
It reads 

The rotational transformation is a unitary transforma- 
tion given by the real rotation 

f(.',t) = f [ R ( W l  (1) 

cos(&) -sin(&) 
sin(&) cos(&) R(&) = 

Let us now cossider the Fourier transform of the mov- 
ing function f(2, t )  in polar coordinates, it is charac- 
terized by Hankel transforms. We have indeed 

= JRZXR dt dzZ f [R(Olt)Zl e-"'" + w t )  3(1.-,w;Qd 

F(k,  IC, w ;  01) = &+:'E {i" dq5 sin d t  f(rei4) 
w rsin(Olt--n++)] 

= J:"dq5e -i[%(-n+4)] &+" dr r f (rei4)  

1 ~ ~ 2 "  dZL e-i[(e)~ + krsinu I 
61 

?(k,IC,a;el)  = - 1 e--in )E J:Oo T d r f ( 0 ,  r )Jn(kr )  
= -L e--i* fi ~ n [ f ^ , k ]  

61 
(3) 

where and w are the spatial and temporal frequencies 
respectively. In this calculation, we have successively 
applied a change of variable 5! = B(&t)Z, and a change 
from Cartesian to polar coordinates in both original 
and Fourier domains with 2 = ( 5 1 , ~ )  -+ (r ,  4) taking 
a+s origin the center of rotation located at 2 = and 
IC = (Icl ,k2) + (IC,.). We let R = g. The integration 
on variable 4 leaves the Fourier transform in variable 
a. The change of coordinates, the rotational transfor- 
mation and the integration on time t introduces Bessel 

If f ( r )  belongs to the L2(R,dz)-class i.e. is square- 
integrable, then the Hankel transform is also L2.  

The influence of the symmetries on the temporal fre- 
quencies can be studied considering a spinning square 
shape. If the square is rotating with an angular veloc- 
ity of 8 = 4 5 O  per image (i.e. between two consecutive 
image), the spectrum reaches the Shannon sampling 
bound beyond which the spectrum is undergoing alias- 
ing (Figures 4 and 5) .  The spin of any symmetrical 
polygon of 2n edges will then reach the bound at &. 
3 Rotational Motion 

The transformation of the rotational motion that 
has been stated in Equation 2 is part of the harmonic 
oscillator which belongs to the SU(2) group [6] .  Let 
81 E R be the angular velocity, b' E R2 be the spatial 
translation, I- E R be the temporal translation, the 
wavelet representation reads 

@ (b) (6) [T(g)q (;@) = e ' (wr + R ( - h r ) ' J )  

These wavelet transforms are tuned to the angular 
velocity of interest 817. The SU(2) group is com- 
pact, the representation is square integrable and then 
leads to a wavelet transform. The integration on 817 
leads to Bessel functions. Quite general information 
about Bessel functions and group representations may 
be found in [5] .  The harmonic oscillator will be now 
put into motion on a trajectory. 

4 Translational Motion 
The wavelet tuning to translational motion are nat- 

urally located in this plane, they have been described in 
[3] ,  [7] ,  [8]. A simplified version is considered here that 
takes into account spatial scale a E R+\{O}, spatial 
translation b' E ~ 2 ,  temporal translation 7 E R, spa- 
tial orientation R(&) E SO(2) and velocity v' E R2. 
The group element reads ( UR;) y ; j (7) 

= { $ , T , ~ , ~ , ~ ( e o ) )  3 

0 1  

The group representation in the spatio-temporal 
Hilbert space of the signal reads [8] 

[ ~ ( g ) 9 ]  (,C,w) = a ei(wT + k'b)6 (aR(-Oo)Z,w + I.'..'> .... 

(8) 
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This representation is unitary, irreducible and 
square integrable [3] and generalizes to families 
of wavelets tuned to acceleration 70 as follows 

[%I)+] (m2, b, 0) 
- - an/2  i(mz42+rc'J+'+wr+orz)+ (m2,k ' ,w ' ,/) 

with 2 = uR(-B0)[z+m2To], w' = w + i . G o ,  o' = o+ 
z.To+ 4m27;, ma = u2m2. D is the Fourier variable for 
t2 that is considered as an independent time variable. 
m2 is the parameter of the central extension [9]. 

5 Composing both Transformations 
To derive the group that takes into account the har- 

monic oscillator on the carrier trajectory, rotational 
motion and translational motion are going to be com- 
posed. This composition provides new Lie groups 
with representations in L2(R2 x R, d2Zdt) that read 
W 9 ) Q J  (6 t )  

[ ~ ( g ) q  ( ~ , t )  = ( '  P , t  '> (9) 

with 2' = uR(-eo)R(-elI-)R(-eo~2)~ - fit - $$ - b' 
and t' = t - I-. These representations are still uni- 
tary, irreducible and square integrable if one con- 
siders position and velocities (translational and ro- 
tational) (91 = {g ,  7,G,  Bo, B1, a } )  and position and 
accelerations (translational and rotational) (91 = 
{ g, T ~ ,  %, Bo,  6 2 ,  a} )  separately and successively. This 
approach leads to constructing (i.e. estimating and 
tracking) motion trajectories with Viterbi algorithms 
based on dynamic programming [lo]. 

6 Rotational Wavelet Transform 
Let the signal subject to analysis be S(2, t) and be 

defined in the Hilbert space L2(R2 x R,dLZdt). The 
wavelet transform W,p[S; g] ,  with g = {g ,  I-, G, a, Bo, e }  
is defined as a linear mapping W,p: !P + < Qg/S > i.e. 
an inner product that computed in the Fourier domain 
and discretized on the sampling grid 

w [ s ; g ]  = C i 1 I 2  lRZxR d2&&o*g (z, w )  S (&w)  

where the overbar - stands for the complex conjugate. 
The wavelet, XP, is a mother wavelet. It must satisfy 
the condition of admissibility calculated from square 
integrability [3, 81 The condition of admissibility of the 
accelerated wavelet is then given by CQ < 00 with 
cql = 

7 Tracking of Rotational Motion 
In this section, we develop an algorithm combin- 

ing Kalman filter, rotational and translational wavelet 
transforms, and a dynamical structure (a Lie algebra) 
for the damped, harmonically driven, harmonic oscil- 
lator. According to the previous sections, the estima- 
tion and the tracking may be done globally on all the 
parameters or split into two parts focusing first on the 
trajectory and secondly, if there is interest, on the spin- 
ning motion. That kind of tracking is obtained by diag- 
onalizing the prediction matrix. Let the state equation 
of the system be given by 

C ( t )  = {z ( t ) ,  v( t ) ,  cos[~lt], sin[01t])~ (11) 

The evolution is given by the prediction equation 

q t  +7-) = e%(t) = e f A T i i ( t )  (12) 

where 0 is an operator of the Lie algebra (a sub-algebra 
of gl(4,  R)) and A is a 4 x 4 matrix obtained from the 
operator R. It can be formulated as 

/ o  -a 0 0 )  

we have also 

.ii(t+T) = {z( t  + T ) , v ( ~  + T),cos[el(t + ~) ] , s in [~ l ( t  + T ) ] ) ~  

(14) 
To yield an interesting closed form of the prediction 
equation that splits translational motion from rota- 
tional motion, it is desirable to diagonalize the ma- 
trix d**. Eventually, the calculations lead to two 2- 
component relations as follows 

and 

The tracking strategy is based on combining Kalman 
filters and wavelet transform. The state of the Kalman 
filter is currently composed of some 11 or all the 
wavelet parameters ([8] for translational case). 

The observation equation also exploits the wavelet 
transform as a motion-based extraction tool tuned to 
the current exact state parameters. The CWT cap- 
tures and isolates the selected objects from the scene 
S to provide a display I, 

I(;, T )  = < !Pgopt IS + v > . (17) 
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I is the segmented image of the selected object, dis- 
played alone at its correzt location; S is the original 
signal under analysis, V(b, T) is the noise produced by 
the optical sensors and gopt is the set of optimal pa- 
rameters corresponding to the estimation of state pa- 
rameters which is performed with Morlet wavelets as 
described in the next section. 

8 Morlet wavelet and applications 
The applications presented in this paper are based 

on Morlet wavelets. An anisotropic Morlet wavelet 
is admissible as an continuous wavelet in the rota- 
tional and translational family. The still 3-D+T Morlet 
wavelet defines a non-separable filter 

- -  *(,@) = ,&OX , -h<X I cX>-,-g<i, I Die> ,-3<61CZ> 

(18) 
where 2 = (.’,t)T E R2 x R, C is a positive def- 
inite matrix and, D = C-l. For 2 0  + T signals, [. = ( ‘/o” 1/ey 0 )] where the e factors in- 

troduce anisotropy in the wavelet shape. Figures 4 and 
5 presents three configurations of rotational wavelets: 
four symmetrical 2-D spatial Morlet wavelets are con- 
sidered in the space and time domain, and successively 
put in rotational motion, put into velocity and trans- 
formed in the Fourier domain where the inner product 
with signal is taking place. Figure 6 presents the de- 
tection of scale and angular velocity using the square 
of the modulus of the rotational Morlet wavelet. This 
estimation is performed by integrating over the whole 
image sequence the square modulus of wavelet trans- 
form at velocity i70 = (-2.7, -0.1) to determine 

0 0  

0 0 1/Q 

max=gs,a 1 1 && I < *‘a=‘ao,st,a,6.rIS > l 2  (19) 
R 2  R 

9 Conclusions 
This paper has presented a new practical and eE- 

cient way of estimating and tracking trajectories with 
new spatio-temporal wavelets. The technique is robust 
against image noise, motion jitter and temporary oc- 
clusions [3], [7], [8]. The motion analysis performed by 
the wavelet transform may be split into two distinct 
parts: the first estimates locations and velocities and 
tracks the trajectory, the second estimates the angu- 
lar velocity. The object in motion is clearly subject to 
two distinct motions, a displacement and a spinning. 
This analysis is supported by the Fourier signatures of 
these motions. Some further theoretical and applied 
works are dealing with continuous wavelet transforms 
to analyze motion on manifolds. Indeed, the Lie group 
and algebra theory allow the derivation of square in- 
tegrable representations of kinematical groups for mo- 
tion on manifolds. In this study, the Lie generators 

for translational, rotational and deformational motion 
are merging harmoniously to new Lie generators of mo- 
tion for example on homogeneous spaces like spheres, 
paraboloids and hyperboloids. At that point, Lie group 
representations, mechanics on manifolds, differential 
geometry, Kalman filtering, optimum control, contin- 
uous wavelets and symmetry properties all merge and 
generalize into a unique theoretical framework. The 
work developed in this paper has been a seed towards 
this theoretical achievement [lo]. 

References 
[l.] D. H. Sattinger, 0. L. Weaver “Lie Groups and Algebras 
with Applications to Physics, Geometry, and Mechanics”, 
Springer- Verlag, 1986. 

[2.] A. 0. Barut and R. Raczka “Theory of Group Repre- 
sentations and Applications”, PWN - Polish Scientific Pub- 
lishers, 1985. 

[3.] J.-P. Leduc “Spatio-Temporal Wavelet Transforms for 
Digital Signal Analysis”, Signal Processing, Elsevier, Vol. 

[4.] I. M. Gel’fand, R. A. Minlos, and Z. Ya. Shapiro “Rep- 
resentation of the Rotation and Lorentz groups and their 
applications”, The Macmillan Company, New York, 1963, 

[5.] K. I .  Gross “Bessel Functions and Representation The- 
ory. I”, Journal of of Functional Analysis, Vol. 22, pp. 

[6.] K. Wodkiewicz and J. H. Eberly “Coherent states, 
squeezed fluctuations, and the SU(2)  and SU(1,l) groups 
in quantum-optics applications”, Journal of the Optical So- 
ciety of America, B, Vol. 2, No. 3, March 1985. 

[7.] J.-P. Leduc. F. Mujica, R. Murenzi, M. J. S. Smith 
“Spatio-Temporal Wavelet Transforms for motion track- 
ing”, Proceedings of ICASSP-97, Munich, Germany, 20-24 
April 1997, Vol. 4, pp. 3013-3017. 

[8.] J.-P. Leduc, F. Mujica, R. Murenzi, and M. Smith 
%patio-temporal Wavelets: a Framework for Motion Es- 
timation and Tracking”, submitted in IEEE Transactions 
on Information Theory. 

[9.] J.-P. Leduc, J. Corbett, M. Kong, V. M. Wickerhauser, 
B. K. Ghosh “Accelerated Spatio-Temporal Wavelet Trans- 
forms: an Iterative Trajectory Estimation”, Proceedings of 
ICASSP-98, Seattle, Vol. 5, pp. 2777-2780, May, 1998. 

[lo.] J.-P. Leduc, J. Corbett “Spatio-temporal Continu- 
ous Wavelets for the Analysis of Motion on Manifolds”, 
Proceedings of the IEEESP International Symposium on 
Time-Requency and Time-Scale Analysis, Pittsburgh, Oc- 
tober 7-9, 1998, to appear. 

60 (l), pp. 23-41, July 1997. 

p a t  I, pp. 1-153. 

73-105, 1976. 

198 



,,-*- -.--. I-.- 

Figure 5: Four symmetrical rotational Morlet wavelet 
function at et = (n/lo)t, and 9 = (0,o): contours of the 
square modulus in plane of the (w, ky) axes i.e. k, = 0. 
This yields 4 

Figure 2: Analysis of  the velocities contained in the ball 
at  image 18. The ball is windowed and the square modu- 
IUS of the Galilean wavelet is integrated on the ball domain 
at  image 18: two signatures are visible, the two symmet- 
ric peaks for the rotational motion and a "domed wall" 
for the accelerated motion. 

n/10 on the temporal frequency axis. 

Figure 3: Tracking the carrier trajectory of the mov- 
ing ball position in the Caltrain sequence with Galilean 
wavelets. At  image 15, the ball is pushed and keeps con- 
stant speed. Coordinates decreases as a result of  the 
motion steering t o  the left. 

Figure 6: Estimation with rotational wavelets of the an- 
gular velocity and the scale of the rotating ball in caltrain 
sequence. The diagram sketches the square of  the mod- 
ulus of the wavelet transform at v' = {-2.7,0.1}. The 
component at  8 = 0 stands for the non rotating struc- 
tures. The component at  8 = 0.045, a = 3.3 is the actual 
ball contribution which is observed rotating of 7r/2 over 
32 images. 8 = 0.09 is a harmonic. 
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