Time Localization Techniques for Wavelet Transforms

Mladen Victor Wickerhauser*
Department of Mathematics

Washington University in St. Louis
Missouri 63130 USA

November 27, 1994

Abstract

We consider the following pair of problems related to orthonormal compactly supported wavelet
expansions: (1) Given a wavelet coefficient with its nominal scale and position indices, find the precise
location of the transient signal feature which produced it; (2) Given two collections of wavelet coefficients,
determine whether they arise from a periodic signal and its translate, and if so find the translation
which maps one into the other. Both problems may be solved by traditional means after inverting the
wavelet transform, but we propose two alternative algorithms which rely solely on the wavelet coefficients
themselves.

1 Introduction

Continuous wavelet decompositions of functions [7] have now been used for more than a decade to extract
the locations and properties of transient features of time-varying, nonstationary signals. Basic algorithms,
such as retaining only the largest wavelet components and determining the time location of their basis
elements [10], produce excellent results in cases such as isolating discontinuities or frequency transitions
in music and speech. More sophisticated algorithms can locate and model transient phenomena very
precisely, for instance to remove certain dominant but uninteresting background features like solvent
absorbances in NMR spectrograms [8], or to replace a textured image by a textureless cartoon [12].
However, the computational time and space costs of the continuous wavelet transform—it produces a
two-dimensional data set from a one-dimensional input—prevent the use of such methods in high-speed
or “real-time” applications.

Discrete, compactly supported orthonormal wavelet bases, introduced by Daubechies [3], would be a
formidable replacement tool for these transient signal processing and feature detection problems because
of their much lower computational complexity. They provide a real-valued transformation which preserves
both dimension and rank, i.e., N-point one-dimensional real inputs produce N-point one-dimensional
real outputs. There are a number of problems, however, caused by artifacts associated to the dyadic
subsampling or “decimation” used in the discrete wavelet transform.

The support of compactly supported orthonormal wavelets grows as more regularity is required, and
extra regularity is often desirable for the representation of smooth or highly correlated signals. Most
of the mass of a unit scale compactly supported wavelet lies over an interval of unit width, though the
actual support is equal to the filter length, typically 10 or 20 units. We first consider the problem of
locating the center of energy of a wavelet within this support, given its scale and position indices. This
can be done exactly for symmetric and antisymmetric wavelets, but the best we can do in the general
case is to locate the center up to a signal dependent error which is bounded by the wavelet’s deviation
from linear phase, or deviation from symmetry or antisymmetry. We compute a quantity to measure
this deviation somewhat differently from Daubechies [4]. Our goal is to associate two numbers to each
wavelet which can be used to correct the nominal center of energy and locate it more precisely.

It is well known that the discrete wavelet transform is very sensitive to small translations of its input.
A signal consisting of a single basis wavelet which has been shifted slightly from its grid, for example,
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can have a discrete wavelet transform in which all the coefficients have nearly the same amplitude. But
when shifted to its proper location, the one-wavelet signal will be easily recognized by its single nonzero
coefficient. We will describe a fast algorithm, first introduced by Beylkin [1], which computes for us
the best circulant shift to apply to a periodic signal before performing a discrete orthonormal wavelet
transform, so as to obtain the most peaked sequence of wavelet coefficients. Such an algorithm would
detect that a signal consists of a single wavelet. It also serves to compare, in wavelet coefficients, two
signals differing only by a shift.

2 Localizing Transients Given Wavelet Coefficients

We follow the notation conventions and terminology used in [17]. A square-integrable function u defines
two probability density functions: x — |u(x)|?/||u||? and & — |a(£)|?/||@]|?. Tt is not possible for both of
these densities to be arbitrarily concentrated, as we shall see from the inequalities below.

2.1 Heisenberg’s Inequality

Suppose that u = u(z) belongs to the Schwartz class S. Then z-L|u(z)* = z [u(z)@ (z) + @(x)u' ()] is
integrable and tends to 0 as |z| — co. We can therefore mtegrate by parts to get the following formula:

/R oL (e dr = /R ju(@) dz = Jull®. 1)

But also, we have the following consequences of the Cauchy—Schwarz inequality (|(f,¢)| < ||fll |lgl|) and
the triangle inequality (|| — z|| < ||z —yl| + |ly — z|]):

‘/ f:v—|u )|? d <2/ |zu(x |dq:<2</ |zu(z |dw)1/2 (/ |u’(x)|2dx>1/2.

Combining the last two inequalities gives ||zu(z)| - [|v/(z)| > %[u(z)]|*. Now u’(f) = 2mi&a(€), and
|9]| = ||v|| by Plancherel’s theorem, so we can rewrite the 1nequahty as follows:
llzu(@)| (€2l o

Tu@l @l -

Since the right-hand side is not changed by translation u(z) — u(ﬂc —20) or modulation 4(§) — 4(€—&o),

we have proved
. <||<z - zo>u(x>|> . <||<s —;o)u(sn) . o
2o [[u(z)]] & 4l 4m

Equation 2 is called Heisenberg’s inequality. We mention the usual names

e (e = su@)] et e (L€ €)A(©)]
Ao=holu) zof< @] > AL = Ag(w) sf(_ Gl ) ®)

The quantities Az and A£ are called the uncertainties in position and momentum respectively, and they
provide an inverse measure of how well v and « are localized. Then Heisenberg’s inequality assumes the

guise of the uncertainty principle:

Az Ag>4i 4)

It is not hard to show that the infima in 3 are attained at the points xp and & defined by the following
expressions:

w) = e [ AP a6 =60 = g [ daPas )

The Dirac mass §(z — zo) is perfectly localized at position zq, with zero position uncertainty, but both its
frequency and frequency uncertainty are undefined. Likewise, the exponential e2™%0® is perfectly localized
in momentum (since its Fourier transform is 6(£ —&o)), but both its position and position uncertainty are
undefined. Equality is obtained in Equations 2 and 4 if we use the Gaussian function u(z) = e ™ Tt
is possible to show, using the uniqueness theorem for solutions to linear ordinary differential equations,
that the only functions which minimize Heisenberg’s inequality are scaled, translated, and modulated
versions of the Gaussian function.

If Az and A€ are both finite, then the quantities xo and & can be used to assign a nominal position
and momentum to an imperfectly localized function.



2.2 Convolution

Given two sequences u = {u(n)}nec and v = {v(n)}neq, their convolution is the sequence u * v defined
by
uxv(n) et Z u(k)v(n — k) = Z u(n — k)v(k); Gn & {keG:n—keG}. (6)
kEGn e
This is defined for n € G. We will consider two choices of index set: the complete set of integers, and
the integers modulo some period g > 0.

2.2.1 Doubly Infinite Sequences

If the sequences u and v are defined at all the integers G = Z, then the convoultion formula reduces to
the infinite sum

uxv(z) = Z u(y)v(z —y).
Yy=—00
Proposition 2.1 If u € £'(Z) and v € *(Z) for 1 < p < oo, then u* v € {P. ad

We can compute convolutions efficiently by multiplication of Fourier transforms:

Proposition 2.2 Ifu and v are infinite sequences such that @ and O exist a.e., then 4 * v(€) = 4 (£)D(€)
for almost every £ € T. O

Proposition 2.3 Ifu € ¢'(Z), then the map v — u*v has operator norm max,  |[4(£)| as a map from
L?*(T) to L*(T). i

The special case which will interest us the most is that of “finitely supported” sequences, i.e., those
for which u(z) = 0 except for finitely many integers x. Such sequences are obviously summable, and it is
easy to show that the convolution of finitely supported sequences is also finitely supported. Furthermore,
if w is finitely supported, then 4 is a trigonometric polynomial and we may use many powerful tools from
classical analysis to study it.

So, let u = u(z) and v = v(z) be finitely supported sequences taking values at integers z € Z, with
u(x) = 0 unless a < o < b and v(z) = 0 unless ¢ < x < d. We call [a,b] and [c, d] the support intervals
supp u and supp v, respectively, and b — a and d — ¢ the support widths for the sequences u and v. Then
uw * v(z) = 0 unless there is some y € Z for which y € [a,b] and z — y € [c,d], which requires that
c+a < x < d+b Hence u* v is also finitely supported, with the width of its support growing to
(d4+b) — (c+a) = (b—a)+ (d— c), or the sum of the support widths of u and v. The convolution at z
is a sum over y € [a,b] N[z —d,z — ]

2.2.2 Periodic Sequences

If G = Z/qZ is the integers {0,1,...,q — 1} with addition modulo ¢, then the convolution integral

becomes a finite sum:
q—1

uxv(z) = Zu(y)v(w — ymod q).
y=0
Since all sequences in this case are finite, there is no question of summability. Convolution becomes
multiplication via the discrete Fourier transform:

N-1
N def 1 N —2mig
d(k) = 77 - v(j)e TIRN k=0,1,...,N — 1. (7)
j=0
Proposition 2.4 If u,v are g-periodic sequences, then u* v(y) = @(y)d(y). a

Thus we can compute the norm of discrete convolution operators:
Proposition 2.5 The operator norm of the map v~ u * v from €2(Z/qZ) to itself is maxXo<y<q |2(y)|.

Proof: The maximum is achieved for the sequence v(z) = exp 2mizyo/q, where o is the maximum for
@], since then 4(y) = \/q(y — yo)- O



Periodic convolution is the efficient way to apply a convolution operator to a periodic sequence.
Suppose that v € £°°(Z) happens to be g-periodic, namely that v(z + ¢) = v(z) for all x € Z. Then for
uwer (Z) we can compute the convolution of v and v by decomposing y = k + gn:

uxv(z) = Z u(y)v(z —y) = Z iu(k +gn)v(z —k —gqn) = i Z u(k + gqn) | v(z — k).
Yy=—00 n=—oo k=0 k=0 n=-—oo

Now let us define the g-periodization uq of u € EI(Z) to be the g-periodic function

[ee)

ug(k) = u(k + qn). (8)

n=—oo

Thus starting with a single sequence u, we can get a family of convolution operators, one on Z/qZ for
each integer ¢ > 0:

Uy : 2(2/4Z) — (Z/qZ);  Upo(e) = ug v v(a) = 3 ug(k)o(x — k). (9)
k=0

In effect, we preperiodize the sequence u to any desired period ¢ before applying the convolution operator.

2.2.3 Convolution as an Operator

The Fourier transform converts convolution into pointwise multiplication. We can use this result to-
gether with Plancherel’s theorem to prove that convolution with integrable functions preserves square-
integrability. Suppose that u is integrable and v is square-integrable. Then by Plancherel’s theorem and
the convolution theorem we have ||u * v|| = || * v|| = |4 ®||. This gives the estimate

ol < ll@floclloll = laflco|lvll < [luflzr]lv]- (10)

Convolution with integrable u is a bounded linear operator on L2, and we will have occasion to
estimate this bound with the following proposition:

Proposition 2.6 If u = u(x) is absolutely integrable on R, then the convolution operator v — wu* v as
a map from L* to L? has operator norm sup{|a(¢)|: € € R}.

Proof: By Equation 10, ||u * v| < sup{|@(§)|]|v|| : £ € R}. By the Riemann-Lebesgue lemma, @ is
bounded and continuous and |@(§)| — 0 as |§| — oo, so @ achieves its maximum amplitude sup{|@(£)] :
£ € R} < oo at some point &, € R. We may assume without loss that &, = 0. To show that the operator
norm inequality is sharp, let € > 0 be given and find 6 > 0 such that |{—&.| < § = [4(§)—0(&)]| < e. If we
take v(z) = S22, then 0(€) = 1—5,6(€), and [|u*v|| = [@0] > (1 =€) [a(€)|1o] = (1 =€) [a(&)] [lv]l-
O

2.3 Decimation and Shifts

Decimation by q can be regarded as the process of discarding all values of a sampled function except
those indexed by a multiple of ¢ > 0. We denote it by dgq, and we have

ldgu](n) = u(qn). (11)

If u = {u(n) : n € Z} is an infinite sequence, then the new infinite sequence dqu is just {u(qn) : n € Z}
or every ¢'" element of the original sequence.

If w is finitely supported and suppu = [a,b], then dqu is also finitely supported and supp dqu =
[@,b] () ¢Z. This set contains either L%J or L%J + 1 elements.

If u is a periodic sequence of period p, then dqu has period ¢/ ged(p, ). Counting degrees of freedom,
the number of g-decimated subsequences of a p-periodic sequence needed to reproduce it is exactly
ged(p, q). If ged(p, ¢) = 1, then decimation is just a permutation of the original sequence and there is no
reason to perform it. Thus, in the typical case of ¢ = 2 we will always assume that p is even.

The translation or shift operator 7y is defined by

myu(e) = u(z —y). (12)



Whatever properties v has at * = 0 the function 7yu has at x = y. Observe that 79 is the identity
operator. Translation invariance is a common property of formulas derived from physical models because
the choice of “origin” 0 as in u(0) for an infinite sequence is usually arbitrary. Any functional or
measurement, computed for v which does not depend on this choice of origin must give the same value
for the sequence 7,u, regardless of y. For example, the energy ||u||* in a sequence does not depend on
the choice of origin:
Forally,  [lul* = |[ryul*. (13)
Such invariance can be used to algebraically simplify formulas for computing the measurement.
Translation and dilation do not commute in general, but there is an “intertwining” relation
For all z,y, p, Tyopu(T) = opTy/pu(w). (14)
Let t,, denote translation in the discrete case: tyu(n) e u(n—y). The intertwining relation then becomes
tydpu = dptpyu.

2.4 Quadrature Filters

We shall use the term quadrature filter or just filter to denote an operator which convolves and then
decimates. A filter operator is defined by the sequence which is convolved with the input. If the filter
sequence is finitely supported, we have a finite impulse response or FIR filter; otherwise we have an IIR
or infinite impulse response filter. We can also project such actions onto periodic sequences, and define
periodized filters. Filtering is the fundamental arithmetic operations in the discrete wavelet transform.

An individual quadrature filter is not generally invertible; it loses information during the decimation
step. However, it is possible to construct a pair complementary filters with each preserving the informa-
tion lost by the other; the pair can be combined into an invertible operator. Each member of the pair
has an adjoint operator: when we use filters in pairs to decompose functions and sequences into pieces,
it is the adjoint operators which put these pieces back together. The operation is reversible and restores
the original signal if we have so-called exact reconstruction filters. The pieces will be orthogonal if we
have orthogonal filters for which the decomposition gives a pair of orthogonal projections which we will
define below. Such pairs must satisfy certain algebraic conditions which are completely derived in [3],
pp-156—-166.

One way to guarantee exact reconstruction is to have “mirror symmetry” of the Fourier transform of
each filter about £ = %; this leads to what Esteban and Galand [5] first called quadrature mirror filters
or QMFs. Unfortunately, there are no orthogonal exact reconstruction FIR QMF's.

Mintzer [13], Smith and Barnwell [14], and Vetterli [16] found a different symmetry assumption
which does allow orthogonal exact reconstruction FIR filters. Smith and Barnwell called these conjugate
quadrature filters or CQF's.

By relaxing the orthogonality condition, Cohen, Daubechies, and Feauveau [2] obtained a large family
of biorthogonal exact reconstruction filters. Such filters come in two pairs: the analyzing filters which
split the signal into two pieces, and the synthesizing filters whose adjoints reassemble it. All of these can
be FIRs, and the extra degrees of freedom are very useful to the filter designer.

2.4.1 Filter Action on Sequences

A convolution-decimation operator has at least three incarnations, depending upon the domain of the
functions upon which it is defined. We have three different formulas for functions of one real variable,
for doubly infinite sequences, and for 2g-periodic sequences. We will use the term quadrature filter or
QF to refer to all three, since the domain will usually be obvious from the context.

Suppose that f = {f(n) : n € Z} is an absolutely summable sequence. We define a convolution-
decimation operator F' and its adjoint F* to be operators acting on doubly infinite sequences, given
respectively by the following formulas:

Fu(i)= Y fQi—ju@) =Y f@Gu@i-j), icZ (15)
X fGiui+g). G Zovn

Fru()= > f2i—ju) =1 °

i=—00

- (16)
f_(2i+1)u(i+%), j € Z odd.

I

.



If foq is a 2¢-periodic sequence (i.e., with even period), then it can be used to define a periodic
convolution-decimation Faq from 2g-periodic to g-periodic sequences and its periodic adjoint F3, from
g-periodic to 2¢-periodic sequences. These are, respectively, the operators

2g—1 2g—1
Faqu(i) = Y faq(2i = j)u(j) = Z Faaliu(2i—3),  0<i<g (17)
=0
and

ot > Faa2i)uli+ %), if j € [0,2¢—2] is even,
Faqu(j) = Zfzq(%—j)U(i) ={ 2 (18)

i=0 Z Faq(2i4+1)u(i+ ), if j € [1,2¢—1] is odd.

1=0

Periodization commutes with convolution-decimation: we get the same periodic sequence whether we
first convolve and decimate an infinite sequence and then periodize the result, or first periodize both the
sequence and the filter and then perform a periodic convolution-decimation. The following proposition
makes this precise:

Proposition 2.7 (Fu), = Faquaq and (Fu)y, = Fiquq.
Proof: This straightforward calculation may be found in [17] on pp.155-156. O

2.4.2 Biorthogonal QFs

A quadruplet H, H',G, G’ of convolution-decimation operators or filters is said to form a set of biorthog-
onal quadrature filters or BQF's if the filters satisfy the following conditions:

Duality: H'H*=G'G*=1=HH"™ = GG'™;
Independence: G'H* = H'G*=0=GH'" = HG'";
Ezact reconstruction: H*H' +G*G' =1=H'"H + G'"G;

Normalization: H1 = H'1 = /21 and G1 = G'1 = 0, where 1 = {...,1,1,1,...} is all ones and
0={...,0,0,0,...} is all zeroes.

The first two conditions may be expressed in terms of the filter sequences h,h’, g, ' which respectively
define H, H',G,G":

Zh h(k +2n) = Zg G(k+2n) = 6(n); Zg h(k +2n) = Zh Gk +2n) = 0. (19)

The normalization condition allows us to say that H and H’ are the low-pass filters while G and G’ are
the high-pass filters. It may be restated as

D h(k) = W) =v2 Y g2k) == g(2k+1); Zg (2k) Zg (2k+1).  (20)
k k k k

Having four operators provides plenty of freedom to construct filters with special properties, but there
is also a regular method for constructing the G, G’ filters from H, H'. If we have two sequences {h(k)}
and {h’(k)} which satisfy Equation 19, then we can obtain two conjugate quadrature filter sequences
{g(k)} and {g'(k)} via the formulas below, using any integer M:

g(k) = (=1)*R' (2M + 1 — k); g (k) = (=1)*nE2M +1 - k). (21)

We also have the following result, which is related to Lemma 12 in [6] and a similar result in [11]:
Lemma 2.8 The biorthogonal QF conditions imply H*1 = H'*1 = %1.

G
Proof: With exact reconstruction, 1 = (H'*H + G’*G) 1 =+2H'"1, since H1 = v/21 and G1 = 0.
Likewise, 1 = (H*H' + G*G')1 =2 H"1, since H'1 =+/21 and G'1 = 0. O

Remark. The conclusion of Lemma 2.8 may be rewritten as follows:

> h2k) =Y h2k+1) = % =D W@k => W (2k+1). (22)
k k k k



If we have the duality, independence, and exact reconstruction conditions, together with H1 = H'1 =
v/21 but no normalization on G or G’, then at least one of the following must be true:

G'leandH*lzil, or Gl:OandH’*lzil.

V2 V2
However, the BQF conditions as stated insure that the pairs H,G and H’', G’ are interchangeable in our

analyses.

If H H',G,G' is a set of biorthogonal QFs, and p is any nonzero constant, then H, H', 5G, p~*G" is
another biorthogonal set. We can use this to normalize the G and G’ filters so that

S g2k = - g2k +1) = % ~Y gen ==Y g@k+). (23)
k k k

k
This will be called the conventional normalization for the high-pass filters.

Since H*H'H*H' = H*H' and G*G'G*G’' = G*G’, the combinations H*H' and G*G’ are projections
although they will not in general be orthogonal projections. That is because they need not be equal to
their adjoint projections H'*H and G'*G.

An argument similar to the one in Proposition 2.7 shows that periodization of biorthogonal QFs
to an even period 2¢ preserves the biorthogonality conditions. Writing haq, hb,, g2q, and gh, for the
2¢-periodizations of h, h’, g, and ¢’, respectively, we have

> hag(k)hag(k +2n) =Y ghg(k)gaq(k + 2n) = 6(n mod q);
k k

D Ghg(k)hag(k +2n) =Y~ hig(k)gaq(k +2n) = 0.
k k
Here we define the periodized Kronecker delta as follows:

of [ 1, ifn=0 (mod q),
d(nmod q) = Z d(n + qk) —{ 0, otherwise. -

k=—cc

Periodization to an even period also preserves the sums over the even and odd indices, and thus
Lemma 2.8 remains true if we replace h, h', g, and ¢" with haq, hb,, g2q, and gh,.

2.4.3 Orthogonal QFs
If H= H' and G = G’ in a biorthogonal set of QFs, then the pair H, G is called an orthogonal quadrature
filter pair. In that case the following conditions hold:

Self-duality: HH* = GG* = I;

Independence: GH* = HG* = 0;

Exact reconstruction: H*H 4+ G*G = I;

Normalization: H1 =+/21, where 1 ={...,1,1,1,...}.

We will use the abbreviation OQF to refer to one or both elements of such a pair. In this normalization,
H is the low-pass filter while G is the high-pass filter.

If H and G are formed respectively from the sequences h and g, the duality and independence
conditions satisfied by an OQF pair are equivalent to the following equations:

D h(k)h(k+2n) =3 g(k)gk+2n) =d(n); Y g(k)h(k +2n) =Y h(k)g(k+2n) =0. (25)

For orthogonal QFs, we have a stronger result than Lemma 2.8:
Lemma 2.9 The orthogonal QF conditions imply that G1 =0, H*1 = %1 and |G*1| = %1.
Proof: This calculation may be found in [17], pp.159-160. O

If H, G are a pair of orthogonal QF's and p is any constant with |p| = 1, then H, pG are also orthogonal
QFs. Hence by taking p = \/izk g(2k) we can arrange that

S g2k = -3 g2k +1) = % (26)
k k



As in Equation 23, this will be called the conventional normalization of an orthogonal high-pass filter.
Given h satisfying Equation 25, we can generate a conjugate g to satisfy the rest of the orthogonal
QF conditions by choosing its coefficients as follows [3], using any integer M:

g(n) = (=1)"h(2M + 1 —n), neZ. (27)

Notice that this sequence g is conventionally normalized.

Proposition 2.7 shows that periodization of an orthogonal QF pair to an even period 2¢q preserves the
orthogonality conditions, and also preserves the sums over the even and odd indices, and thus Lemma
2.9 remains true if we replace h and g with hag and gaq.

Self-duality gives H* HH*H = H*H and G*GG*G = G*G. Notice that H*H and G*G are selfadjoint,
so H*H and G*G are orthogonal projections.

2.5 Phase Response

We wish to recognize features of the original signal from the coefficients produced by transformations
involving QF's, so it is necessary to keep track of which portion of the sequence contributes energy to the
filtered sequence.

Suppose that F is a finitely supported filter with filter sequence f(n). For any sequence u € £2, if
Fu(n) is large at some index n € Z, then we can conclude that u(k) is large near the index k = 2n.
Likewise, if F*u(n) is large, then there must be significant energy in u(k) near k = n/2. We can quantify
this assertion of nearness using the support of f, or more generally by computing the position of f and
its uncertainty computed with Equations 3 and 5. When the support of f is large, the position method
gives a more precise notion of where the analyzed function is concentrated.

Consider what happens when f(n) is concentrated near n = 27"

Fu(n) =Y f()un—j) =Y _ f(j+2T))u(2n - j - 27). (28)
jel jel

Since f(j + 2T is concentrated about j = 0, we can conclude by our previous reasoning that if Fu(n) is
large, then u(k) is large when k = 2n — 27'. Similarly,

Fru(n)=>_ f(2j —n)u(j) = Y _ f(2j — n+20))u(j +T). (29)
jel jel

Since f(2j — n + 2T is concentrated about 2j —n = 0, we conclude that if F*u(n) is big then u(j + T
must be big where j ~ n/2, which implies that w(k) is big when k ~ § + T

Decimation by 2 and its adjoint respectively cause the doubling and halving of the indices n to get
the locations where u must be large. The translation by 7" or —2T can be considered a “shift” induced
by the filter convolution. We can precisely quantify the location of portions of a signal, measure the shift,
and correct for it when interpreting the coefficients produced by applications of F' and F*. We will see
that nonsymmetric filters might shift different signals by different amounts, with a variation that can be
estimated by a simple expression in the filter coefficients. The details of the shift will be called the phase
response of the filter.

2.5.1 Shifts for Sequences

The notion of position for a sequence is the same as the one for functions defined in Equation 5, only
using sums instead of integrals:

def 1 2
clu] = |u||2]§k|u(k>. (30)

This quantity, whenever it is finite, may also be called the center of energy of the sequence u € £2 to
distinguish it from the function case.

The center of energy is the first moment of the probability distribution function (or pdf) defined by
lu(n)|?/||lul>. We will say that the sequence w is well-localized if the second moment of that pdf also
exists, namely if

> K u(k)® = [lkul* < oc. (31)
kel
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Figure 1: 7°, 7, and A4° for “Beylkin 18” high-pass OQF.

A finite second moment insures that the first moment is also finite, by the Cauchy—Schwarz inequality:
2
> Elu®)® = (ku,u) < [kl [Ju] < .
keZ

If u € £2 is a finitely supported sequence (say in the interval [a, b]) then a < c[u] < b.
Another way of writing c[u] is in Dirac’s bra and ket notation:

ef _ . .. .
lull*clu] = (ulX|u) = (u, Xu) = > a(i) X (i, j)u(j), (32)
ich
where
oo def oo 5 )i, ifi=g,
X (i,7) = i6(i — j) = diag]|..., =2, 1,0,1,2,3,...]{ 0, ifij (33)

To simplify the formulas, we will always suppose that ||ul| 1. We can also suppose that f is an
orthogonal QF, so Zk f(k)f(k + 24) = 6(5). Then FF* = I, F* is an isometry and F*F is an
orthogonal projection. Since ||[F*u| = |lu]| = 1, we can compute the center of energy of F*u as
c[F*u] = (F*u|X|F*u) = (u|FXF*|u). We will call the the double sequence FXF* between the bra
and the ket the phase response of the adjoint convolution-decimation operator F* defined by the filter
sequence f. Namely,

FXF*(i,5) = > _kf(2i—k)f(2j — k). (34)
k
- FXF(i,5) = Y_(li+3] + k) (i3] = k) F([i—=i] — k) = 2X(,5) — C(i,5).
Hel.“e 2X(i,5) = (i+34) >, f(IEi—j] — k)f([j—i] = k) = 2i6(i — j) as above, since f is an orthogonal QF,
o Cr(irg) = Z kf (k= [i=g)) f(k = [i—i]). (35)

Thus c[F*u] = 2c[u] — (u|C¢lu). Cy is evidently a convolution matrix: C(i,j) = (i — j) so that
Ctu =~ * u. The function ~ is defined by the following formula:

v(n) =D kF(k—n)f(k+n). (36)
k

From this formula it is easy to see that v(n) = 7(—n), thus 3(§) = 7(—¢) = 4(&) = 4 € R. This
symmetry of v makes the matrix Cy selfadjoint. Along its main diagonal, C¢(i,¢) = v(0) = ¢[f]. Other
diagonals of Cy are constant, and if f is supported in the finite interval [a, b], then C(4,j) = v(i—j) =0
for i — j| > |b—al.

We can subtract the diagonal from Cy by writing C'y = C? + ¢[f]I, which is the same as the decom-
position y(n) = v°(n) + ¢[f]é(n). This gives a decomposition of the phase response matrix:

FXF* =2X —c[f]I - C}.
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Figure 2: 72, v, and 4° for “Coiflet 18” low-pass OQF.
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Figure 4: 72, 7, and 4° for “Vaidyanathan 24” low-pass OQF.
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Thus FXF* is multiplication by the linear function 2z — ¢[f] minus convolution with ~°. We will say
that f has a linear phase response if v° = 0.

Proposition 2.10 Suppose that f = {f(n) : n € Z} satisfies Y., f(k —n)f(k+n)=6(n) forn € Z. If
f is Hermitean symmetric or antisymmetric about some integer or half integer I, then the phase response
of f 1is linear.

Proof: We have f(n) = +f(2T — n) for all n € Z, taking + in the symmetric case and — in the
antisymmetric case. Now v°(0) = 0 for all filters. For n # 0 we have

) = D kf(k—n)f(k+n) = Y kfQI —k+n)f2T —k—n)
k k
= 20 flk+n)f(k—n) =Y kf(k+n)f(k—n) = 0-~"(n).
k k

Thus we have v°(n) = 0 for all n € Z. m|

The linear function shifts the center of energy x to 2z —¢[f], and the convolution operator ~° perturbs

this by a “deviation” (u,~° * u)/||lul|>. We can denote the maximum value of this perturbation by d[f].

By Plancherel’s theorem and the convolution theorem, the deviation is (1, %) /||u||? and its maximum

value is given (using Proposition 2.6) by the maximum absolute value of 4°(¢):

d[f] = sup{|5°(€)] : € € [0,1]}. (37)
Now 7°(n) = 7°(—n) is symmetric just like v, so its Fourier transform 4° is purely real and can be
computed using only cosines as follows:
[ee)

30(¢) =2 Z ~(n) cos2mné. (38)

n=1

The critical points of 4° are found by differentiating Equation 38:

A6(€) = —dm Z ny(n) sin 2wné. (39)

It is evident that £ =0 and £ = % are critical points. For the 17 orthogonal QF's listed in the appendix,

we can show that |§°(£)| achieves its maximum at £ = 1, where

40 (%) =23 (D)™ =2 > > (-1)"kf(k —n)f(k+n). (40)
n=1 k

=—ocon=1

Graphs of 4° for some of the example OQFs can be seen in Figures 1 through 4.

Values of the quantities ¢[f] and d[f] for the example OQF's are listed in Table 1. Notice that if g(n) =
(—=1)"h(2M +1 —n), so that h and g are a conjugate pair of filters, and |supp g| = |supp k| = 2M is the
length of the filters, then d[g] = d[h] and c[g] + c¢[h] = 2M —1. This also implies that Cx(,j) = —Cy4 (3, 5),
so that the function 4° corresponding to the filter h is just the negative of the one corresponding to g.

We can put the preceding formulas together into a single theorem:

Theorem 2.11 (OQF Phase Shifts) Suppose that u € 2% and that F : 02 — 0% is convolution and
decimation by two with an orthogonal QF f € £*. Suppose that c[u] and c[f] both ewist. Then

e[ F ] = 2clu] — e[f] = (u, 7" * u)/||ull”,
where v° € £? is the sequence

VO(n) _ 01 _ an = 0;
Yo kf(k—=n)f(k+mn), ifn#0.
The last term satisfies the sharp inequality

[{u, 7 % )| < d[f] [Jull*,

where
o0

S 0k —n)F(k+n)|.

k=—o00 n=1

d[f] =2

11



| f [ [suppf] | Hor G |

clf]

d[f]

B

18

2.4439712920

2.6048841893

14.5560287079

2.6048841893

C

3.6160691415

0.4990076823

1.3839308584

0.4990076823

12

4.0342243997

0.0868935216

6.9657756002

0.0868935217

18

6.0336041704

0.1453284669

10.9663958295

0.1453284670

24

8.0333521640

0.1953517707

14.9666478359

0.1953517692

30

10.0333426139

0.2400335062

18.9666573864

0.2400330874

0.5000000000

0.0000000000

0.5000000000

0.0000000000

0.8504809471

0.2165063509

2.1495190528

0.2165063509

1.1641377716

0.4604317871

3.8358622283

0.4604317871

1.4613339067

0.7136488576

5.5386660932

0.7136488576

10

1.7491114972

0.9711171403

7.2508885027

0.9711171403

12

2.0307505738

1.2308332718

8.9692494261

1.2308332718

14

2.3080529576

1.4918354676

10.6919470423

1.4918354676

16

2.5821186257

1.7536045071

12.4178813742

1.7536045071

18

2.8536703515

2.0158368941

14.1463296483

2.0158368941

20

3.1232095535

2.2783448731

15.8767904464

2.2783448731

24

19.8624838621

3.5116226595

Q|| O | Q| Q | Q) | Q| Q| Q| Q| Q) | Q|| Q| Q) | Q| o | Qi

3.1375161379

3.5116226595

Table 1: Center-of-energy shifts and errors for some example OQF's.
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If d[f] is small, then we can safely ignore the deviation of F*u from a pure shift of u by ¢[f]. In that
case, we will say that c[F*u] ~ 2c[u] — ¢[f] and c[Fu] =~ Lc[u] 4+ $c[f]. We note that the “C” filters have
the smallest errors d[f]; these are the filters to use if we wish to extract reasonably accurate position
information.

If we apply a succession of filters F} F5 - -- F}, then by induction on L we can compute the shifts as
follows:

C|FTFs - Fiu] = 28c[u] — 25 telfo] — - -- = 2Y¢[fo] — c|fi] — €7, (41)
where
€] <257 dlfe] + -+ 2d[fo] + dlf]- (42)
Similarly, if v = F{'Fy - - - Ffu, so that FL - -+ Fo Flv = u, then the following holds:
o[Fr - FoFyo) =27 o] + 27 e[ fi] + 27 el fo] + -+ 27 e[ fr] + e, (43)
where
lel <27 d[fe] +- -+ 27" dlf] + 27 dl i) (44)

Now suppose that (h, g) is a conjugate pair of OQFs, so that f; € {h, g} foreach i =1,2,..., L. Then
d[f:] is constantly d[h] and we have the simpler estimates for the deviation from a pure shift:

| < (2F = 1)d[h] ~ 2%d[h]  and || < (1 —2F)d[h] ~ d[h]. (45)
Suppose that we encode the sequence of filters Fy' Fyy - - - F; as the integer b = b1 2L 71 452872 4. . 45,2,

where

1, if Fy = G. (46)
Then we can write c[fx] = brclg] + (1 — bx)c[h] = c[h] + bi(c[g] — c[h]). Notice that the bit-reversal of b,
considered as an s-bit binary integer, is the integer b =020 + by2' + ... + 2871 This simplifies the
formula for the phase shift as follows:

{ 0, if Fp=H;
by, =

Corollary 2.12 Ifh and g are a conjugate pair of OQFs with centers of energy c[h] and c|g], respectively,
then

[Py Fs - Fru] = 2%c[u] — (2" = 1) ¢[h] — (clg] — c[A]) b’ — €", (47)
where |*| < (2L —1) d[Rh] and b= b12E 71 4022572 4. . 4 b, encodes the sequence of filters as in Equation
46, and b’ is the bit-reversal of b considered as an L-bit binary integer.

Proof: We observe that

C|FfF; - Fiu] = 2%cu] — Z of =k [c[h] +br_kt1(clg) — c[h])} —€
k=1

= 2lcfu] — c[h] 225 — (clg] = c[R)]) ZbSHQS —¢

= 2Fcu) - (2L - 1) c[h] — (clg] — c[h])b — €*.

The estimate on €* follows from Equation 45. m]

2.5.2 Shifts in the Periodic Case

Defining a center of energy for a periodic signal is problematic. However, if a periodic signal contains
a component with a distinguishable scale much shorter than the period, then it may be desirable to
locate this component within the period. If the component is characterized by a large amplitude found
by filtering, then we can locate it by interpreting the “position” information of the filter output. We
must adjust this position information by the center-of-energy shift caused by filtering, and allow for the
deviation due to phase nonlinearity. In the periodic case, the shift can be approximated by a cyclic
permutation of the output coefficients.
We can compute the center of energy of a nonzero g-periodic sequence 14 as follows:

q—1
— 1 E 2
C[u‘I] - ”uqu e k'“‘](k” .
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Since c[uq] is a convex combination of 0,1,...,g—1, we have 0 < c[uq] < g—1. Now suppose that ug
is the g-periodization of u and that all but € of the energy in the sequence u comes from coefficients in

one period interval Jg def [j0q, Jog + g — 1], for some integer jo and some positive € < 1. We must also

suppose that u has a finite position uncertainty which is less than ¢q. These conditions may be succinctly
combined into the following:

. 1097
> [i=Go+ ] WG| < aellul (48)
J¢Jo
Equation 48 and some straightforward computations (see [17], pp.172-174) produce the following
inequalities:

q . q
g1 [elital = £] = ul® [elu) = oa = &] | < 2ae (1 +50) s [lua* = Nul®| < e 1+ 5e) .

(49)
We can replace ||uq|® with ||u||? in the left inequality of 49:

|e[ug] — clu] + jog| < 4qe (14 5e¢). (50)

Hence, if almost all of the energy of u is concentrated on an interval of length ¢, then transient features
of u have a scale smaller than ¢ and will become transient features of u4 upon g-periodization. These
will be located at nearly the same position modulo ¢ as features of u, and we can use the following
approximation to locate the center of energy of a periodized sequence to within one index:

cluqg] def c[u] mod gq. (51)
We interpret the expression “z mod q” to mean the unique real number z’ in the interval [0, g[ such that
x = 2’ + ngq for some integer n.
We can use Proposition 2.7 to compute the following approximation:

c[F5gua) = cl(F*u),,] = c[F*u] mod 2q = 2¢fu] — elf] — (u,7* % u)/|[ul® mod 2q.

Now (u,7° *u)/||u||? is bounded by d[f] so we plan to ignore it as before, though we must still verify that
the OQFs satisfy Equation 48 with sufficiently small €. Table 2 shows the value of € for a few example
OQF's and a few example periodizations. In all cases € < 1, so the table lists only the digits after the
decimal point.

Since there is no unique way to deperiodize uq to an infinite sequence u, it is necessary to adopt a
convention. The simplest would be the following:

— u¢1(n)7 1f0§n<qa
u(n) = { 0, otherwise. (52)

3 Wavelet Registration

We now consider the second problem: an algorithm for finding the best shift for a periodic discrete wavelet
transform. Our procedure is to find which periodic shift of a signal produces the lowest information cost.

3.1 Information Cost

Before we can define an optimum representation we need to have a notion of information cost, or the
expense of storing the chosen representation. So, define an information cost functional on sequences of
real (or complex) numbers to be any real-valued functional M satisfying the additivity condition below:

M(u) =Y p(lu®));  p(0) =0. (53)
kel

Here p is a real-valued function defined on [0,00). We suppose that ), u(|u(k)|) converges absolutely;
then M will be invariant under rearrangements of the sequence u. Also, M is not changed if we replace
u(k) by —u(k) for some k, or, in the case of complex-valued sequences u, if we multiply the elements of
the sequence by complex constants of modulus 1. We take M to be real-valued so that we can compare
two sequences u and v by comparing M (u) and M (v).

14



q=2 q=4 q=2©6 q=28 q=10 q=12 q=14
lsupp f| | Hor G | ' g ¢=18 q=20 q=22 g=24 q=26 ¢=28
18 H 7703612 | .279300 | .142238 | .074249 | .033688 | .014072 | .005406
001415
G 734120 | .324821 | .163452 | .087139 | .038976 | .016137 | .006156
.001590
6 H 247013 | .102745
G 268885 | .060768
2 H 263115 | .072831 | .033281 | .010604 | .001009
G 251061 | .070544 | 028711 | .009039 | .001205
18 H 209435 | .100032 | .052849 | .018963 | .007231 | .002661 | .000621
.000040
G 201211 | .008243 | .046702 | .017889 | .007332 | .002556 | .000708
.000045
21 H 320006 | .120402 | .065564 | .027330 | .014121 | .005800 | .002328
000890 | .000331 | .000036 | .000002
G 322880 | .110051 | .060292 | .027004 | .013983 | .005754 | .002531
000936 | .000367 | .000039 | .000002
30 " 354113 | .136558 | 075016 | .035107 | .020482 | .009303 | .004743
.002035 | .000958 | .000291 | .000138 | .000026 | .000002 | .000000
G 349003 | 135636 | 071338 | .035330 | .020121 | .000401 | .005000
002111 | .001051 | .000285 | .000134 | .000024 | .000002 | .000000
4 H 171103
G 273971
6 " 304120 | .050230
G 259302 | 073126
3 " 308900 | .102651 | .01789%
G 323009 | .122720 | .023634
10 " 342554 | .135552 | .040530 | .006627
G 449328 | .116023 | .053618 | .008251
12 " 422404 | 137647 | 058646 | .016224 | .002475
G 463486 | .160047 | .064599 | .020210 | .002964
4 H 524235 | .160394 | 072000 | .023686 | .006412 | .000924
G 508880 | .223013 | .076843 | .029062 | .007680 | .001077
16 H 524480 | .210433 | .085366 | .032061 | .000408 | .002480 | .000344
G 587024 | 220427 | 103528 | .038321 | .0LL1I10 | .002899 | .000393
18 H 564454 | 243878 | .102607 | .045068 | .014338 | .003662 | .000048
.000128
G 636888 | .238832 | .128066 | .050826 | .016666 | .004213 | .001082
.000144
20 H 634131 | 248979 | 120135 | .051443 | .024453 | .006775 | .001411
000354 | .000047
G 672102 | 282813 | .138670 | .060507 | .025714 | .007739 | .001591
.000398 | .000053
24 H 872011 | .390176 | .217686 | .116186 | .062451 | .036782 | .017151
006270 | .001937 | .000629 | .000191
829783 | .355441 | .190529 | .101064 | .057180 | .034695 | .015266
005653 | .001764 | .000574 | .000175

Table 2: Concentration of energy for some example orthogonal QF's.
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For each € X we can take u(k) = B*z(k) = (b, z), where by € B is the k'™ vector in the basis
B € B. In the finite-rank case, we can think of by, as the k*® column of the matrix B, which is taken with
respect to a standard basis of X. The information cost of representing = in the basis B is then M (B*x).
This defines a functional M, on the set of bases B for X:

M. B—R; B+— M(Bz). (54)

This will be called the M -information cost of x in the basis B.

We define the best basis for x € X, relative to a collection B of bases for X and an information cost
functional M, to be that B € B for which M (B*z) is minimal. If we take B to be the complete set of
orthonormal bases for X, then M, defines a functional on the group O(X) of orthogonal (or unitary)
linear transformations of X. We can use the group structure to construct information cost metrics and
interpret our algorithms geometrically.

We can define all sorts of real-valued functionals M, but the most useful are those that measure
concentration. By this we mean that M should be large when elements of the sequence are roughly the
same size and small when all but a few elements are negligible. This property should hold on the unit
sphere in ¢? if we are comparing orthonormal bases, or on a spherical shell in ¢2 if we are comparing
Riesz bases or frames.

Some examples of information cost functionals are:

o Number above a threshold

We can set an arbitrary threshold e and count the elements in the sequence x whose absolute value

exceeds €. ILe., set
] Jw], i |w| >
p(w) = { 0, if|w|<e
This information cost functional counts the number of sequence elements needed to transmit the
signal to a receiver with precision threshold e.
e Concentration in £P
Choose an arbitrary 0 < p < 2 and set pu(w) = |w|? so that M(u) = ||{u}|5. Note that if we
have two sequences of equal energy ||u|| = ||v|| but M(u) < M(v), then u has more of its energy
concentrated into fewer elements.
e FEntropy
Define the entropy of a vector u = {u(k)} by

1
H(u) =) p(k)log —, (55)
Zk: p(k)

where p(k) = |u(k)|?/||u||* is the normalized energy of the k" element of the sequence, and we set
plog % = 0 if p = 0. This is the entropy of the probability distribution function (or pdyf) given by p.
It is not an information cost functional, but the functional I(u) =Y, |u(k)|*log(1/|u(k)|?) is. By
the relation

H(u) = |lul| ~1(u) + log [|u]?, (56)
minimizing ! over a set of equal length vectors « minimizes H on that set.

e Logarithm of energy
Let M(u) = ZkN:1 log |u(k)|?. This may be interpreted as the entropy of a Gauss-Markov process
k — wu(k) which produces N-vectors whose coordinates have variances o} = |u(1)|?,...,0% =
|u(N)|?. We must assume that there are no unchanging components in the process, i.e., that
oz # 0 for all k = 1,..., N. Minimizing M(u) over B € O(X) finds the Karhunen-Loéve basis
for the process; minimizing over a “fast” library B finds the best “fast” approximation to the
Karhunen-Loeve basis.

3.1.1 Entropy, Information, and Theoretical Dimension

Suppose that {z(n)}5; belongs to both L? and L?log L. If z(n) = 0 for all sufficiently large n, then in
fact the signal is finite-dimensional. Generalizing this notion, we can compare sequences by their rate of
decay, 1i.e., the rate at which their elements become negligible if they are rearranged in decreasing order.
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We define the theoretical dimension of a sequence {x(n) : n € Z} to be
1
d=ex n)log — o7
p En p(n)log o0 (57)

where p(n) = |z(n)|?/||z||*>. Note that d = exp H(x) where H(z), defined in Equation 55 above, is the
entropy of the sequence .

3.1.2 Searching for Minimum Cost

Beylkin in [1] observed earlier that computing the periodic discrete wavelet transform of all N circulant
shifts of an N-point periodic signal requires computing only N log, N coefficients. If we build a complete
binary tree with information cost tags computed from from appropriate subsets of the shifted coefficients,
then the best complete branch will give a representation of the circulant shift which yields the lowest cost
transform. After solving the technical problem of ties, the computed shift can be used as a registration
point for the signal.

The first step is to build a binary tree of the information costs of the wavelet subspaces computed
with all circulant shifts. We write the cost of a node of the tree into an auxiliary variable attached to the
node, which will later be added together with the other nodes along the branch to give a “branch” cost.
We also assume that the output array is at least ¢/2 elements long, to accommodate the intermediate
outputs of convolution and decimation. The algorithm is implemented recursively as follows:

shiftscosts(output y; input x; parameter q): Costs of circulant shifts
e If ¢ <1 then return (this is the recursion termination condition).

e Convolve-decimate the ¢g-periodic input sequence {z(1),...,x(q)} to a ¢/2-periodic output
sequence {y(1),...,y(g/2)} using the high-pass filter G.

e Compute the information cost of y and store it.

e Convolve-decimate the g-periodic input sequence {z(1),...,z(q)} to a g/2-periodic output
sequence {y(1),...,y(¢/2)} using the low-pass filter H.

e Apply shiftscosts to the ¢/2-periodic sequence {y(1),y(2),...,y(q/2)}.

e Apply shiftscosts to the ¢/2-periodic sequence {y(2),...,y(q/2),y(1)}.

The function shiftscosts can also be used to accumulate the costs of a a whole branch into its leaf
at the same time that we compute the coefficients, as we descend. One of the inputs to the function is
q, and we assume that the input sequence is g-periodic and registered at 0. Then the information cost
of a 2F-point discrete periodic wavelet transform shifted by 7" will be found in the node at level L whose
block index is the bit-reverse of 1. We can extract these values with a utility function, then use a bubble
sort to find the least one while searching in bit-reversed order, and return its index. This finds the least
circulant shift which yields the minimal information cost.

To register a periodic signal, we compute the registration point and then circularly shift the signal so
that the registration point becomes index zero. It is also possible to avoid the use of a binary tree data
structure by directly writing the costs of circulant-shifted wavelet coefficients to an array.

Wavelet registration works because the information cost of the wavelet subspace Wy, of a 2X-periodic
signal is a 2F-periodic function for each 0 < k < L. Thus the information cost in the node at level k,
block n is the information cost of W}, with a circulant shift by n’ (mod 2"’), where n’ is the length k
bit-reversal of n. A branch to a leaf node at block index n contains the wavelet subspaces Wi,..., Wy
of the periodic discrete wavelet transform with shift n’. The scaling subspace V7, in the periodic case
always contains the unweighted average of the coefficients, which is invariant under shifts.

We can define a shift cost function for a 2F-periodic signal to be the map f(n) = ¢pr1, the information
cost in the tag of the costs tree at level L and block index n’, the bit-reverse of n.

Two 2F-point signals whose principal difference is a circulant shift can be compared by cross-
correlating their shift cost functions. This is an alternative to traditional cross-correlation of the signals
themselves, or multiscale cross-correlation of their wavelet and scaling subspaces as done in [9].

A Orthogonal Quadrature Filter Coefficients

Here we give the coefficients of the 17 orthogonal quadrature filter pairs mentioned in the text. The
reader interested in obtaining machine-readable versions of these coefficients by electronic mail should
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send a request to Victor@Math.WUStL.Edu, or else they may be found on the diskette accompanying ref
[17]. We omit any lists of biorthogonal filter coefficients, since those available to the author are symmetric
or antisymmetric and therefore have linear phase reponse and a shift which is either 0 or % The intrepid
reader may obtain those as well by email or diskette, from the mentioned sources.

Beylkin 18: Low-pass
9.9305765374353927
4.2421536081296141
6
4

.9982521405660059
.4971825114946867
-1.1092759834823430
-2.6449723144638482
2.6900308803690320
1.5553873187709380
-1.7520746266529649
-8.8543630622924835
1.9679866044322120
4.2916387274192273
-1.7460408696028829
-1.4365807968852611
1.0040411844631990
1.4842347824723461
-2.7360316262586061
6.4048532852124535

mmmmrlrimmmm
NP, NR PR PPN

AR
B WWNNNDNNN

Vaidyanathan 24:
Low-pass
-6.2906118190747523 E-5
3.4363190482102919 E-4
-4.5395661963721929 E-4
-9.4489713632194927 E-4
2.8438345468355646 E-3
7.0813750405244471 E-4
-8.8391034086138780 E-3
3.1538470558970040 E-3
1.9687215010072714 E-2
-1.4853448005230099 E-2
-3.5470398607283453 E-2
3.8742619293411440 E-2
5.5892523691373548 E
=7.7709750901969410 E
-8.3928884366112830 E
1.3197166141697772 E
1.3508422712948126 E
—-1.9445047176647817 E
-2.6349480248845991 E-
.0161216177530866 E
.3560105987221494 E
.7279779321073432 E
.5018412950466218 E
.5799334110976718 E

SN OO N

High-pass
6.4048532852124535
2.7360316262586061
1.4842347824723461
-1.0040411844631990
-1.4365807968852611
1.7460408696028829
4.2916387274192273
-1.9679866044322120
-8.8543630622924835
1.7520746266529649
1.55563873187709380
—-2.6900308803690320
-2.6449723144638482
1.1092759834823430
4.4971825114946867
-6.9982521405660059
4.2421536081296141
-9.9305765374353927

High-pass
4.5799334110976718
-2.5018412950466218
5.7279779321073432
-6.3560105987221494
2.0161216177530866
2.6349480248845991
-1.9445047176647817
-1.3508422712948126
1.3197166141697772
8.3928884366112830
=7.7709750901969410
-5.5892523691373548
3.8742619293411440
3.5470398607283453
-1.4853448005230099
-1.9687215010072714
3.1538470558970040
8.8391034086138780
7.0813750405244471
-2.8438345468355646
-9.4489713632194927
.5395661963721929
.4363190482102919
.2906118190747523

D W b

mmmmmmmrﬁmmmmmmmm
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Coifman 18: Low-pass

18

-3.7935128643778759 E-3
7.7825964256707869 E-3
2.3452696142119103 E-2

-6.5771911281431228 E-2

-6.1123390002955698 E-2
4.0517690240961679 E-1
7.9377722262562034 E-1
4.2848347637761869 E-1

-7.1799821619170590 E-2

-8.2301927106320283 E-2
3.4555027573344464 E-2
1.5880544863615901 E-2

-9.0079761367322896 E-3

-2.5745176881279692 E-3
1.1175187708269618 E-3
4.6621695982014403 E-4

-7.0983302505704928 E-5

-3.4599773197402695 E-5

Coifman 24:

8.9231366822027571 E-4
-1.6294920131108490 E-3
-7.3461663276562349 E-3

1.6068943964069236 E-2

2.6682300155628804 E-2
-8.1266699680313054
-5.6077313316471950

4.1530840703043015

7.8223893092049879

4.3438605649146839
-6.6627474263000752
-9.6220442033563697

3.9334427122913219

2.5082261845146933 E-2
-1.5211731527239149 E-2
-5.6582866859460380 E-3

3.7514361569249027 E-3

1.2665619286795187 E-3
-5.8902075681143784 E-4
-2.5997455231942175 E-4

6.2339033865764618 E-5

3.1229876078043358 E-5
-3.2596804448576129 E-6
-1.7849845586999338 E-6

Hig

h-pass

.4599773197402695
.0983302505704928
.6621695982014403
.1175187708269618
.5745176881279692

9.0079761367322896

.5880544863615901
.4555027573344464
.2301927106320283
.1799821619170590
.2848347637761869
.9377722262562034
.0517690240961679
.1123390002955698
.5771911281431228
.3452696142119103
. 7825964256707869
.7935128643778759

High-pass

.7849845586999338
.2596804448576129
.1229876078043358
.2339033865764618
.5997455231942175
.8902075681143784
.2665619286795187
.7514361569249027
.6582866859460380
.5211731527239149

2.5082261845146933

.9334427122913219
.6220442033563697
.6627474263000752
.3438605649146839
.8223893092049879
.1530840703043015
.6077313316471950
.1266699680313054
.6682300155628804
.6068943964069236

7.3461663276562349

.6294920131108490
.9231366822027571

il
w



Coifman 6:

N N O

Coifman 30:

Low-pass

High-pass

.8580777747886749
-1.
.7161555495773498
.0749164138568412
.4568755893443428
.2658426519706856

2696912539620520

.12080863336306810
.58589677255698600
.17823630484128470
.15935878160399350
.01311175380455940
.34081567615927950
.81680290621414970
.19200105488064130
.20431632162377390
.21566206728765440
.74289603740284550
.37991626228364130
.20359639056089690
.05574208705835340
.12892087407341690
.26835742832495350
.97617790117239590
.16423115304622680
.76418541866332000
.43337320922405380
.66286376908581340
.38131296151377520

Low-pass

3.02259519791840680
1.40541148901077230
.13404844919568560
.13150140622449170
3.73459674967156050
2.06380639023316330
.67408293749300630
.51579170468293560

2.2658426519706856
-7.4568755893443428
6.0749164138568412
7.7161555495773498
-1.2696912539620520
3.8580777747886749

High-pass

.5157917046829356
.6740829374930063

2.0638063902331633

. 7345967496715605
.1315014062244917
.1340484491956856
.4054114890107723
.0225951979184068
.3813129615137752
.6628637690858134

2.4333732092240538

.7641854186633200
.1642311530462268
.9761779011723959

3.2683574283249535

.1289208740734169
.0557420870583534
.2035963905608969
.3799162622836413
.7428960374028455
.2156620672876544
.2043163216237739
.1920010548806413
.8168029062141497

2.3408156761592795

.0131117538045594
.1593587816039935
.1782363048412847
.5858967725569860
.1208086333630681

E-8
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Coifman 12:

Haar:

Low-pass

.6387336463179785
.1464936781966485
.7372554722299874
.8611006682309290
.1272363544960613
.1700518442377760
.6488599078264594
.9434418646471240
.3680171946876750
.6114348193659885
.8232088709100992
.2054944536811512

Low-pass

7.07106781186547 E-1
7.07106781186547 E-1

Daubechies 4: Low-pass

4.8296291314453416 E-
8.3651630373780794 E-
2.2414386804201339 E-
-1.2940952255126037 E-

[ SN

Daubechies 6: Low-pass

3.
8.
4.
-1.
-8.
3.

3267055295008263
0689150931109255
5987750211849154
3501102001025458
5441273882026658
5226291885709533

Daubechies 8:

.30377813309 E-1
.14846570553 E-1
.30880767930 E-1
.79837694170 E-2
.87034811719 E-1
.08413818360 E-2
.28830116670 E-2
.05974017850 E-2

Low-pass

High-pass

.2054944536811512
.8232088709100992

5.6114348193659885

.3680171946876750
.9434418646471240
.6488599078264594
.1700518442377760
.1272363544960613
.8611006682309290
. 7372554722299874
.1464936781966485
.6387336463179785

High-pass

7.07106781186547 E-1
-7.07106781186547 E-1

High-pass

-1.
-2.

8.
-4.

2940952255126037
2414386804201339
3651630373780794
8296291314453416

High-pass

.5226291885709533
.5441273882026658
.3501102001025458
.5987750211849154
.0689150931109255
.3267055295008263

.05974017850
.28830116670

3.08413818370

.87034811719
. 79837694170
.30880767930
14846570553
.30377813309

mmmrlnrﬁmmm
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Daubechies 10:
Low-pass

1.60102397974 E-1
6.03829269797 E-1
7.24308528438 E-1
1.38428145901 E-1
-2.42294887066 E-1
-3.22448695850 E-2
7.75714938400 E-2
-6.24149021300 E-3
-1.25807519990 E-2
3.33572528500 E-3

Daubechies 16:

Low-pass
5.44158422430
3.12871590914
6
5

. 75630736297

.85354683654
-1.58291052560
-2.84015542962
4.72484574000
1.28747426620
-1.73693010020
-4.40882539310

mmmmrﬁmmmmm
NNE PEREPNDNERE RPN

1.39810279170 E-2
8.74609404700 E-3
-4.87035299300 E-3
-3.91740373000 E-4
6.75449406000 E-4
-1.17476784000 E-4
Daubechies 18:
Low-pass
3.80779473640 E-
2.43834674613 E-
6.04823123690 E-
6.57288078051 E-
1.33197385825

-2.93273783279
-9.68407832230
1.48540749338
3.07256814790
-6.76328290610
2.50947115000
2.23616621240
-4.72320475800
-4.28150368200
1.84764688300
2.30385764000
-2.51963189000
3.93473200000

mmmmrﬁmmmm
NP, NR PR RPN

S A A A
OB P WwwwN N

High-pass

3.33572528500
25807519990
.24149021300
. 75714938400
. 22448695850
2.42294887066
38428145901
24308528438
.03829269797
.60102397974

High-pass

.17476784000
. 75449406000
.91740373000
.87035299300
74609404700
39810279170
40882539310
.73693010020
.28747426620
. 72484574000
84015542962
.58291052560
5.85354683654
. 75630736297
.12871590914
.44158422430

High-pass

.93473200000
.51963189000
.30385764000
.84764688300
.28150368200
.72320475800
.23616621240
.50947115000
. 76328290610
.07256814790
48540749338
9.68407832230
93273783279
.33197385825
.57288078051
04823123690
.43834674613
.80779473640

1

=1
(4]

=1
W

x5}
W

<]
w

w

=1
w

1

N

=1
W

1

N

[z3]
N

(= I e I o I B e R e I s I 0
I N e S

Daubechies 12:

Low-pass

High-pass

.11540743350
.94623890398
.51133908021
.15250351709
-2.26264693965
-1.29766867567
9.75016055870
2.75228655300
-3.15820393180
5.53842201000
4.77725751100
-1.07730108500

W N b

[ I e O o I o e T o R o R o

e

=1
S

1
w

w

Daubechies 14:

Low-pass

7.78520540850
3.96539319482
7.29132090846
4.69782287405
-1.43906003929
-2.24036184994
7.13092192670
8.06126091510
-3.80299369350
-1.65745416310

1.25509985560 E-2
4.29577973000 E-4
-1.80164070400 E-3
3.53713800000 E-4

Daubechies 20:
Low-pass
2.66700579010
1.88176800078
5.27201188932
6
2

. 88459039454

.81172343661
-2.49846424327
-1.95946274377
1.27369340336
9.30573646040
-7.13941471660
-2.94575368220
3.32126740590
3.60655356700
-1.07331754830
1.39535174700
1.99240529500
-6.85856695000
-1.16466855000
9.35886700000
-1.32642030000

qwrﬁrprﬁrﬁmmmmmrlnmmmmmm
BB WWNWNNMNNMNNRER R PBRPR P B2N
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.07730108500
.77725751100
.53842201000
.15820393180
. 75228655300
.75016055870
.29766867567
. 26264693965
.15250351709
.51133908021
.94623890398
.11540743350

High-pass

.53713800000
.80164070400
.29577973000
25509985560
.65745416310
.80299369350
.06126091510
.13092192670
24036184994
-43906003929
4.69782287405
.29132090846
-96539319482
. 78520540850

High-pass

32642030000
.35886700000
.16466855000
.85856695000
.99240529500
.39535174700
.07331754830 E
.60655356700 E
.32126740590 E
.94575368220 E
.13941471660 E
.30573646040 E
.27369340336 E
.95946274377 E
.49846424327 E
.81172343661 E
.88459039454 E
.27201188932 E
.88176800078 E
.66700579010 E

mmmMmmmmmEmmE
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