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ABSTRACT

We specialize to two simple cases the algorithm for singularity detection in images from eigenvalues of the
dual local autocovariance matrix. The eigenvalue difference, or “edginess” at a point, then reduces to a simple
nonlinear function. We discuss the derivation of these functions, which provide low-complexity nonlinear edge
filters with parameters for customization, and obtain formulas in the two simplest special cases. We also provide
an implementation and exhibit its output on six sample images.

Keywords: edge detection, nonlinear filtering

1. INTRODUCTION

In,' we built an edge detector for images using the localized two-dimensional Fourier transform. For theoretical
analysis, we suppose that an image is a square-integrable function I : R* — R. We localize with a smooth,
radial, nonzero but compactly-supported bump function g : R? — R, and define the “edginess” e(I, z) of I at
a point z € R? to be

liminf [A1 (e, 2) — Aa(e, 2)],

e—0+

where A; (€, z) and Az (e, z) are the eigenvalues of the scale € dual local autocovariance matriz of I at point z, which

we denote by Ee 4(I;z). This is a 2 x 2 second moment matrix for the unnormalized density ® Lof | g::I | given

by the squared magnitude of the Fourier transform of I multiplied by g .(z) def g(*=%). The four coordinates

of the matrix are

Bl = [ ege©ds el 1)
B(0,1/¢)

By the assumptions, g, .l is integrable, so ® is bounded and continuous and the matrix coeflicients are well
defined. The matrix is symmetric and positive semidefinite by construction, so its eigenvalues are real and

nonnegative and we may speak of the larger one A; and smaller one \y. Thus e([,z) = lime_ o4 [N (€, 2) —
A2(e,2)] > 0.

Our earlier results may be combined into the following theorem:

THEOREM 1.1. Let D C R? be a bounded domain with a smooth boundary, and put I = S + 1p, where
S : R? — R is differentiable as well as locally square integrable. Then z € D if and only if e(I,z) > 0. The
boundary smoothness assumption may be replaced by the weaker Morrey-Campanato regularity assumption?
in generalized form.?
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2. DISCRETIZATION AND IMPLEMENTATION

In practice, an image I is supported on some bounded rectangle [0, M] x [0, N] C R?, where M and N are
positive integers, and has piecewise constant intensity on squares, or pizels, of the form [m,m+ 1) X [n,n + 1),
0<m< M,0<n< N. In this case, the scale parameter € should indicate the number of pixels near a point z
used to compute edginess there, and the radial bump function g should indicate how to weight the intensities

of pixels according to their distance from z. The localized image g. .I(z) is then completely described by the
e

finite list of samples f(m,n) dof ge,.I(z) indexed by m € {0,1,...,M — 1} and n € {0,1,...,N — 1}. Each
evaluation locus x = (21, z2) = (m,n) is called a gridpoint.

We may therefore calculate the autocovariance matrix with the separable, two-dimensional discrete Fourier
transform, or 2D-DFT:

0% S () () s ez w

This expression is M-periodic in p and N-periodic in ¢, so it suffices to compute it for p € By def [—%, %}

and g € By def [—g, %} That will cost O(M N log M log N) arithmetic operations, using the “fast” factored

implementation of 2D-DFT, or 2D-FFT.

If g. .1 is supported in the smaller subrectangle [My, M1] X [Ny, N1] around z, with 0 < My < My < M and
0 < Ny < Ny < N, then the 2D-DFT sum for f reduces to the smaller range { My, ..., M1—1} x{Ny,...,N1—1}.
If My — My < M and N1 — Ny < N, then instead of 2D-FFT we may rearrange the sum to avoid complex
arithmetic and still obtain the same low computational cost.

For this other rearrangement, we begin by expanding the squared absolute value of f (p, q) for real-valued f
as follows:

M;—1 M;—1 N;—1 N;—-1

fp. 0l = Z Z Z men (m/,n’) x

m= M()’ITL M()n N()’ﬂ

_ i _ I
X exp (—QWiW) exp (_2m,q(nTn)> ,

. 2
with (p,q) € By x By giving a complete set of representative values. Now |f(p, q)|? approximates ’ge7zl(§)’
evaluated at the discrete frequency € = (£1,£2) = (p, q). Hence the moments of Equation 1 have the following

discrete approximations:

Eﬁ,g(I;Z) ‘NEU = Z Z §1§J|f b,q 7 i,J € {172} (3)

pEBM qEBN

In particular, F; has a factor &1&; = &7 = p? = p?¢°, while Ea, has a factor €5 = p°¢?, and E12 = Fa; has the
factor &1&2 = ptq' inside the sum. Let 7 be the degree of the p = £; term and s the degree of the ¢ = & term in
these expressions, so that we may speak of the (r,s) moment. Then E;; is the (2,0) moment, Fsy is the (0,2)
moment, and Eyy = Fy; is the (1,1) moment of | f(p, q)[2.

But the (r,s) moment of |f(p7 q)|?> may be computed by a sum in the original pixel coordinates:

Mi—1 M;—1 N1—1 Ni—-1

oY relfeolr = > > > > Y Z P¢° f(m) f(m) f(n) f(n') x
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As in,! we have replaced the sums in square brackets with the Riemann integrals they approximate:

1
7
wi(k) Lof / x’ exp(—2mikz) dz, j=0,1,2,...; kelZ, (4)

%
These are needed with k < n—n’ or k «— m —m’ for j =0,1,2

Evidently po(k) =1 if kK = 0, but is zero otherwise. Hence, the unnormalized coefficients of the dual local
autocovariance matrix may be computed from the following sums:

My—1 M;—1 N;1—1 Ni—-1
Eu o= Y, Yy » fmn)f(mn)ua(m—m)uo(n —n') (5)
m:M[) m,:M[) n:No ’n,,:No
My—1 M;—1 N;—1
= X X X fmmfen mm(m = )
m:M[) m,:M[) n:No
M;—1 N1—1 N1—1
Ex = 3 > > fmn)f(mn)usn—n); (6)
m:]\/f() n:No n,:N()
M;—1 M;—1 N1—1 Ni—-1

By = Bn = Y Z > Z fm,n) f(m’,n')pa (m —m)pa (n —n). (7)

m=Mgo m’=Mo n=Ngon’
An elementary calculation gives us formulas for the other two moment functions that we need:

0, if k=0, {1/12, if k=0,

k = (—1\k k — .
(k) {Z%a pa( %, otherwise.

(8)

otherwise;

3. ALGORITHM

Since translations of f have no effect on | f |2, we may reindex to have My = Ny = 0 in Equations 5, 6, and
7. Namely, we make the simultaneous index substitutions m «— m + My, m’ «— m’ + My, n — n + Ny and
n' « n’ + Ny, which have no effect on m —m’ and n —n’ and result in the localized portion of the image being
translated to the subgrid {(m,n): 0 < m < My; 0 <n < N;}. This simplifies implementation by making the
summation formula independent of the point z after f is defined.

The edginess computation is performed by the following steps:

1. Localization. Extract the pixel values on the square subgrid contained in z + [—¢, €] X [—¢, €], where a
small positive integer plays the role of € in g. .. The pixel value at a gridpoint z + y is multiplied by the
radial bump function g(y) and stored at the index corresponding to y in the subgrid. If z is within € grid
points of the boundary, then we simply pad any missing samples in the subgrid with zeros.

Note that z need not be a gridpoint with integer coordinates. In particular, z may have half-integer
coordinates, but then y will have half-integer coordinates as well and the extracted subgrid indices will



be “corrected” from y. We may assume that the subgrid indices are {(m,n): 0 <m < My, 0 <n < N}
as previously discussed.

This step costs O(e?) operations per pixel.
2. Dual Autocovariance. Compute the 2 x 2 matrix F = (E;;) using Equations 5, 6, and 7. This al-
ways yields a real-valued, symmetric, positive semidefinite matrix. The computational complexity of the

quadruple sum in Equation 7 dominates the triple sums of Equations 5 and 6, so this step costs O(e?)
operations per pixel.

3. Eigenvalues. For symmetric 2 x 2 matrices F, the exact formula for eigenvalues is:

1
A= B (Eu + Fa + \/(Ell — E5)? + 4ElQ2> ’ ©)

where we take + for A1 and — for A2. These will satisfy A1 > A\a >0

4. Edginess. We define this to be the difference A\; — A\2. This reduces to a simple expression in terms of the
matrix coeflicients Fij:

M = A2 = /(E11 — E22)? +4F12Ey (10)

Alternatively, we may normalize to get an intensity-independent and bounded quantity such as (A1 —
A2)/A1 € [0,1]. Also, the value may be transformed in other ways to facilitate display. For example, we
may use the bounded reciprocal Ay/A1, which is related to the normalized difference by Af =1- AIA Az
This may amplified to fill the grayscale range of a write-black display device. That way, the darkest marks

indicate the greatest edginess.

The dual autocovariance step dominates the total computational complexity. It is therefore O(e?) operations
per pixel, if we localize to subgrids of O(e x €) points. The edginess calculation regardless has linear complexity
in the number of pixels. The O(e*) proportionality constant is controlled by choosing a small integer € such as
2 or 3.

4. TWO SPECIAL CASES

As before, assume that the image is represented as a list of pixel values f(m,n) indexed by M x N integer pairs
{(m,n):0<m< M,0<n< N}

No edge information can be gleaned from a single pixel, so the smallest useful € in the edginess algorithm is
€ = 1. We will consider the corresponding special cases of the edginess formula and compute them explicitly.

The radial bump function g. . centered at z will weight all equidistant pixels equally, so the set of weights
will be least complicated if z is most centered among the gridpoints. We achieve this centering in two ways: at
midpoints and at gridpoints. In both centerings, edginess will be computed at M x N points. Zero padding
will be required at some or all of the boundaries.

Midpoints. z is of the form (m + %, n+ %) With e = 1, the dual autocovariance matrix is computed from
the pixels immediately NE, SE; SW, and NW of z, with indices (m+1,n+1), (m+1,n), (m,n) and (m,n+1),
respectively:

(m,n+1) (m+1,n+1) NW € fim,n+1) NE ¥ fm+1,n+1)
(m,n) (m+1,n) SW % f(m,n) SE % f(m+1,n)
By using the direction labels SW, SE, NW, NE to represent the pixel values, we hope to make the forthcoming
calculations less cumbersome.



All pixel values receive the same weight, as all pixels are equidistant from %, 80 we may assume the weight
from ¢ is 1. We evaluate u1(0) = 0, p1(£1) = %, 12(0) = 127amd pa(£1) =
5, 6, and 7 then give:

Ein = (NW? 4+ NE*)us(0—0) + (SW? + +SE*)ua(1 — 1) +
+(NW - SW + NE - SE) (112(0 — 1) + p2(1 — 0))

1 1
= (NW? + NE* + SW? + +SE*) — = (NW - SW + NE - SE) ;

12
1
Ep = 43 (NW? + NE? + SW? + +SE?) — — — (NW-NE +SW - SE);
1
Eip = By ~5 3 (NW - SE-NE-SW).

Only the first calculation is shown. But then
1 1
By —FEyp=— (NW-NE+SW.-SE—-NW.SW - NE.-SE)=— (NW - SE)(NE - SW).
T T

Substituting these expressions into Equation 10 yields the following formula:

1
A — A = —2\/(NW — SE)*(NE — SW)* + (NW - SE — NE - SW)”. (11)
0
This expression defines a nonlinear four-tap filter with a square 2 x 2 pixel mask.

Gridpoints. z is of the form (m,n). With e = 1, the dual autocovariance matrix is computed from
the pixel at z = (m,n), which has one weight, and the pixels immediately N, E, S, and W of z, with indices
(m,n+1), (m+1,n), (m,n —1) and (m — 1,n) respectively, which all have the same second weight:

N ¥
w4t ol
(m—1,n) z=(m,n) (m+1,n) — f(m —1,n) o &t fim,n) f(m+1,n)
(m,n—1) g def
f(m,n—1)

We may normalize g so that the weight at z is 1 and let £ > 0 be the weight for the four neighboring pixels.
As before, we use the direction labels S, E, N, W to represent the pixel values so as to simplify the notation a
bit. We evaluate 1(0) = 0, p1(£1) = £, p(£2) = £, 42(0) = &, pa(£1) = 525, and po(£2) = oz from
Equation 8, and substitute everything into Equations 5, 6, and 7:

2

1 t
By = —(C2+t2[N2+E2+52+W2]) (N C+C-8)+ 5 (N-S);
2
Eoy = 12(C2+t2[N2+E2+S2+W2]) (E C+C- W)+4—2(E W);
2 2
Fio— By — ;2(N W-N.-E+S-E-S-W) = 2t2(N S)(E—W).

But then 2

t
Ell—En:FC(E—FW—N—S)—FF(N S—E-W).

Substituting these expressions into Equation 10 yields the following formula:

/\1—>\2:% {O(E+W—N—S)+£(N-S—E-W) 2+t2(N—S)2(E—W)2. (12)



Figure 1: Figure: image, midpoint edginess, and gridpoint edginess.

Figure 2: House: image, midpoint edginess, and gridpoint edginess.

This expression defines a nonlinear five-tap filter with a mask shaped like a plus sign. We obtain a different
filter for each weight t. Notice that the choice ¢ = 0, which suppresses all but the center pixel value C| results
in zero edginess everywhere as expected.

A value t € (0,1) such as t = % may be chosen to tune the edginess function to a particular class of images.
We note that as € increases, the number of different weights in this algorithm will increase as well, giving extra
degrees of freedom for customization.

5. EXAMPLE IMAGES

We prepared six examples by the two algorithms described above, localizing with Gaussian bumps restricted to
7 x 7 subgrids centered at z.

“Figures” are piecewise constant functions with jump discontinuities along various rectifiable, mostly smooth
curves. “House” is the demonstration image house_gray . pgm from the XHoughTool website, http://www.lut.
fi/dep/tite/XHoughtool. “Fingerprint” was obtained from NIST; it is part of a compliance test suite for the
FBI's WSQ compression standard. “Lena” is the famous image from.* “Cone” is a synthetic ray-traced image
provided by Craig Kolb. “Truck,” provided by Peng Li, is one frame from a video. All six are available from
the second author’s web site, http://www.math.wustl.edu/ victor.

. . . . _ 3
The gridpoint edginess figures all used the weight ¢t = 7.



Figure 3: Fingerprint: image, midpoint edginess, and gridpoint edginess.

A

Figure 4: Lena: image, midpoint edginess, and gridpoint edginess.

Figure 5: Cone: image, midpoint edginess, and gridpoint edginess.




Figure 6: Truck: image, midpoint edginess, and gridpoint edginess.

6. CONCLUSION

The localized two-dimensional Fourier transform, used to find edge-like singularities, leads to nonlinear filters
for edge detection. These were implemented as transformations of a grayscale image into an edginess function
of the same domain. We showed that these filter transformations have low computational complexity: they
are linear in the number of pixels, with a small constant controlled by a scale parameter of the algorithm. As
the scale parameter grows, the edge filter acquires addtional degrees of freedom that may be adjusted to suit
different classes of images. We assert that this method permits the construction of new custom nonlinear edge
detectors.

We illustrated the action of the simplest of these filter transformations on six grayscale images. The imple-
mentation in source code form, together with the images, is available from the authors’ web site.
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