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Wave packets. Define wave packets over [? in the usual way. For a pair P = {p;},Q =
{¢;} of quadrature mirror filters (QMFs) satisfying the orthogonality and decay conditions

stated in [CW], there is a unique solution to the functional equation
o(t) =V2) pjo(2t— ).
JEZ

Put w = wy 0,0 = ¢, and define recursively

Wan 0.0(t) = V2 pjwn00(2t — ),

JEZ
Wap+1,0,0(t) = \/52 qjWn,0,0(2t — j).
JEZ
Then set Wymk(t) = 2™/ 2w,00(27t — k). Write W(R) = {Wnmi : n,m, k € Z} for the
collection of functions so defined, which we shall call wave packets.

The quadrature mirror filters P, may be chosen so that WW(R) is dense in many
common function spaces. With the minimal hypotheses of [CW], W(R) will be dense in
L?(R). Using the Haar filters P = {1/v/2,1/v/2},Q = {1/v/2,—1/+/2} produces W(R)
which is dense in LP(R) for 1 < p < oco. Longer filters can generate smoother wave packets,

so we can also produce dense subsets of Sobolev spaces, etc.
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Basis subsets. Define a basis subset o of the set of indices {(n,m, k) € Z*} to be any
subcollection with the property that {w,mx : (n,m,k) € o} is a Hilbert basis for L?(R)).
We characterize basis subsets in [W1]. Abusing notation, we shall also refer to the collection
of wave packets {wpmi : (n,m,k) € 0} as a basis subset.

Since L? N LP is dense in LP for 1 < p < oo, with certain QMFs a basis subset will also
be a basis for LP. Likewise, for nice enough QMFs, it will be a Hilbert basis for the various
Sobolev spaces.

Since L?(R) ® L?*(R) is dense in L?(R?), the collection {wx @ wy : wx € W(X),wy €
W(Y)} is dense in the space of Hilbert-Schmidt operators. Call o C Z° a basis subset
if the collection {wn  mxkx @ Wnymyky * (Rx,mx,kx,ny,my,ky) € o} forms a Hilbert

basis. Such two-dimensional basis subsets are characterized in [W2].

Ordering wave packets. Wave packets wy,,; can be totally ordered. We say that w < w’
if (m,n,k) < (m/,n’,k’). The triplets are compared lexicographically, counting the scale
parameter m as most significant.

Tensor products of wave packets inherit this total order. Write wx = W mykx, €tc.
Then we will say that wx @wy < vy @wi, if wx < wy or else if wx = w'y but wy < wi,.
This is equivalent to (mx,nx,kx,my,ny, ky) < (m'x,n'x,ky,my,ni k%) comparing
lexicographically from left to right.

Define the adjoint order <* by exchanging X and Y indices, namely wx ® wy <*

w’y ® wh if and only if wy ® wx <* wy ® w'. This is also a total order.

Projections. Let W! denote the space of bounded sequences indexed by the three wave
packet indices n, m, k. With the ordering above, we obtain a natural isomorphism between
[>° and W!. There is also a natural injection J* : L2(R) — W! given by cpmr = (v, Wnmk),
for v € L2(R) and wy,,, € W(R). If o is a basis subset, then the composition J! of J*
with projection onto the subsequences indexed by o is also injective. J! is an isomorphism
of L?(R) onto [*(c), which is defined to be the square summable sequences of W' whose
indices belong to o.

We also have a map R' : W' — L?(R) defined by R'c(t) = > (nym k)ez? CnmkWnmk (£)-
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This map is defined and bounded on the closed subspace of W! isomorphic to {? under the
natural isomorphism mentioned above. In particular, R' is defined and bounded on the
range of J! for every basis subset o. The related restriction R! : W! — L?(R) defined
by Rlc(t) = D (nmok) o CrmkWnmk(t) is a left inverse for J* and J!. In addition, J'R! is
a projection of W'. Likewise, if Y. a; = 1 and R},i is one of the above maps for each i,
then J' Y, s R} is also a projection of W'. It is an orthogonal projection on any finite
subset of W!.

Similarly, writing W? for W' x W', the ordering of tensor products gives a natural
isomorphism between [ and W?2. The space L?(R?), i.e., the Hilbert-Schmidt operators,
inject into this sequence space W? in the obvious way, namely M +— (M, W, ymxky @
Wnymyky )- Call this injection J2. If o is a basis subset of W2, then the composition .J2 of
J? with projection onto subsequences indexed by o is also injective. J2 is an isomorphism
of L?(R?) onto [?(o), the square summable sequences of W? whose indices belong to o.

The map R? : W? — L?(R?) given by R%c(x,y) = > exywx (z)wy (y), is bounded on
that subset of A2 naturally isomorphic to {?. In particular, it is bounded on the range of
J2 for every basis subset o.

We may also define the restrictions R2 of R? to subsequences indexed by o, defined by
R2c(w,y) = > (wx wy )eo CXYWx (2)wy (y). There is one for each basis subset o of W2,
Then RZ is a left inverse of J? and J2, and J?R2 is a projection of W?2. As before, if
>, a; = 1 and o; is a basis subset for each i, then J? )", R> is also a projection of W2.

It is an orthogonal projection on any finite subset of W2.

Applying operators to vectors. For definiteness, let X and Y be two named copies of
R. Let v € L?(X) be a vector, whose coordinates with respect to wave packets form the
sequence J'v = {{(v,wx) : wx € W(X)}.

Let M : L?*(X) — L?(Y) be a Hilbert-Schmidt operator. Its matrix coefficients with
respect to the complete set of tensor products of wave packets form the sequence J2M =

{M,wx @wy) : wx € W(X),wy € W(Y)}. We obtain the identity

(Mv,wy) = > (M,wx ®wy)(v,wx)
wx EW(X)
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This identity generalizes to a linear action of W? on W' defined by

C(U)nmk: - Z Crnmkn'm’k'Un’m/’k’ -
(n/m/k/)
Now, images of operators form a proper submanifold of W?. Likewise, images of vectors
form a submanifold W!'. We can lift the action of M on v to these larger spaces via the
commutative diagram

J2M
wl =, wt

»] |

L?*(R) — L*(R)

The significance of this lift is that by a suitable choice of o we can reduce the complexity

of the map J2M, and therefore the complexity of the operator application.

Composing operators. Let X,Y,Z be three named copies of R. Suppose that M :
L*(X) — L3(Y) and N : L*(Y) — L2(Z) are Hilbert-Schmidt operators. We have the
identity

(NM,wx @ wz) = Z (N,wy @ wz)(M,wx @ wy).
wy EW(Y)

This generalizes to an action of W? on W?, which is defined by the formula
C(d)nmkn’m’k’ - Z dnmkn”m”k”cn”m”k”n’m’k’7
n//m//k://
where ¢ and d are sequences in W2. Using J2, we can lift multiplication by N to an action

on these larger spaces via the commutative diagram

J2N

1A% W2

q e

L(R?) —— L*(R?)

Again, by a suitable choice of o the complexity of the operation may be reduced to below

that of ordinary operator composition.
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Operation counts: transforming a vector. Suppose that M is a non-sparse operator
of rank r. Ordinary multiplication of a vector by M takes at least O(r?) operations, with
the minimum achievable only by representing M as a matrix with respect to the bases of
its r-dimensional domain and range.

On the other hand, the injection J? will require O(r?[logr]?) operations, and each of
J' and R! require O(rlogr) operations. For a fixed basis subset o of W2, the application
of J2M to J'v requires at most #|J2M| operations, where #|U| denotes the number of
nonzero coefficients in U. We may choose our wavelet library so that #[J2M| = O(r?).
Thus the multiplication method described above costs an initial investment of O(r?[log r]?),
plus at most an additional O(r?) per right-hand side. Thus the method has asymptotic
complexity O(r?) per vector in its exact form, as expected for what is essentially multipli-
cation by a conjugated matrix.

We can obtain lower complexity if we take into account the finite accuracy of our
calculation. Given a fixed matrix of coefficients C, write Cs for the same matrix with
all coefficients set to 0 whose absolute values are less than 4. By the continuity of the
Hilbert-Schmidt norm, for every € > 0 there is a § > 0 such that ||C — Cs||gs < €. Given
M and € as well as a library of wave packets, we can choose a basis subset ¢ C W? so
as to minimize #|(J2M)s|. The choice algorithm has complexity O(r?[logr]?), as shown
in [W2]. For a certain class of operators, there is a library of wave packets such that for

every fixed 6 > 0 we have
(S) #|(J3M)s] = O(rlogr),

with the constant depending, of course, on 4. We will characterize this class, give examples
of members, and find useful sufficient conditions for membership in it. For the moment,
call this class with property S the sparsifiable Hilbert-Schmidt operators §. By the esti-
mate above, finite-precision multiplication by sparsifiable rank-r operators has asymptotic

complexity O(rlogr).

Operation counts: composing two operators. Suppose that M and N are rank-r

operators. Standard multiplication of N and M has complexity O(r3). The complexity of
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injecting N and M into W? is O(r2[logr]?). The action of J2N on J?M has complexity
O, .x #J2Ny 7z (ny,my. ky) = (n,m,k)|#|J*Mxy : (ny,my,ky) = (n,m,k)|).
The second factor is a constant r log r, while the first when summed over all nmk is exactly
#|J2N|. Thus the complexity of the nonstandard multiplication algorithm, including the
conjugation into the basis set o, is O(#|J2N|rlogr). Since the first factor is r? in general,
the complexity of the exact algorithm is O(r®logr) for generic matrices, reflecting the
extra cost of conjugating into the basis set o.

For the approximate algorithm, the complexity is O(#|(J2N)s|rlogr). For the sparsifi-
able matrices, this can be reduced by a suitable choice of o to a complexity of O(r?[logr]?)
for the complete algorithm. Since choosing o and evaluating J2 each have this complexity,

it is not possible to do any better by this method.
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