NONSTANDARD MATRIX MULTIPLICATION

MLADEN VICTOR WICKERHAUSER

Numerical Algorithms Research Group
Department of Mathematics
Yale University
New Haven, Connecticut 06520

15 May 1990

Wave packets. Define wave packets over l^2 in the usual way. For a pair $P = \{p_i\}, Q = \{q_i\}$ of quadrature mirror filters (QMFs) satisfying the orthogonality and decay conditions stated in [CW], there is a unique solution to the functional equation

$$\phi(t) = \sqrt{2} \sum_{j \in \mathbf{Z}} p_j \phi(2t - j).$$

Put $w = w_{0,0,0} = \phi$, and define recursively

$$w_{2n,0,0}(t) = \sqrt{2} \sum_{j \in \mathbf{Z}} p_j w_{n,0,0}(2t - j),$$

$$w_{2n+1,0,0}(t) = \sqrt{2} \sum_{j \in \mathbf{Z}} q_j w_{n,0,0}(2t - j).$$

Then set $w_{nmk}(t) = 2^{m/2}w_{n00}(2^mt - k)$. Write $\mathcal{W}(\mathbf{R}) = \{w_{nmk} : n, m, k \in \mathbf{Z}\}$ for the collection of functions so defined, which we shall call wave packets.

The quadrature mirror filters P, Q may be chosen so that $\mathcal{W}(\mathbf{R})$ is dense in many common function spaces. With the minimal hypotheses of [CW], $\mathcal{W}(\mathbf{R})$ will be dense in $L^2(\mathbf{R})$. Using the Haar filters $P = \{1/\sqrt{2}, 1/\sqrt{2}\}, Q = \{1/\sqrt{2}, -1/\sqrt{2}\}$ produces $\mathcal{W}(\mathbf{R})$ which is dense in $L^p(\mathbf{R})$ for 1 . Longer filters can generate smoother wave packets, so we can also produce dense subsets of Sobolev spaces, etc.

Research supported in part by ONR Grant N00014-88-K0020.

Basis subsets. Define a basis subset σ of the set of indices $\{(n, m, k) \in \mathbf{Z}^3\}$ to be any subcollection with the property that $\{w_{nmk} : (n, m, k) \in \sigma\}$ is a Hilbert basis for $L^2(\mathbf{R})$. We characterize basis subsets in [W1]. Abusing notation, we shall also refer to the collection of wave packets $\{w_{nmk} : (n, m, k) \in \sigma\}$ as a basis subset.

Since $L^2 \cap L^p$ is dense in L^p for $1 \le p < \infty$, with certain QMFs a basis subset will also be a basis for L^p . Likewise, for nice enough QMFs, it will be a Hilbert basis for the various Sobolev spaces.

Since $L^2(\mathbf{R}) \otimes L^2(\mathbf{R})$ is dense in $L^2(\mathbf{R}^2)$, the collection $\{w_X \otimes w_Y : w_X \in \mathcal{W}(X), w_Y \in \mathcal{W}(Y)\}$ is dense in the space of Hilbert-Schmidt operators. Call $\sigma \subset \mathbf{Z}^6$ a basis subset if the collection $\{w_{n_X m_X k_X} \otimes w_{n_Y m_Y k_Y} : (n_X, m_X, k_X, n_Y, m_Y, k_Y) \in \sigma\}$ forms a Hilbert basis. Such two-dimensional basis subsets are characterized in [W2].

Ordering wave packets. Wave packets w_{nmk} can be totally ordered. We say that w < w' if (m, n, k) < (m', n', k'). The triplets are compared lexicographically, counting the scale parameter m as most significant.

Tensor products of wave packets inherit this total order. Write $w_X = w_{n_X m_X k_X}$, etc. Then we will say that $w_X \otimes w_Y < w_X' \otimes w_Y'$ if $w_X < w_X'$ or else if $w_X = w_X'$ but $w_Y < w_Y'$. This is equivalent to $(m_X, n_X, k_X, m_Y, n_Y, k_Y) < (m_X', n_X', k_X', m_Y', n_Y', k_Y')$ comparing lexicographically from left to right.

Define the adjoint order $<^*$ by exchanging X and Y indices, namely $w_X \otimes w_Y <^*$ $w_X' \otimes w_Y'$ if and only if $w_Y \otimes w_X <^* w_Y' \otimes w_X'$. This is also a total order.

Projections. Let \mathcal{W}^1 denote the space of bounded sequences indexed by the three wave packet indices n, m, k. With the ordering above, we obtain a natural isomorphism between l^{∞} and \mathcal{W}^1 . There is also a natural injection $J^1: L^2(\mathbf{R}) \hookrightarrow \mathcal{W}^1$ given by $c_{nmk} = \langle v, w_{nmk} \rangle$, for $v \in L^2(\mathbf{R})$ and $w_{nmk} \in \mathcal{W}(\mathbf{R})$. If σ is a basis subset, then the composition J^1_{σ} of J^1 with projection onto the subsequences indexed by σ is also injective. J^1_{σ} is an isomorphism of $L^2(\mathbf{R})$ onto $l^2(\sigma)$, which is defined to be the square summable sequences of \mathcal{W}^1 whose indices belong to σ .

We also have a map $R^1: \mathcal{W}^1 \to L^2(\mathbf{R})$ defined by $R^1c(t) = \sum_{(n,m,k) \in \mathbf{Z}^3} c_{nmk} w_{nmk}(t)$.

This map is defined and bounded on the closed subspace of \mathcal{W}^1 isomorphic to l^2 under the natural isomorphism mentioned above. In particular, R^1 is defined and bounded on the range of J^1_{σ} for every basis subset σ . The related restriction $R^1_{\sigma}: \mathcal{W}^1 \to L^2(\mathbf{R})$ defined by $R^1_{\sigma}c(t) = \sum_{(n,m,k)\in\sigma} c_{nmk}w_{nmk}(t)$ is a left inverse for J^1 and J^1_{σ} . In addition, $J^1R^1_{\sigma}$ is a projection of \mathcal{W}^1 . Likewise, if $\sum_i \alpha_i = 1$ and $R^1_{\sigma_i}$ is one of the above maps for each i, then $J^1\sum_i \alpha_i R^1_{\sigma_i}$ is also a projection of \mathcal{W}^1 . It is an orthogonal projection on any finite subset of \mathcal{W}^1 .

Similarly, writing W^2 for $W^1 \times W^1$, the ordering of tensor products gives a natural isomorphism between l^{∞} and W^2 . The space $L^2(\mathbf{R}^2)$, i.e., the Hilbert-Schmidt operators, inject into this sequence space W^2 in the obvious way, namely $M \mapsto \langle M, w_{n_X m_X k_X} \otimes w_{n_Y m_Y k_Y} \rangle$. Call this injection J^2 . If σ is a basis subset of W^2 , then the composition J^2 of J^2 with projection onto subsequences indexed by σ is also injective. J^2_{σ} is an isomorphism of $L^2(\mathbf{R}^2)$ onto $l^2(\sigma)$, the square summable sequences of W^2 whose indices belong to σ .

The map $R^2: \mathcal{W}^2 \to L^2(\mathbf{R}^2)$ given by $R^2c(x,y) = \sum c_{XY}w_X(x)w_Y(y)$, is bounded on that subset of \mathcal{W}^2 naturally isomorphic to l^2 . In particular, it is bounded on the range of J^2_{σ} for every basis subset σ .

We may also define the restrictions R^2_{σ} of R^2 to subsequences indexed by σ , defined by $R^2_{\sigma}c(x,y) = \sum_{(w_X,w_Y)\in\sigma} c_{XY}w_X(x)w_Y(y)$. There is one for each basis subset σ of \mathcal{W}^2 . Then R^2_{σ} is a left inverse of J^2 and J^2_{σ} , and $J^2R^2_{\sigma}$ is a projection of \mathcal{W}^2 . As before, if $\sum_i \alpha_i = 1$ and σ_i is a basis subset for each i, then $J^2 \sum_i R^2_{\sigma_i}$ is also a projection of \mathcal{W}^2 . It is an orthogonal projection on any finite subset of \mathcal{W}^2 .

Applying operators to vectors. For definiteness, let X and Y be two named copies of \mathbf{R} . Let $v \in L^2(X)$ be a vector, whose coordinates with respect to wave packets form the sequence $J^1v = \{\langle v, w_X \rangle : w_X \in \mathcal{W}(X)\}.$

Let $M: L^2(X) \to L^2(Y)$ be a Hilbert-Schmidt operator. Its matrix coefficients with respect to the complete set of tensor products of wave packets form the sequence $J^2M = \{\langle M, w_X \otimes w_Y \rangle : w_X \in \mathcal{W}(X), w_Y \in \mathcal{W}(Y)\}$. We obtain the identity

$$\langle Mv, w_Y \rangle = \sum_{w_X \in \mathcal{W}(X)} \langle M, w_X \otimes w_Y \rangle \langle v, w_X \rangle$$

This identity generalizes to a linear action of \mathcal{W}^2 on \mathcal{W}^1 defined by

$$c(v)_{nmk} = \sum_{(n'm'k')} c_{nmkn'm'k'} v_{n'm'k'}.$$

Now, images of operators form a proper submanifold of W^2 . Likewise, images of vectors form a submanifold W^1 . We can lift the action of M on v to these larger spaces via the commutative diagram

$$\mathcal{W}^1 \xrightarrow{J_{\sigma}^2 M} \mathcal{W}^1$$
 $J^1 \uparrow \qquad \qquad \downarrow_{R^1}$
 $L^2(\mathbf{R}) \xrightarrow{M} L^2(\mathbf{R})$

The significance of this lift is that by a suitable choice of σ we can reduce the complexity of the map $J_{\sigma}^2 M$, and therefore the complexity of the operator application.

Composing operators. Let X, Y, Z be three named copies of \mathbf{R} . Suppose that M: $L^2(X) \to L^2(Y)$ and $N: L^2(Y) \to L^2(Z)$ are Hilbert-Schmidt operators. We have the identity

$$\langle NM, w_X \otimes w_Z \rangle = \sum_{w_Y \in \mathcal{W}(Y)} \langle N, w_Y \otimes w_Z \rangle \langle M, w_X \otimes w_Y \rangle.$$

This generalizes to an action of \mathcal{W}^2 on \mathcal{W}^2 , which is defined by the formula

$$c(d)_{nmkn'm'k'} = \sum_{n''m''k''} d_{nmkn''m''k''} c_{n''m''k''n'm'k'},$$

where c and d are sequences in \mathcal{W}^2 . Using J^2 , we can lift multiplication by N to an action on these larger spaces via the commutative diagram

$$\mathcal{W}^2 \xrightarrow{J_{\sigma}^2 N} \mathcal{W}^2$$

$$J^2 \uparrow \qquad \qquad \downarrow_{R^2}$$

$$L^2(\mathbf{R}^2) \xrightarrow{N} L^2(\mathbf{R}^2)$$

Again, by a suitable choice of σ the complexity of the operation may be reduced to below that of ordinary operator composition.

Operation counts: transforming a vector. Suppose that M is a non-sparse operator of rank r. Ordinary multiplication of a vector by M takes at least $O(r^2)$ operations, with the minimum achievable only by representing M as a matrix with respect to the bases of its r-dimensional domain and range.

On the other hand, the injection J^2 will require $O(r^2[\log r]^2)$ operations, and each of J^1 and R^1 require $O(r\log r)$ operations. For a fixed basis subset σ of \mathcal{W}^2 , the application of $J^2_{\sigma}M$ to J^1v requires at most $\#|J^2_{\sigma}M|$ operations, where #|U| denotes the number of nonzero coefficients in U. We may choose our wavelet library so that $\#|J^2_{\sigma}M| = O(r^2)$. Thus the multiplication method described above costs an initial investment of $O(r^2[\log r]^2)$, plus at most an additional $O(r^2)$ per right-hand side. Thus the method has asymptotic complexity $O(r^2)$ per vector in its exact form, as expected for what is essentially multiplication by a conjugated matrix.

We can obtain lower complexity if we take into account the finite accuracy of our calculation. Given a fixed matrix of coefficients C, write C_{δ} for the same matrix with all coefficients set to 0 whose absolute values are less than δ . By the continuity of the Hilbert-Schmidt norm, for every $\epsilon > 0$ there is a $\delta > 0$ such that $\|C - C_{\delta}\|_{HS} < \epsilon$. Given M and ϵ as well as a library of wave packets, we can choose a basis subset $\sigma \subset \mathcal{W}^2$ so as to minimize $\#|(J_{\sigma}^2 M)_{\delta}|$. The choice algorithm has complexity $O(r^2[\log r]^2)$, as shown in [W2]. For a certain class of operators, there is a library of wave packets such that for every fixed $\delta > 0$ we have

(S)
$$\#|(J_{\sigma}^2 M)_{\delta}| = O(r \log r),$$

with the constant depending, of course, on δ . We will characterize this class, give examples of members, and find useful sufficient conditions for membership in it. For the moment, call this class with property S the *sparsifiable* Hilbert-Schmidt operators \mathcal{S} . By the estimate above, finite-precision multiplication by sparsifiable rank-r operators has asymptotic complexity $O(r \log r)$.

Operation counts: composing two operators. Suppose that M and N are rank-r operators. Standard multiplication of N and M has complexity $O(r^3)$. The complexity of

injecting N and M into \mathcal{W}^2 is $O(r^2[\log r]^2)$. The action of J_{σ}^2N on J^2M has complexity $O(\sum_{nmk} \# |J_{\sigma}^2N_{YZ}|: (n_Y, m_Y, k_Y) = (n, m, k)|\# |J^2M_{XY}|: (n_Y, m_Y, k_Y) = (n, m, k)|$. The second factor is a constant $r \log r$, while the first when summed over all nmk is exactly $\# |J_{\sigma}^2N|$. Thus the complexity of the nonstandard multiplication algorithm, including the conjugation into the basis set σ , is $O(\# |J_{\sigma}^2N| r \log r)$. Since the first factor is r^2 in general, the complexity of the exact algorithm is $O(r^3 \log r)$ for generic matrices, reflecting the extra cost of conjugating into the basis set σ .

For the approximate algorithm, the complexity is $O(\#|(J_{\sigma}^2N)_{\delta}| r \log r)$. For the sparsifiable matrices, this can be reduced by a suitable choice of σ to a complexity of $O(r^2[\log r]^2)$ for the complete algorithm. Since choosing σ and evaluating J_{σ}^2 each have this complexity, it is not possible to do any better by this method.

References

- [CW] Ronald R. Coifman and M. Victor Wickerhauser, Best-adapted wave packet bases, preprint, Yale University (1990).
- [CMQW] Ronald R. Coifman, Yves Meyer, Steven Quake and M. Victor Wickerhauser, Signal processing and compression with wave packets, preprint, Yale University (1990).
- [W1] M. Victor Wickerhauser, Acoustic signal compression with wave packets, preprint, Yale University (1989).
- [W2] M. Victor Wickerhauser, *Picture compression by best-basis sub-band coding*, preprint, Yale University (1990).

^{*}Current address: Department of Mathematics, University of Georgia, Athens, Georgia 30602