Numerical Harmonic Analysis

The purpose of this talk is to describe recent developments involving the numeri-
cal implementation of methods from classical harmonic analysis in signal processing

and computational P.D.E.

As an example, Littlewood-Paley theory, in which a function or a Fourier multi-
plier is analyzed by partitioning the frequency space in dyadic blocks, has recently
been translated into a powerful numerical tool through expansions in orthonormal

wavelet bases. (See [1],[2].)

In this numerical setting one sees a general Calderon-Zygmund operator or
UD.O. as given by an “almost” diagonal matrix having a simple analysis and
being implementable by fast numerical algorithms (i.e. algorithms of complex-
ity CNlog N , N= number of discretization points:) Pseudo-differential calculus
is translated into an efficient numerical calculus in which smoothing operators are
represented by “small” matrices of low numerical rank (see [1]) permitting its use
in explicit calculations of solutions to P.D.E. In particular, we can obtain a fast
algorithm for the numerical computation of the Green’s function for a variable

coefficient Laplacean (with smooth coefficients).

In this exercise of translation of methods and ideas from harmonic analysis into
fast computational algorithms, one soon realizes that the ability to implement effi-
ciently an integral operator applied to a function is equivalent to a good understand-
ing of the interaction between geometry of the underlying space and cancellation
properties of the operator. In the particular case of Calderon-Zygmund operators
we see an efficient m-computational algorithm as being a translation of the method
of proof of the T" of 1 theorem of David and Journé. For the case of fractional
integrals and operators of potential theory, the need to come up with efficient com-
putations has led V. Rokhlin to the independent discovery of various versions of
Calderon-Zygmund theory as embodied in his multipole algorithms.

As it turns out, in this case, the question of fast computation is more elementary
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interactions and cancellations.

This interaction between harmonic analysis and a number of concrete problems
in applications, such as signal processing and computations, has opened a number

of new fundamental questions in analysis.

Our goal is to describe some of these problems on a few simple examples. We
start with a fundamental question of signal processing, the question of compression
of a signal. Stated simply, given a function (or more precisely, a vector which is a
sampled function) one would like to represent the function with as few parameters
as possible (here a representation is always assumed to a given fixed precision). Such
a representation could be given in terms of expansion coefficients, Fourier, Taylor,
etc. or by stating that the function solves an equation which is easy to describe
(say by giving coefficients of a differential equation). The ability to represent a
function simply with few parameters is not only desirable in applications for storage
purposes, it is also a test of our understanding of the structure of the function and
its numerical complexity. Traditionally, the first attempt to represent a signal (or
a function not described analytically) would be to expand the signal in a Fourier
seires, or in terms of some other orthogonal (or non orthogonal expansion). This
leads to a variety of problems familiar to all analysts. Assume that a smooth
function is supported on a number of disjoint intervals. It is “clear” that separate
Fourier expansions restricted to these intervals will be much more “efficient” than
a single expansion on the union. The actual answers are not so obvious since some
intervals could be close to each and the term efficient has not been defined. We
see that we are confronted with the issue of selecting an optimal expansion inside
a class of possible expansions. This leads naturally to the concept of a library of
orthonormal bases, as well as to precise definitions of efficiency of an expansion.

Definition of modulated wave form libraries

We start by observing that it is impossible to construct an orthogonal basis

by localizing smoothly e?**. This is clear for the case of two adjacent windows
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implies that

/wl(x)wg(:v)ei(k_j)mdx =0

which implies w1 (z)ws(x)

than 2m).

Recently Daubechies, Jaffard, and Journé, as well as Malvar, observed that by
taking equal windows and sines or cosines orthogonality can be maintained. It was

observed in [3] that the windows can be chosen to different sizes enabling adaptive

constructions . (See Figures

5,6)

0 (if it is supported in an interval of length smaller
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Local trigonometric waveforms

Figure 2
We start by defining this library of trigonometric waveforms. These are local-
ized sine transforms associated to covering by intervals of R (more generally, of a
manifold).
o0
We consider acover R = |J I; I = [oaiy1) o < ajpq, write 4; = a1 —a; = |1
— o0

and let p;(z) be a window function supported in [o; — €; 1/2, ;41 + ¢;4+1/2] such

that
> pi(z) =1

and

pi(z) =1—p?(20;11 —x) for x mnear g

then the functions

\/%pl(x) sin[(2k + 1)2%1(33 — ;)]

form an orghonormal basis of L?(R) subordinate to the partition p;. The collection

Sz,k(x) =

of such bases forms a library of orthonormal bases.
It is easy to check that if H;, denotes the space of functions spanned by S; j, k =

0,1,2,... then H;, + Hy,,, is spanned by the functions

i1
2

) T
— Sm[(Qk + 1)W(x - az)]

P(x)



where
P? = pi(z) + piyy(2)

is a “window” function covering the interval I; U I;; 1. This fundamental identity
permits the useful implementation of the adapted window algorithm described in
Figure 1. (Other possible libraries can be constructed. The space of frequencies
can be decomposed into pairs of symmetric windows around the origin ,on which a
smooth partition of unity is constructed.

Higher dimensional libraries can also be easily constructed,(as well as libraries on

manifolds) leading to new and direct analysis methods for linear transformations.)

Relation to Wavelets - Wavelet Packets.
We consider the frequency line R split as R = (0,00) union R~ = (—o0,0).
On L%(0,00) we introduce a window function p(¢) such that > p?(27%¢) =1
k=—0c0

and p(¢) is supported in (3/4, 3) clearly we can view p(27%¢) as a window function

above the interval (2%,2%+1) and observe that

sin {(j + %)w (%)} p(277E) = si

form an orthonormal basis of L2(R ™). Similarly c; ; = cos [(] + D) (%Zk ﬂ p(27F¢)
gives another basis. If we define Si ; as an odd extension to R of s; ; and Cy ;
as an even extension, we find Sy ;1 Cy/ ; permitting us to write Cy ; £ iS;; =
eidmE/2% ) (£ /29) where (£) = €™/2p(¢) is the Fourier transform of the base
wavelet ¥ (see Meyer).

We therefore see that wavelet analysis corresponds to windowing frequency space
in “octave” windows (2%, 2F+1).

A natural extension therefore is provided by allowing all dyadic windows in
frequency space and adapted window choice. This sort of analysis is “equivalent”

to wavelet packet analysis.

The wavelet packet analysis algorithms permit us to perform an adapted Fourier
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regions in frequency. The dual version of the window selection provides an adapted
subband coding algorithm.

This new library of orthonormal bases constructed in time domain is called the
Wavelet packet library. This library contains the wavelet basis, Walsh functions,

and smooth versions of Walsh functions called wavelet packets.See Figure 7

Wavelet Packet Library

Figure 3
We’ll use the notation and terminology of [4], whose results we shall assume.
We are given an exact quadrature mirror filter h(n) satisfying the conditions of

Theorem (3.6) in [4], p. 964, i.e.
> h(n—2k)h(n —20) = 6, > h(n) = V2.
We let gr, = hj_x(—1)* and define the operations F; on ¢*(Z) into “/%(2Z)”

(1.0) Fo{si}t(i) = QZSkhkai

o1 —oN\N . .



The map F(sy) = Fy(sx) ® Fi(sg) € (2(2Z) @ (%(2Z) is orthogonal and
(1.1) FiFy+ FiF =1

We now define the following sequence of functions.

12) { Won(z) = V23 bW, (22 — k)
. Wong1(x) = V23 gkWa (22 — k).

Clearly the function Wy(x) can be identified with the scaling function ¢ in [D] and
W1 with the basic wavelet ).

Let us define mg(&) = % 3" hre~ ™€ and

mi(€) = —e“mo(¢ + ) = % ngeikg

Remark. The quadrature mirror condition on the operation F = (Fy, F}) is equiv-

alent to the unitarity of the matrix

_ | mo(§) m(§)
M= mo(§ + m) m1(£+7r)]

Taking the Fourier transform of (1.2) when n = 0 we get

Wo(€) = mo(£/2)Wo(€/2)

Wo(€) = ][ mo(&/2%)

and
W1(€) = ma(£/2)Wo(£/2) = ma(€/2)mo(€/4)mo(£/2%) - -

More generally, the relations (1.2) are equivalent to

(1.3) Wa(€) = [ [ me,(¢/29)

Jj=1

and n = Y e;2771(g; =0 or 1).
i=1
The functions W,,(z — k) form an orthonormal basis of L2(R!). a We define a
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where ¢,k € Z,n € N. Here, each element of the library is determined by a scaling
parameter ¢, a localization parameter k and an oscillation parameter n. (The
function W, (2% — k) is roughly centered at 2~“k, has support of size ~ 27¢ and
oscillates &~ n times).

We have the following simple characterization of subsets forming orthonormal

bases.

Proposition. Any collection of indices (¢,n) such that the intervals [2°n,2n + 1)

form a disjoint cover of [0,00) gives rise to an orthonormal basis of L',

(These intervals correspond to the partition of frequency space alluded to in §1.)

Motivated by ideas from signal processing and communication theory we were led
to measure the “distance” between a basis and a function in terms of the Shannon
entropy of the expansion. More generally, let H be a Hilbert space.

Let v € H, ||v| =1 and assume
H=o) H
an orthogonal direct sum. We define

(v, {Hi}) = = Y _ llvil*enfvi]?

as a measure of distance between v and the orthogonal decomposition.
2 is characterized by the Shannon equation which is a version of Pythagoras’
theorem.

Let
=oQ_H)o()_H))
— H+ @ H_
H' and H; give orthogonal decompositions Hy = >, H', H_ =Y H;. Then

(v {H', H;}) = €* (v, {H+, H_}

o P (2 1))

-t (g )

IWe can think of this cover as an even covering of frequency space by windows roughly localized




This is Shannon’s equation for entropy (if we interpret as in quantum mechanics
| Pz, v||? as the “probability” of v to be in the subspace H. ).

This equation enables us to search for a smallest entropy space decomposition
of a given vector.

In fact, for the example of the first library restricted to covering by dyadic
intervals we can start by calculating the entropy of an expansion relative to a local
trigonometric basis for intervals of length one, then compare the entropy of an
adjacent pair of intervals to the entropy of an expansion on their union. Pick the
expansion of minimal entropy and continue until a minimum entropy expansion is

achieved (see Figure 4).

Schematic Description

Of course, while entropy is a good measure of concentration or efficiency of
an expansion, various other information cost functions are possible, permitting

discrimination and choice between various expansions.

We illustrate these points, as well as the effect of various analysis methods,
in the next figures in which the vertical axes represents the frequency axes and
the horizontal is the time (or space) axes. The signals have 512 samples (and
are wrapped around). Each rectangular box in this phase space corresponds to a

coefficient obtained by correlating the signal with an element of the wavelet packet
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the projection of the box on the vertical axis. Each box has area 512 pixels (i.e. a

cover of the discrete phase plane has 512 element).

The compression rate can be computed as the ratio of the visible gray area to

the total area of the box (i.e. the relative number of visible boxes).

Wavelet coefficients of a function.
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A bestbasis wavelet packet analysis, this analysis corresponds
to selection of windows in frequency space,
to minimize the entropy of the expansion.

plug.asc

Figure 5
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A two windows expansion,with no adaptation

plug.asc

Figure 6
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A best level expansion,in which a fixed window size is chosen to minimize entropy

plug.asc

Figure 7

Of course we can try to characterize classes of functions which are well compress-
ible i.e., for which we can estimate the number of coefficients needed for representing
the function with a prescribed accuracy. Smooth functions are obvious candidates
as well as functions which can be well approximated locally by trigonometric poly-
nomials of short length. Various obvious definitions come to mine. At the moment

it would seem that experiment will provide a better guide.

The procedure for signal analysis described above is very similar to the usual
methods of studying Fourier multipliers in which we break the multiplier by an
appropriate partition of unity to simpler components whose spatial localization
and structure are easier to understand. We can describe a similar procedure for

integral operators

T = [ kr ) F(u)du
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which are not necessarily convolutions.

Our goal is to implement a discrete version of the operator fast.

A procedure that is equivalent to P;(Q); decompositions of Calderon-Zygmund
operators (see []) can be obtained by trying to compress the k(z,y) viewed as
an image, i.e. k(x,y) represents light intensity at pixel (x,y). Here again the
analysis consists in finding an optimal windowed expansion for k(z,) (or k(&, 7))
by selecting that combination of windows most efficient in capturing the kernel (see
Figure ).

Since the kernel is represented as a sum of products of functions of x and y it
is easy to convert an efficient two dimensional representation into a corresponding
efficient computation. Observe also that each box selected represents an interaction
between two windows on the line.

It can be proved that for k(z,y) a single or double layer potential for Helmholtz
on a curve or surface (with bounded curvature). This procedure leads to an order
pN log N algorithm, where p is the number of decimals desired, N is the number
of discretization points (=~ number of wave lengths on the surface).

For more general curves or surfaces one has to develop specific, highly oscillatory,
analogues to multipoles. (Smooth bases are useless). This has been done by Rokhlin

with a resulting description of local oscillatory interactions.
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