

CHAPTER 8 : A PARALLEL TWO DIMENSIONAL
WAVELET PACKET TRANSFORM AND ITS

APPLICATION TO MATRIX-VECTOR
MULTIPLICATION.

Eric GOIRAND
Mladen Victor WICKERHAUSER

Washington University

Department of Mathematics
1 Brookings Drive, Campus Box 1146
SAINT-LOUIS, MISSOURI, 63130

Abstract

In a first part, we study a parallel algorithm (on a MIMD machine)
to compute the two-dimensional wavelet packet transform. Then, we
apply it to compute the multiplication of a matrix by a vector in
parallel.

8.1. INTRODUCTION

That's the introduction.

8.2. A PARALLEL WAVELET PACKET DECOMPOSITION

8.2.1. Definition

From a two-dimensionnal periodic signal S = (si,j) with 0 ≤ i < 2Xmax and

0 ≤ j < 2Ymax, we pose nmax = min(Xmax,Ymax). In a first step we want to

calculate all the wavelet packets jf
Cj , sets of wavelet packet coefficients

f
k l
jj

j j
C , defined as follows :

- The indices are in the range :

Ν∈













<≤

<≤

<≤

≤≤

−

−

jjj

j
j

jYmax
j

jXmax
j

fandlkjwith

f

l

k

nmaxj

,,

40

20

20

0

- The initial packet is :
0 0 0 2 0 2C s with k lk l k l

Xmax Ymax
, , ,= ≤ < ≤ <

- Then all other packet is defined recursively by the formula :
f f d

k l
j

j n k m l
f

n m
j

n m

j j

j j j j j j

j

j j

j j

C F d f C+

+ + + +

= + +
− −= ∗∑1

1 1 1 1

4 1
2 2

.
, , ,

,

(,) wit

d = 0, 1, 2 or 3. We shall say that the packet
f jj C is the father of

the four packets 4 1⋅ + +f d jj C or that they are its four children.

- From a one-dimensional wavelet Ψ (defined by its fil ter G) and its
smoothing function Φ (defined by its fil ter H) we obtain four two-
dimensional filters by tensor products : Filter(0) = HH,
Filter(1) = HG, Filter(2) = GH and Filter(3) = GG. In order to
keep the frequencies (among the x and y axis) increasing, we then
define F d f Filter gray code d d fj n m j n m(,) (_ (,)), ,= 2 where

gray code d d f a bj_ (,)2 2= ⋅ + wit







−
=

oddisfifd

evenisfifd
a

j

j

)2mod(1

2mod
 and























−















=
oddis

f
if

d

evenis
f

if
d

b
j

j

22
1

22
 ([

x] is the integer part of x)

8.2.2. Remarks

- At a scale j+1, there are four times as many wavelet packets as there
are at scale j, and each wavelet packet has four times less
coefficients than those at scale j.

- From the first remark, ith an initial signal of 2Xmax by 2Ymax points,
we deduce that :

. At scale j, there ar j wavelet packets of 2 Xmax-j by
2Ymax-j coefficients, so we still have 2Xmax by 2Ymax
coefficients.

. We can then use the following representation of the two-
dime sional wavelet packet decomposition.

scale 0 :

f = 0

2Xmax

2Ymax

1 packet of

2Xmax 2Ymaxx points

scale 1 :

f = 0 f = 1

f = 2 f = 3

2Xmax-12Xmax-1

2Ymax-1

2Ymax-1

4 packets of

2Xmax-12Ymax-1x points

0 1

2 3

4 5

6 7

8 9

1110

12 13

14 15

scale 2 :

16 packets of

pointsx2Xmax-22Ymax-2

Figure 8.2.2 : Representation of a 2D wavelet packet decomposition

. If Xmax=Ymax=nmax, then at scale nmax, there are

4nmax wavelet packets of 1 coefficient.

8.2.3. General principle of a parallel decomposition algorithm

To do the decomposition in parallel, we chosed to separate each scale
(represented by a field of 2Xmax by 2Ymax points) in 4jp (0 ≤ jp < nmax) parts of
equal size. On a fixed process is always stored the same part of the field so we
identify the process name by the name of the packet it contains at scale jp. Here
is an example of the wavelet packets onto 4 processes (jp = 1) from scale
0 to 2 :

scale 0 :

f = 0f = 0

Proc = 2 Proc = 3

2Xmax-1

f = 02Ymax-1

Proc = 0

2Ymax-1f = 0

2Xmax-1
Proc = 1

Figure 8.2.3.1 :

Repartition of the wavelet packets of scale 0 onto 4 processes

2Xmax-1

f = 02Ymax-1

Proc = 0

2Ymax-1f = 1

2Xmax-1
Proc = 1

f = 3

Proc = 3

f = 2

Proc = 2

scale 1 :
(= scale jp)

Figure 8.2.3.2 :

Repartition of the wavelet packets of scale 1 onto 4 processes

scale 2 :

2Xmax-2

2Ymax-2

Proc = 0

0 1

2 3

Proc = 2

8 9

10 11

Proc = 1
2Xmax-2

2Ymax-2
4 5

6 7

Proc = 3

12 13

14 15

Figure 8.2.3.3 :

Repartition of the wavelet packets of scale 2 onto 4 processes

From the decomposition formula, one sees that the packets at scale j+1 are
obtained from those at scale j. Thus, to calculate the decomposition in parallel,
using the former field cut, is done in two different ways whether j is smaller o
greater than jp.

8.2.4. A parallel decomposition algorithm

First, we consider the case when j < jp

A packet at scale j is shared by 4 jp-j processes. In a first step, those processes
will exchange their data in order to have the whole shared packet on each of
them. Then, in a second step, they will calculate their own part of the packet
they share at scale j+1. This part is only the entire packet when scale j+1 equals
jp.

From the decomposition formula, we obtain that at scale j, the frequency f of

the packet stored on process p is given by 



= − jjp

p
f

4
 where [x] is the integer

part of x. Reciprocally, a packet at scale j and frequency f is shared by the

processes p fjp j= ⋅−4 to () 114 −+⋅= − fp jjp . We shall say that the first one is

the base process and all processes sharing the same packet are companions.

In the same way, we have that at scale j, the position (base_x, base_y) of the
upper left corner of the packet stored on process p is given by :

- () 









−= −

Xmax
jjp

Xmax j
p

cxjppcxxbase 2,,
4

2,,_ where





















⋅

=
=

∑
=

−
−

jp

m
mjp

mXmax
Xmax

otherwise
p

jpif

jppcx

1

2mod
4

2

00

)2,,(

- () 









−= −

Ymax
jjp

Ymax j
p

cyjppcyybase 2,,
4

2,,_ where























































⋅

=

=
∑

=

−
−

jp

m

mjp
mYmax

Ymax

otherwise

p

jpif

jppcy

1

2mod
2

4
2

00

)2,,(

And the width and height of the part of the packet stored on a process at scale j
is 2Xmax-jp by 2Ymax-jp.

Example : Suppose we have 16 processes (jp=2) and we try to calculate what
are the processes sharing the packet at scale j=1 and frequency f=2.

Scale 1

2Ymax-2

2Xmax-2
0,0 x

y

2Ymax-2

p = 0 p = 1 p = 4 p = 5

p = 2 p = 3 p = 6 p = 7

p = 8 p = 9 p = 12 p = 13

p = 10 p = 11 p = 14 p = 15

f = 0f = 0 f = 1 f = 1

f = 0 f = 0 f = 1 f = 1

f = 2 f = 2 f = 3 f = 3

f = 2 f = 2 f = 3 f = 3

0

0
2Ymax-1- 1

2Ymax-1- 1

2Xmax-1- 1
2Xmax-1- 1

Figure 8.2.4 :
Example of the repartition of wavelet packet coefficients

at scale 1 with 16 processes.

From these hypotheses, 2
4

=



= p

f , so we deduce from the former formulas

that the processes sharing 2 1C are processes 8 to 11. Each of them have
wh = 2Xmax-jp by ht = 2Ymax-jp data.

Process 8 contains the local packet 2
0 1 0 1
1 2

0 0 1
1lC Cwh ht wh ht.. , , ..− − −=

Process 9 contains the local packet 2
0 1 0 1
1 2

2 1 0 1
1lC Cwh ht wh wh ht.. , , ..− − − −=

Process 10 contains the local packet 2
0 1 0 1
1 2

0 2 1
1lC Cwh ht wh ht ht.. , , ..− − −=

Process 11 contains the local packet 2
0 1 0 1
1 2

2 1 2 1
1lC Cwh ht wh wh ht ht.. , , ..− − − −=

We will do the transfers iteratively, on the index jj :

- We start with jj equals jp -1, we then define pivot processes named

depl, 



⋅= − jjjp

p
depl

4
4 . In a first step processes verifying

idepl
p

jjjp +=





−4
(A) exchange their data with processes

idepl
p

jjjp ++=





− 1
4

 (B) where i equals 0 or 2. At the end of

this step, the processes (A) and (B) share the same data. In a

second step, processes verifying idepl
p

jjjp +=





−4
(C) an

processes verifying idepl
p

jjjp ++=





− 2
4

(D) with i equals 0 o

1 will exchange the data they got from step one. At the end of
these two steps, the four processes share the same data.

- We decrease jj of one, and do the former point until jj equals j.
- At this point, each process sharing the same packet contains all the

data of this packet.

An example is advisable :

Suppose we have four processes (jp = 1) and we want to calculate the
packets at scale 1 from the packet at scale 0. We have j=0,
jj = jp-1=0. In this example, there will be only one loop over jj. In
the first step process 0 exchange its data with process 1
(Meantime, process 2 exchange its data with process 3). Then in

the second step process 0 exchange its new set of data (its initial
data plus process 1 initial data) with process 2 new set of data.
(Meantime process 1 does the same with process 3). We exit the
loop on jj, and every processes carry the packet 0 0C

Here is the algorithm in pseudo-code of the function doing the data transfers :

Here are the parameters of function Data transfers
p is the process_name
jp is such that 4jp is the number of processes
j is the current scale
f is the current frequenc
width is the width of the signal at scale 0
height is the height of the signal at scale 0
Local_packet is the local packet to transfe

Here are its contents

//First initialization
f = p / 4jp-j
factor = 1
f_child = p
llx = width / 2jp
lly = height / 2jp
base_x = cx(p,jp,width)-cx(f,j,width)
base_y = cy(p,jp,height)-cy(f,j,height)

f

base x wh base y ht
j

wh htC Local packet_ .. , _ , .._+ − + − − −=0 1 0 1 0 1 0 1

//Then transfe
FOR jj = jp-1 TO j BY STEP -1
 f_father = f_child / 4
 depl = 4 * f _fathe
 IF (((p/facto) equals depl) OR ((p/factor) equals (depl+2)))
 bx=cx(f_child*factor,jp,width)-cx(f,j,width)
 by=cy(f_child*factor,jp,height)-cy(f,j,height)
 Send f

bx llx by lly
jC + − + −0 1 0 1.. , .. to process p+factor

 bx=cx((f_child+1)* factor,jp,width)-cx(f,j,width)
 by=cy((f_child+1)*factor,jp,height)-cy(f,j,height)
 Receive f

bx llx by lly
jC + − + −0 1 0 1.. , .. from process p+factor

 ELSE
 bx=cx((f_child-1)* factor,jp,width)-cx(f,j,width)
 by=cy((f_child-1)* factor,jp,height)-cy(f,j,height)
 Receive f

bx llx by lly
jC + − + −0 1 0 1.. , .. from process p-factor

 bx=cx(f_child*factor,jp,width)-cx(f,j,width)
 by=cy(f_child*factor,jp,height)-cy(f,j,height)
 Send f

bx llx by lly
jC + − + −0 1 0 1.. , .. to process p-factor

 ENDIF

 ll x = llx *2

 IF (((p/factor) equals depl) OR ((p/factor) equals (depl+1)))
 bx=cx(depl* factor,jp,width)-cx(f,j,width)
 by=cy(depl* factor,jp,height)-cy(f,j,height)
 Send f

bx llx by lly
jC + − + −0 1 0 1.. , .. to process p+2*factor

 bx=cx((depl+2)*factor,jp,width)-cx(f,j,width)
 by=cy((depl+2)*factor,jp,height)-cy(f,j,height)
 Receive f

bx llx by lly
jC + − + −0 1 0 1.. , .. from process p+2*factor

 ELSE
 bx=cx((depl-2)* factor,jp,width)-cx(f,j,width)
 by=cy((depl-2)* factor,jp,height)-cy(f,j,height)
 Receive f

bx llx by lly
jC + − + −0 1 0 1.. , .. from process p-2*factor

 bx=cx(depl* factor,jp,width)-cx(f,j,width)
 by=cy(depl* factor,jp,height)-cy(f,j,height)
 Send f

bx llx by lly
jC + − + −0 1 0 1.. , .. to process p-2*factor

 ENDIF

 lly = lly*2
 f_child = f_fathe
 factor = 4*factor
ENDFOR j

Data transfers returns the packet f jC .

To calculate the transfer complexity, we will assume that the cost of a data
transfer is independent of the size of the data set, although it is approximatel
true for a large size data set. Thus, the transfer complexity will only show an
order of the number of transfers without any specification of the sizes of the
data sets.

The transfer complexity for the function Data transfers is then 4*(jp-j).

We can write the algorithm of the decomposition when j < jp :

p is the process name
4jp is the number of processes
wh = width / 2jp
ht = height / 2jp

FOR j = 0 TO jp-1
 f = p / 4jp-j
 fc = p / 4jp-j-1
 d = fc modulo 4

 //First we exchange data to have f jC

 ()jfYmaxXmaxjf lCfjjpptransfersDataC ,2,2,,,,=

 //Second, we define the filter to use :
 FF = F(d,f)

 //Third, we calculate fc jlC +1 :
 base_x = cx(p,jp,width)-cx(f,j,width)
 base_y = cy(p,jp,height)-cy(f,j,height)

 // Fourth we calculate the local child packet

 ∑ ++++
+ =

llkk

j
lybasellkxbasekk

f
llkk

j
lk

fc CFFlC
,

)_*(2),_*(2,
1

,

ENDFOR j

In this algorithm, the function Data transfers is done jp times, we deduce that
its transfer complexity is of ord er O(2*jp*(jp+1)). The computational
complexity is of order O(jp*2 Xmax*2Ymax/4jp) where the constant depends on the
length of the filters. In simple terms, if NP=4jp is the number of processes and
if we have N=4nmax points (Xmax=Ymax=nmax), then the transfer complexit
is O(2*[log4(NP)]2) and the calculus complexity is O(P*log4(NP)*N/NP).

Second the case when j ≥≥≥≥ jp

Each process has 4j-jp packets, and from each of these, we need to calculate
their four children. In this case, there is no parallelism as the children also
belong to the process. We will then use the sequential algorithm on the subset
of packets each process carries at scale j.

p is the process name
FOR j = jp TO nmax
 FOR f = 4j-jp * p TO 4j-jp * (p+1) - 1
 FOR d = 0 TO 3
 First we set the fil ter to use : FF = F(d,f)
 The we calculate 4 1f d jC+ + :

 ∑ ++
++ =

llkk

j
lllkkk

f
llkk

j
lk

df CFFC
,

*2,*2,
1

,
4

 ENDFOR d
 ENDFOR f
ENDFOR j

In this part of the algorithm, there is no transfer complexity and the
computational complexit is of order O((nmax-jp)*2Xmax*2Ymax/4jp). If we
consider NP=4jp processes and N=4nmax points, then the complexity of this part
is O((log4(N)-log4(NP))*N/NP).

Complexities of the parallel decomposition algorithm

From the two different parts of the parallel decomposition algorithm, we
conclude the transfer complexity is of order O(2*jp*(jp+1)) and the
computational complexity is of order O(nmax*2Xmax*2Ymax/4jp).

In a simpler form, if N=4nmax is the number of points (Xmax=Ymax=nmax)
and NP=4jp is the number of processes then the transfer complexity is
O(2*[log4(NP)]2) and the computational complexity is O(log4(N)*N/NP).

8.3. A PARALLEL WAVELET PACKET BEST BASIS
SELECTION

8.3.1. Definition

At the end of the decomposition, we obtained the complete discrete analysis of
the input data. We must now extract a subset of wavelet packets forming a
basis. There are indeed, many methods to extract a basis, keeping only the
wavelet packets at a certain scale is for example a solution.

But if we conside a family of wavelet packets f j

JC with j J and f F∈ ∈ , select

a basis among all those packets means that if a packet f jC0 0 belongs to the

basis, all i ts descendants, the packets 1*4
000 ++ jdf

C , 2)*4*(4
0100 +++ jddf

C , etc ...
(with d0, d1 equals 0,1,2 or 3) cannot belong to the same basis.

The solution we have chosen consists in finding a "best basis". At each packet
f jC , we associate a value ()jf CM , result of a measure M on the set.

For example, we can take a measure M which counts the non null wavelet
packet coefficients of a wavelet packet. Another common used measure is Me,
the one which evaluates the entropy of a wavelet packet :

[]












−=
=∅

∑
lk

j
lk

fj
lk

fjf CCCMe

Me

,

2
,

2
,)(ln*)()(

0)(
.

Once the measure is chosen, we shall keep a family of wavelet packets that
satifies the condition for being a basis and that minimizes the value of the
measure.

This is done easily by an iterative algorithm. We define f
value
jC to be the value

of the measure of the best basis of wavelet packets in th e subset below f jC .
First, for all the frequencies f at scale j=nmax, we initialize

()jfj
value

f CMC = . Then we start the algorithm at scale j=nmax-1. For all the

frequencies f at scale j, we compare ()jf CMv =0 to ∑
=

++=
3

0

1*4
1

d

j
value

df Cv . If v0

is smaller than or equal to v 1 we keep the wavelet packet f jC , we set
f

value
jC v= 0, and we do not keep all its descendants. If v 0 is greater than v1, we

keep the four children packets 1*4 ++ jdf C , and we equal j
value

f C to v1. We

decrease j of one and start again the algorithm until j equals 0. At scale 0, all
the kept packets form the "best basis" of the signal.

8.3.2. General principle of a parallel best basis selection

To select the best basis in parallel, we will use how the wavelet packets are
stored on the dif ferent processes after the decomposition. Thus, if we have 4jp
processes, from scale 0 to scale jp-1, the wavelet packets will be shared by more
than one process and from scale jp to nmax, they will be part of a process.

From the definition of the best basis selection, one can see that there will be
again two different algorithms whether j is greater or smaller than jp. In orde

to know if a packet is kept or not, we define j
status

f C (j
status

f lC for a local

packet) a variable equal to KEPT if the wavelet packet jf C is part of the best
basis and NOT_KEPT if it is not.

Before selecting the best basis, we will suppose that the user has already chosen

a measure M and has already computed ()jf CM for every packets of the

decomposition. In the next algorithm, we will then consider it as a constant,
and therefore, wil l not contribute to the computational complexity.

8.3.3. A parallel best basis selection algorithm

First, the case when j ≥≥≥≥ jp

In that case, the best basis algorithm is the same as the sequential one except
that it is done on each subset of wavelet packets which belong to each process.

FOR f = 4nmax-jp * p TO 4nmax-jp * (p+1) - 1

 f
status
jC KEPT=

 ()jfj
value

f CMC =

ENDFOR f

FOR j = nmax-1 TO jp BY STEP -1
 FOR f = 4j-jp * p TO 4j-jp * (p+1) - 1

 ∑
=

++=
3

0

1*4
1

d

j
value

df Cv

 ()jf CMv =0

 IF (v0 ≤ v1)

 KEPTC j
status

f =

 0vC j
value

f =

 factor=1
 FOR jj=j+1 TO nmax
 factor = factor*4
 f_base = factor* f
 FOR ff = 0 TO facto

 KEPTNOTC jj
status

ffbasef __ =+

 ENDFOR ff
 ENDFOR jj
 ELSE

 f
status
jC NOT KEPT= _

 f
value
jC v= 1

 ENDIF
 ENDFOR f
ENDFO j

The computational complexity of this algorithm is of order O(4/3*(4nmax-jp - 1)).
Therefore, if we have NP=4jp processes and N=4 nmax points, this complexit
becomes O(4/3*(N/NP - 1)).

Second, the case when j < jp

From the parallel decomposition, we have seen that at scale j, the process p is

storing the local packet j
p

lC
jjp 





−4 . At scale j, we then have that the packet
jf C is shared by the processes fp jjp ⋅= −4 to () 114 −+⋅= − fp jjp . Wit

another small calculation, one can see that the packets)3..0(1*4 =++ dC jdf

are shared by exactly the same processes.

From these three remarks, we deduce that if we add 









=







− j

p

lCMlv
jjp4

0

between processes basefp jjp _4 ⋅= − to () 11_4 −+⋅= − basefp jjp where





= − jjp

p
basef

4
_ , we will obtain ()jbasef CMv _

0 = and if we add

14 1 +





−− j
value

p

lC
jjp

 between the same processes, we will get

∑
=

++=
3

0

1_*4
1

d

j
value

dbasef Cv .

One solution consists in adding all those local values in order to get v 0 and v1.

However, we are twice redundant : we do the same calculation at scale j+1 and
at scale j. (once for calculatig v0 and the second time for v 1). But we can easil

change the sequential algorithm to improve this if at each scale j, after having

calculated v0 and v1, we set the local value j
value

p

lC
jjp 





−4 to the winner.

Then, each process sharing 1_4 ++⋅ jdbasef C has the same local value
1_*4 ++ j

value
dbasef lC , so the calculation of v 1 as we explained it formerly does not

give v1 but gives 4 1
1

jp j v− − ⋅ . Al though it seems worse than the first solution,

this approach is much better because the calculation of v 1 needs only the

addition of four local values instead of 4jp-j. Indeed, we can now calculate v1 by

the following formula :

()
∑

=

=

+









 ⋅++
−−

−−−−

=
3

0

14

44mod

1

1

11
i

i

j
value

ipdepl

lCv
jjp

jjpjjp

 wit

basefdepl jjp _4 ⋅= − .

An example is more than advisable :

Suppose that jp=2, j=0 and p=5. To calculate v1, the previous formula

gives 113191511
1

++++ +++= j
value

j
value

j
value

j
value lClClClCv so process 5

only has to exchange its data with processes 1, 9 and 13.

In conclusion, suppose we are on process p, the parallel algorithm becomes :

- We start at j = jp-1.

- First, we calculate 



= − jjp

p
basef

4
_ and depl f basejp j= ⋅−4 _ .

Second, we calculate ∑
−

=





 +−

−











=

14

0

4
0

jjp

jjp

i

j

idepl

lCMv by adding all

the values of the local packets at scale j. Third, we calculate
()

∑
=

=

+









 ⋅++
−−

−−−−

=
3

0

14

44mod

1

1

11
i

i

j
value

ipdepl

lCv
jjp

jjpjjp

by adding all the values

of the local packets at scale j+1. Finally, we compare v0 to v1. If v0

is smaller than or equal to v 1 then we keep the local wavelet

packet j

p

lC
jjp 





−4 , we equal j
value

p

lC
jjp 





−4 to v0, and we do not

keep all its descendants. If v0 is greater than v1, we keep the local

packet 14 1 +





−− j

p

lC
jjp

, and we equal j
value

p

lC
jjp 





−4 to v1.

- We decrease j of one and do the former point until j equals 0.

One solution to exchange the local values consists in taking all the processes
involved and exchange their local values two by two, until every processes have
the total sum. The next figure explains graphically how it works.

j = 0

jp = 1

depl depl + 1 depl + 2 depl + 3

depl

depl

depl + 1 depl + 2

depl + 2

depl + 3

depl + 3 depl + 1

Figure 8.3.4.1 :

Transfer of the local values v0 between processes depl to depl+3

To calculate v1, we wil l use the same principle, except that the first transfe

may not be anymore between process depl and depl+1 but will be between depl
and depl+4jp-j-1.

Here is then the algorithm of the function doing these transfers :

Here are the parameters of function Local value transfer :
 p is the name of the current process
 np is the number of processes doing the transfe
 p_base is the pivot process
 p_shift is the shift of processes to do the transfe
 local_valuep is the value of the process p to transfe

Here are its contents :
test=np
stepsize=p_shift
pvalue=local_valuep

WHILE (test > p_shift)
 IF (((p - p_base) mod (2*stepsize)) < stepsize)
 p2=p+stepsize
 start=1

 ELSE
 p2=p-stepsize
 start=0
 ENDIF

 IF (start = 1)
 Send pvalue to process p2
 Receive p2value from process p2
 ELSE
 Receive p2value from process p
 Send pvalue to process p
 ENDIF

 pvalue = pvalue + p2value

 test = test/2
 stepsize = stepsize * 2
ENDWHILE

total_value=pvalue
Local value transfer returns total_value

The transfer complexity of this function is of order O(2*log 2(test/p_shift)) and

the computation complexity is of order O(log2(test/p_shift)).

The best basis selection algorithm when j is smaller than jp is then :

p is the name of the current process
4jp is the maximum number of processes

FOR j = jp-1 TO 0 BY STEP -1
 f = p / 4jp-j
 f_child = p / 4jp-j-1

 v0 = Local value transfer(p,4jp-j,f,1, ()jf lCM)

 v1 = Local value transfer(p,4jp-j,f,4jp-j-1, 1_ +j
value

childf lC)

 IF (v0 ≤ v1)

 KEPTlC j
status

f =

 0vlC j
value

f =

 factor=1

 FOR jj=j+1 TO nmax
 factor = factor*4
 f_base = factor* f
 FOR ff = 0 TO facto

 KEPTNOTlC jj
status

ffbasef __ =+

 ENDFOR ff
 ENDFOR jj
 ELSE

 KEPTNOTlC j
status

f _=

 1vlC j
value

f =

 ENDIF
ENDFOR j

Since we do the external loop jp times and we call twice the function Local
value transfer , the first time with test/p_shift equaling 4jp-j and the second time
with test/p_shift equaling 4, we deduce that the transfer complexity is of orde
O(2*jp*(jp+1)) and the computational complexity is half of it, O(jp*(jp+1)). If
NP=4jp is the number of processes, then the transfer complexity is of orde
O(2*[log4(NP)]2) and the computational complexity is of order O([log4(NP)]2).

Complexities of the parallel best basis selection algorithm

For the whole parallel best basis algorithm, the transfer complexity is of orde
O(2*jp*(jp+1)) and the computational complexity is of orde
O(4/3*(4nmax-jp-1) + jp*(jp+1)).

In the case when we have N=4nmax points and NP=4jp processes, the transfe
complexity is O(2*[log4(NP)]2) and the computational complexity is

O(4/3*N/NP + [log4(NP)]2).

8.4. A PARALLEL WAVELET PACKET
RECONSTRUCTION

8.4.1. Definition

The reconstruction is the opposite of the decomposition, from a family of kept

wavelet packets jf
Cj wit Jj∈ (where { }nmaxnnJ nmax ≤≤∈=⊂ 0;NN)

and Jj Ff ∈ (where for each Jj∈ ,
14

N −⊂ jjF), we want to obtain

0
,

0
, lklk Cs = (where Xmaxk 20 <≤ and Ymaxl 20 <≤) the corresponding signal

representation (S). We obtain S by completing the following recursive formula

until we get 00C :

∑ ∑
=

+

−−

−







 +
=

−−

−−

−


















 +
+=

3

0 ,
,

2,2

1
,

4 *
4

,4mod)(

11

11

1

d mn

j
mn

df

mlnk

j
j

j
lk

df
f

jj

jj

j

jjjj

jj

j
j

C
df

dfFC

where mnjmnj fddcodegrayFilterfdF ,,)),(2_(),(= is exactly the

same as for the decomposition.

Usually we do not program directly this formula, rather we reconstruct a whole
branch of the tree, one level at a time. Instead of having its entire fathe

14 −











j

f

C
j

, we only have one p art of it, but if we reconstruct from all the
packets at scale j, we will obtain their entire fathers. The formula we program
is then :

∑
−−

−−








=

−−

−−

−

−−

−



















+=

jj

jj

j

jjjj

jj

j

jj

j
j

mn

j
mn

f

mlnk

j
j

j
lk

fj
lk

f
f

C
f

fFCC
,

,

2,2

1
,

1
,

4 *
4

,4mod

11

11

1

11

1

and the first time we encounter the packet 1
, 11

1 −
−−

− j
lk

f

jj

j C we must initialize it to

the null packet (its coefficients are all zeros) if it is not a kept packet.

8.4.2. General principle of a parallel reconstruction algorithm

We suppose again that we have 4jp processes, and that the data are dispatched
on each of them as before. In the same way tha t the sequential algorithm, we
will start at scale nmax and reconstruct each kept packet until we reach scale 0.
There will be again two different algorithms, one when scale j is greater than jp
and the other one when scale j is smaller than or equal to jp.

8.4.3. A parallel reconstruction algorithm

First, we consider the case when j > jp

In this case, the algorithm is the same as the sequential one :

p is the process name
FOR j = nmax TO jp+1 BY STEP -1

 FOR f = 4j-jp-1 * p TO 4j-jp-1 * (p+1) - 1

 IF (1−jf C exists)

 IF (KEPTNOTC j
status

f _1 =−)

 We set lkC j
lk

f ,,01
, ∀=−

 ENDIF
 ENDIF
 ENDFOR f

 FOR f = 4j-jp * p TO 4j-jp * (p+1) -1

 IF (jf C exists)

 IF (KEPTC j
status

f =)

 1/ We set the fi lter to use for reconstructing :
 FF = F(f mod 4,f / 4)

 2/ We create 14/ −jf C is it doesn't exist
 by setting all its coefficients to zero.

 3/ We set KEPTC j
status

f =−14/

 4/ We compute the partial reconstruction :

 ∑ −−
−− +=

mn

j
mn

f
mlnk

j
lk

fj
lk

f CFFCC
,

,2,2
1

,
4/1

,
4/ *

 5/ We don't need any more jf C
 ENDIF
 ENDIF
 ENDFOR f
ENDFOR j

In the worst case, the best basis selected is composed of all the packets at scale
nmax. In that case, the computational complexity is of orde
O((nmax-jp)2Xmax*2Ymax/4jp). In any other cases it is less than this complexity.
If we have N=4nmax points and NP=4jp processes, the computational complexit
is smaller than or equal to O((log4(N)-log4(NP))*N/NP).

Second, the case when scale j ≤≤≤≤ jp

A first solution for reconstructing is to consider that each process has an entire
data set. Each of them wil l do locally the reconstruction in sequential and when
they reach scale 0, each of them has a partial signal. We need then to add all
these partial signals in order to get the whole signal. Unfortunately, even if w
do not have a lot of transfers, the calculation complexity is exactly the same as
for the sequential algorithm, so the only advantage is that we used less memory

than in sequential. The solution we propose will have a lower calculation
complexity, but we will increase the number of transfers.

At scale j (1 ≤ j ≤ jp), we reconstruct the local packet j

p
f

lC
jjp 



= −4 in a real

size temporary father packet 14/ −jf tC by the following formula :

∑ +−+−
−− +=

mn

j
mn

f
lybasemkxbasen

j
lk

fj
lk

f lCFFtCtC
,

,)_(*2),_(2
1

,
4/1

,
4/ * where FF is

the filter F(f mod 4,f / 4), and base_x and base_y are the x- and y- shifts to have

the real position of the local packet jf lC . At this point we must add the local

packet 14/ −jf lC to this temporary packet if it is a kept packet. Then, each

process sharing the packet 14/ −jf C exchange and add all the temporary
packets in order to have the whole one. After the transfer, they keep their own
part of this father 14/ −jf lC . Then we decrease j of one and start again unti l j
equals 0.

One problem occurs when all concerned processes have to exchange the
temporary packets : what happens when not all the processes are waiting for the
transfer ? This case is not impossible, it happens when there is no kept packet
when scale j is greater than or equal to j0 (with 0 ≤ j0 ≤ jp) on at least one

process. We handle this problem in a very simple manner, if the packet jpp lC
does not exist, we create it artificially to the null packet. The propagation of
this packet in all scales j smaller than jp will handle the problem once and fo
all.

In a first part, we study the function we use to transfer all the temporary packets
between the concerned processes, then we explain the algorithm for the
reconstruction.

The function doing these transfers is similar to the local value transfer function
we studied in the best basis selection algorithm. Here, we consider the transfer
and the addition of local arrays instead of local values.

Here are the parameters of function Local array transfer :
 p is the name of the current process
 np is the number of processes doing the transfe
 p_base is the pivot process
 p_shift is the shift of processes to do the transfe
 local_arrayp is the array of the process p to transfe

 size_array is the size of the local array

Here are its contents :
test=np
stepsize=p_shift
pvalue[i]=local_valuep[i] for arraysizei _0 <≤

WHILE (test > p_shift)
 IF (((p - p_base) mod (2*stepsize)) < stepsize)
 p2=p+stepsize
 start=1
 ELSE
 p2=p-stepsize
 start=0
 ENDIF

 IF (start = 1)
 Send array pvalue to process p2
 Receive array p2value from process p2
 ELSE
 Receive array p2value from process p
 Send array pvalue to process p
 ENDIF

 pvalue[i] = pvalue[i] + p2value[i] for arraysizei _0 <≤

 test = test/2
 stepsize = stepsize * 2
ENDWHILE

total_value[i] =pvalue[i]
Local array transfer returns the a ray total_value

The transfer complexity of this function is of order O(2*log 2(test/p_shift)) and

the computational complexity is of order O(size_array*log 2(test/p_shift)).

Here is then the reconstruction algorithm :

p is the name of the process
2Xmax*2Ymax is the size of the field at scale 0
wh = 2Xmax-jp
ht = 2Ymax-jp

FOR j = jp TO 1 BY STEP -1

 np = 4jp-j
 f = p / 4jp-j
 f2 = f / 4

 IF (f jlC exists)

 IF (KEPTNOTlC j
status

f _=)

 1/ We set htlwhklC j
lk

f <≤<≤∀= 0,0,0,

 2/ We set KEPTlC j
status

f =

 ENDIF
 ELSE

 1/ We create jf lC by setting all its coefficients to zero

 2/ We set KEPTlC j
status

f =

 ENDIF

 IF (jf lC exists)

 IF (KEPTlC j
status

f =)

 1/ We calculate local shifts

 ())2,1,2(2,, XmaxXmax jfcxjppcxbx −−=

 ())2,1,2(2,, YmaxYmax jfcyjppcyby −−=

 ())2,,(2,,_ XmaxXmax jfcxjppcxxbase −=

 ())2,,(2,,_ YmaxYmax jfcyjppcyybase −=

 2/ We create a real size temporary fathe 12 −jf tC
 with null coefficients

 3/ We update it if needed

 IF (12 −jf lC exists)

 IF (KEPTlC j
status

f =−12)

 1
1..0,1..0

21
1..0,1..0

2 −
−−

−
−+−+ = j

htwh
fj

htbywhbx
f lCtC

 ENDIF
 ENDIF

 4/ We calculate the partial reconstruction

 ∑ +−+−
−− +=

mn

j
mn

f
ybasemlxbasenk

j
lk

fj
lk

f lCFFtCtC
,

,)_*(2),_*(2
1

,
21

,
2 *

 5/ We calculate the sum of all 12 −jf tC
 len = 2Xmax-j+1 * 2Xmax-j+1

()lentCfptransferarrayLocaltC jfjjpjjpjf ,,1,4*2,4, 121112 −+−+−− =

 6/ If 12 −jf lC does 't exist we set it to the null vecto

 7/ We set KEPTlC j
status

f =−12

 8/ We transfer the data from 12 −jf tC to 12 −jf lC

 1
1..0,1..0

21
1..0,1..0

2 −
−+−+

−
−− = j

htbywhbx
fj

htwh
f tClC

 9/ We don't need any more 12 −jf tC and jf lC
 ENDIF
 ENDIF
ENDFO

As the function Local array transfer is done jp times, we deduce that the
transfer complexity of the algorithm is of order O(2*jp*(jp+1)) and the
computational complexity is of order O(jp*2Xmax*2Ymax/4jp).
If N=4nmax points and NP=4jp processes, the transfer complexity is
O(2*[log4(NP)]2) and the computational complexity is O(log4(NP)*N/NP).

Complexities

In the worst case, if we consider that the best basis is composed of the all the
wavelet packets at scale nmax, the transfer complexity is O(2*jp*(jp+1)) and
the computational complexity is O(nmax*2Xmax*2Ymax/4jp).

If we now suppose that N=4 nmax points and NP=4jp processes, the transfe
complexity is smaller than or equal to O(2*[log 4(NP)]2) and the computational

complexity is smalle than or equal to O(log4(N)*N/NP).

8.5. A PARALLEL MATRIX-VECTOR
MULPTIPLICATION IN THE WAVELET PACKET BASIS
EXPANSION

8.5.1. Definition

We try to compute the product of a matrix C = (ci,j) by a vector D = (di) in the

wavelet packet expansion. We suppose that Xmaxi 2 < 0≤ and Ymaxj 2 < 0≤

so the result is a vector E = (ej).

In a first part we decompose the matrix C in a wavelet packet best basis, we

obtain a family of kept wavelet packets jcf
Cj wit Jj∈ (where

{ }nmaxnnJ nmax ≤≤∈=⊂ 0;NN) and Jj Fcf ∈ (where for each Jj∈ ,

14
N −

⊂ jjF). In a second part, we decompose the vector D in all the possible

one dimensional wavelet packets jdf
Dj wit nmaxj≤≤0 and j

jdf 20 <≤ .

Each frequency cfj is the combinaison of a frequency cf_xj among the x-axis

and a frequency cf_yj among the y-axis. We write that

)_,_(jjj ycfxcfcf = and we calculate cf_xj and cf_yj by :

∑
−

=
−−

−−



















⋅=

1

0
1

1 2mod
4

2_
j

jj
jjj

jjjj
j

cf
xcf

∑
−

=

−−
−−

















































⋅=
1

0

1
1 2mod

2

4
2_

j

jj

jjj

j

jjj
j

cf

ycf

The multiplication in the wavelet packet expansion consists in obtaining all the

packets jycf
Ej_

 solution of the multiplication of jycfxcfcf
Cjjj)_,_(=

 by
jxcf

Dj_
.

Then, we reconstruct all the packets jycf
Ej_

 to obtain the vector E.

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

C (2,4) 3

C (2,5) 3

C (1,1) 1

C (0,0) 1

C (1,3) 2

C (2,0) 2 C (3,0) 2

C (3,1) 2 C (2,1) 2

C (0,2) 2

C (0,3) 2

C (3,4) 3

C (3,5) 3

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

E 7 3

E 3 3
E 2 3
E 1 3

E 0 3

E 4 3

E 5 3

E 6 3

E 0 2

E 1 2

E 2 2

E 3 2

E 1 1

E 0 1

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � D 7 3 D 3 3 D 2 3 D 1 3 D 0 3 D 4 3 D 5 3 D 6 3

D 1 2 D 0 2 D 2 2 D 3 2

D 0 1
D 1 1

Figure 8.5.1.1 :
Example of the multiplication in the wavelet packet expansion,

we consider 333)5,3(35 DCE ×=

8.5.2. General principle of a parallel multiplication algorithm

We can use the former parallel algorithms in order to perform in a simple
manner the multiplication of a matrix by a vector.

At the begining, we decompose on 4jp processes the matrix C in all the wavelet
packets and we select its best basis. On each process, we decompose in all the
one dimensional wavelet packets the vector D.

The multiplication between the wavelet packets can now take place :

- for each kept packet jf C at scale j, we first find the frequencies fx
and fy corresponding to f, then

- if j is smaller than jp we do a multiplication between
jf lC and the corresponding local packet of jfx D

(named jfx lD), we obtain the local packet jfy lE .

We insert it in the null packet jfy E .

- if j is greater than or equal to jp, we do the

multiplication between jf C and jfx D to have
jfy E

At the end of the multiplication, each process has a partial vector E in a
wavelet packet expansion (i t is not usually a basis). They will reconstruct all the
kept packets to get their partial vector E.

In a last part, each process exchange and add all the partial vectors E in orde
to get the whole one. E is the result of the multiplication of C by D.

8.5.3. Algorithm of the parallel multiplication

Here is this algorithm :

p is the process name
2Xmax by 2Ymax is the size of the matrix C
2Xmax is the size of the vector D
so 2Ymax is the size of the vector E

wh=2Xmax-jp and ht=2Ymax-jp

A/ In parallel, using all the processes
 We decompose C in all the 2D-wavelet packets,
 We select the best basis for C

B/ On each process,
 We decompose D in all the 1D-wavelet packets

C/ We do the multiplication when a packet is
 shared by more than one process
FOR j = 0 TO jp-1
 f = p / 4jp-j

 IF (jf lC exists) THEN

 IF (KEPTlC j
status

f =) THEN

 1/ We set the signal shifts

 ())2,,(2,,_ XmaxXmax jfcxjppcxxbase −=

 ())2,,(2,,_ YmaxYmax jfcyjppcyybase −=

 2/ We set the frequencies among the x- and y- axis

 ∑
−

=
−−

−−










⋅=

1

0
1

1 2mod
4

2
j

jj
jjj

jjj f
fx

 ∑
−

=

−−
−−










































⋅=
1

0

1
1 2mod

2
4

2
j

jj

jjj
jjj

f

fy

 3/ We keep the local vecto

 j
whxbase

fxj
wh

fx DlD 1..0_1..0 −+− =

 4/ We perform the smaller matrix-vector multiplication

 jfxjfyfxfjfy lDlClE ×= =),(

 5/ We insert jfy lE into jfy E

 j
ht

fyj
htybase

fy lEE 1..01..0_ −−+ =

 6/ We set KEPTE j
status

fy =

 ENDIF
 ENDIF
ENDFOR j

D/ We do the multiplication when a packet belongs to a process
FOR j = jp TO nmax
 FOR f = 4j-jp * p TO 4j-jp * (p+1) -1

 IF (jf C exists) THEN

 IF (KEPTC j
status

f =) THEN

 1/ We perform the smalle
 matrix-vector multiplication

 jfxjfyfxfjfy DCE ×= =),(

 2/ We set KEPTE j
status

fy =

 ENDIF
 ENDIF
 ENDFOR f
ENDFOR j

E/ On each process,

 We Reconstruct from all the kept wavelet packets jfy E
 Each process has its own part of the partial vector E

F/ We exchange all the partial vector E to have the whole vector E

 ()Ymaxjp EptransferarrayLocalE 2,,1,0,4,=

G/ The multiplication is finished,
 Each process has the whole vector E.

8.5.4. Complexities

To calculate the transfer and computational complexities, we have to add the
complexities of one parallel 2d decomposition, one parallel 2d best basis
selection, one sequential 1d decomposition, one matrix vector multiplication,
one sequential 1d recomposition and one array t ansfer.

If we consider the case when all the coefficients in the best basis are non
negligible, this is of course much worse than the direct computation. But, if
instead of all the coefficients (N), we consider that only R are non negligible,
the matrix vector multiplication becomes of order O(2), and if R << N then
this method is very efficient.

8.6. CONCLUSION

