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Abstract

In afirst part, we study a parallel algorithm (on a MIMD machine)
to compute the two-dimensional wavelet packet transform. Then, we
apply it to compute the multiplication of a matrix by a vector in
parallel.

8.1. INTRODUCTION

That's the introduction.

8.2. APARALLEL WAVELET PACKET DECOMPOSITION

8.2.1. Definition

From a two-dimensionnal periodic signal S = (s)) with O<i < 2XmaX and

O0<j<2Ymx we pae nmax = min(XmaxYmax). In a first step wewant to



caculate al the wavelet padkets fJCj, sets of wavelet packet coefficients

ic) | defined asfollows::
170

- Theindicesare in the rarge:
O<j<nmax [J
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- Theinitial packet is:
0C? | =5, with 0sk<2X™* 0< | <2'™
- Then all other packet isdefined recursively by the formula:
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d=0, 1, 2or 3. Weshall say that the packet i clisthefather of

thefour packets A+ or that they areits four children.

- From a one-dimensional wavelet W (defined by its filter G) and its
smoothing function ® (defined by itsfilter H) we obtain four two-
dimensional  filters by tensar products: Filter(0) = HH,
Filter(1) = HG, Filten(2)=GH and Filter(3) = GG. In order to
keep the frequencies (among he x and y &is) increasing, wethen
define  F(d, f;), n=Filter(gray_code2d(d, f;)),,  where

gray_code2d(d, f;)=2[a+b wit
Dsz Of, Dseven
Fimod2if f iseven e dslarls
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H - (dmodR)if f isodd w00
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x ] istheinteger part of x)

8.2.2. Remarks

- At a scale j+1, there are four times as many wavelet packets as there
are at scale j, and each wavelet packet has four times less
coefficients than those at scalej.

- From thefirst remark, ith an initial signal of 2Xma py 2Yma pojnts,
we cedwce that:



.At scae |, there ar | wavelet packets of 2 Xmai py
2Ymaxi coefficients, so we still have Xma py 2Ymax
coefficients.

. We can then use thefollowing representation of thetwo-
dime sional wavelet packet decomposition.

scale 0 : scale 1: scale 2 :
2Xmax 2>(max-12>(max-1
2Ymax-Lf:O f=1 0111415
Vmax 2131|617
2 =0 _ 8 |9 [12|13
2 f=21] f=3
10{ 11| 14| 15
1 packet of 4 packets of 16 packets of

2‘max 2Ymaf>oints f(maXS}ZYmaXﬂoints 2Xmax2 2Yma>T)20ints

Figure 8.2.2 : Representation of a 2D wavel et packet decomposition

. If Xmax=Ymax=nmax, then at scale nmax, there are
4nmax wavelet packets of 1 coefficient.

8.2.3. General principleof a parallel decomposition algorithm

To do the decompostion in paallel, we chosed to separate each scale
(represented by a field of 2Xmax py 2Ymax points) in 4P (0 < jp < nmax) parts of
eguel size. On afixed pocess s always stored the same fart of the field so we
identify the process name by the name of the packet it containsat scdejp. Here
is an example of the wavelet packets onto 4 processes (jp = 1) from scae
Oto2:



scale O :

Figure8.2.3.1:
Repartitionof the wavelet packets of scale 0 onto 4 processes

scale 1:
(= scale jp)

Figure8.2.3.2:
Repartitionof the wavelet packets of scale 1 onto 4 processes



2Xmax-2
4 5

2Ymax-2
6 7

scale 2 :

Figure8.2.3.3:
Repartitionof the wavelet packets of scale2 onto 4 processes

From the decomposition formula, one sees that the pakets at scae j+1 are
obtained from those at scalej. Thus, to calculate the decomposition in perallel,
using the former field cut, is danein two different wayswhether j is smalero
greater than jp.

8.2.4. A paralle decomposition algorithm

First, we consider the casewhenj <jp

A packet at scale j is shared by 4iP1 processes. In a first step, those pocesses
will exchange their data in order to have the whole shared packet on each of
them. Then, in a second gep, they will calculate their own pert of the packet
they shareat scalej+1. This part isonly the entire packet when scale j+1 equals

Ip.

From the decomposition formula, we obtain that at scale j, the frequency f of
.. Op O . .

the paket stored on pocess pis gven by f:WEWhere [X] istheinteger

part of x. Reciprocaly, a acket at scale j and frequency f is shared by the
processes p=4°7 1 [f to p=4‘p_‘[(]f +1)—1. We shall say that the first one is
the base process and dl processes sharing the sane packet are companions.



In the same way, we have that at scalej, the pation (base_x base y) of the
upper left corner of the packet storedonprocesspis gven by :

- base_ x:cx(p, jp,2"™ )—cx%‘%mj 27 Ewhere

[Oif jp=0

. 0.
ex(P, JP.2 ™) e p O 0 .
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And thewidth and height of the part of the packet storedona process at scalej
is 2Xmax-jp by 2Ymax-jp.

Example : Suppose we have 16 processes (p=2) and we try to calculate what
arethe processes sharing the packet at scale j=1 and frequency f=2.

max-1
-1
0.0 2Xmax-Z2>< 0 2xmax-_11 X
’ >
p=0l p=1|p=4|p=5
Scale 1 ymaxq 1=0] T=0]f=1 |f=1
p=2| p=3|p=6 |p=7
oYmax-1, f=0| f=0|f=1 |f=1
0 p=8| p=9|p=12|p=13
2Ymax-kf:2 f=2 =3 [f=3
p=10 p=11p=14{p=1%
2Ymax:11 f=2| f=2|f=3 | f=3
yV




Figure8.24 :
Example of the repartition of wavelet packet coefficients
at scale 1with 16processes

From these hypotheses, fZSﬁ%Z, so we deduce from the former formulas

that the pocesses sharing 2C! are pracesses 8 to 11. Each of them have
wh = 2Xmaxip py ht = 2Ymaxip data.
Process8 cortains the local packet 4CJ -1 o.n-1 = Co.wh.0.hi-1

Process9 cortains the local packet AC] -1 o.nt-1 = “Co. 2wh—1 0.1
Process10 contains the local packet ACg -1 o.nt—1 = “Co.wh.nt.2ht—1
Processl1 contains the local packet 4Cg wn-1 o.ni—1 = “Cih.2wh-1 ht.2hi-1

Wewill do the transfers iteratively, on the index jj :
- We start with jj equals jp-1, we then ddine pvot processes named

— p 0O : o
dep, depl= o E In a first step pocesses verifying

Sjl‘%%depl +i (A) exchange their data with processes

Sjl‘%%deleH (B) where i equals Oor 2. At the end of

this step, the pocesses (A) and (B) share the same data. In a

second $ep, processes verifying Sjl‘%%depl +i (C) an

processes verifying Sjl‘%%depH 2+1 (D) with i equals 00

1 will exchange the cata they got from step one. At the erd of
these two steps, the four processes share the same data.

- We decreasejj of one, and do the former point until jj equals j.

- At this pant, each process sharing the same packet cortains al the
data of this packet.

An exampleisadvisable:

Supmse we have four processes (jp = 1) and wewant to calculate the
packets at scale 1 from the packet at scale 0. We have j=0,
ji =jp-1=0. In this example, therewill be only oneloop over jj. In
the first step poces 0 exchange its data with process 1
(Meantime, process 2exchangeits data with process 3. Then in



the second sep process Oexchange its new set of data (its initial
data plus pocess 1initial data) with process 2 new set of data.
(Meantime process 1 does the same with process 3. We exit the
loop on jj, and every processes carry the packet °C°

Hereisthealgorithm in pseudo-code of the function doing the datatransfers:

Here arethe parameters of function Data transfers
pisthe process name

jp is such that 4 isthe number of processes

j isthe aurrent scale

fisthe arrent frequenc

width isthewidth of thesignal at scale 0

height is the height of the signal at scale 0
Local_packet is the local padket to transfe

Hereareits contents

/IFirst initidization

f= p/ 4ipi

factor =1

f child=p

[IX =width / 2P

lly = height / 2°

base x= cx(p,jp,width)-cx(f,j,width)
base_y = cy(p,jp,height)-cy(f,j,height)

fei _
Chase x+0.wh-1base_y+0.nt—1 = LOCal_ packety w10 nt-1

/[Then transfe

FORjj =jp-1TOj BY STEP-1

f father =f_child / 4

dep = 4*f_fathe

IF (((p/facto ) equels ced) OR ((p/factor) equals (depl+2)))
bx=cx(f_chil d*factor,jp,width)-cx(f,j,width)
by=cy(f_child*factor,jp,height)-cy(f j,height)
Send "Gl 1ix-1.py+o.1y-110 Processp+factor

bx=cx((f_child+1)*factor,jp,width)-cx(f,j,width)
by=cy((f_cth d+1)*factor,jp,height)-cy(f,j,height)
Receive fngm.,,X_Lbymn”y_lfrom processp+ factor



ELSE
bx=cx((f_child-1)*factor,jp,width)-cx(f,j,width)
by=cy((f_child-1)*factor,jp,height)-cy(f,j,height)
Receive | Cbx+0 lix—1,by+0,lly—1 /FOM processp-factor

bx=cx(f_chil d*factor,jp,width)-cx(f,j,width)
by—cy(f child*factor,jp,height)-cy(f j,height)
Send Cbx+0 lix—1,by+0,lly-1 1O Processp-factor

ENDIF
lIx =lIx *2

IF (((p/factor) equals depl) OR ((p/factor) equals (dep+1)))
bx=cx(dep* factor jp,width)-cx(f,j,width)
brcy(den*factor,Jp height)-cy(f,j,height)

Send Corolixe Lby+0.lly-110 processp+2*factor

bx=cx((depl+2)*factor,jp,width)-cx(f,j,width)

brcy((depl+2)*factor ip,height)-cy(f j,height)

Receive "Cl o e Lby+0.lly-1{TOM process p+2*factor
ELSE

bx=cx((depl-2)*factor,jp,width)-cx(f,j,width)

by—cy((depl 2)*factor,jp,height)-cy(f,j,height)

Receive | Cbx+0 lix-1,by+0,lly—1 TOM processp-2*factor

bx=cx(dep* factor jp,width)-cx(f,j,width)

brcy(den*factor,Jp height)-cy(f,j,height)

Send Corolixe Lby+0,lly-1 10 processp-2*factor
ENDIF

Iy =lly*2
f child=f fathe
factor = 4*factor
ENDFOR j

Data transfersreturnsthe packet 'C /.

To calculate the transfer complexity, we will assume that the cost of a dda
transfer is independent of the size of the dda set, althoudh it is appoximatel
true for a large size dda set. Thus the transfer complexity will only show an
order of the number of transfers without any ecification of the sizes of the
data sets.



Thetransfer complexity for the function Data transfersisthen 4*(jp-j).
We can write theagorithm of the decomposition when j < jp:

p isthe rocess name

4ir jsthe number of processes
wh = width / 2p

ht = height / 2P

FORj=0TOjp-1
f= p/4Jp'J
fc=p/ 4irit
d=fcmoduo 4

//First we exchange datato have 'C’
fC’:Datatransfers(p,jp,j 27X 2 T C ’)

/ISecond we cfinethefilter to use :
FF=F(d))

/IThird, we calculate ©1C **:
base_x= cx(p,jp,width)-cx(f,j,width)
base_y = cy(p,jp,height)-cy(f,j,height)

/I Fourth we calculate thelocal child packet
fop~ j+1— f~ij
ICk,I _Z‘ FFkk,II Ckk+2*(base_x+k),||+2*(base_y+|)
3

ENDFOR j

In this algorithm, the function Data transfersis dore jp times, we daluce that
its transfer complexity is of ord e O(2*jp*(jp+1)). The computational
complexity isof order O(jp*2 Xmax+2 Ymax/4ip) where the constant depends on the
length of the filters. In Smple terms, if NP=41P is the number of processes and
if we have N=4"m points (Xmax=Y max=nmax), then the transfer complext
is O(2*[log,(NP)]?) and the calculus complexity is O(P*log ,(NP)* N/NP).

Second thecasewhen j 2jp

Each pracess has 44P packets, and from each of these, we need to calculate
their four children. In this case, there is no parallelism as the children aso
belongto the process. We will then use the squential dgorithm on the subset
of packets each processcarries at scalej.



p isthe rocess name
FORj = jp TO nmax
FORf=4iP* p TO 49P* (p+1) - 1
FORd=0TO 3
First we set thefilterto use : FF = F(d,f)
Thewecalculate 4" *9c 1 :

4f+d o~ j+1_ fi
Ck,I _Z‘ I:Fkk,ll Ckk+2*k,||+2*|
KKk |

ENDFOR d
ENDFOR f
ENDFOR j

In this pat of the agorithm, there is no transfer complexity and the
compuational complexit is of order O((nmax-jp)*2Xma*2Ymax/4ip), |f we
corsider NP=4iP processes and N=4"" paints, then the complexity of this part
is O((loga(N)-loga(NP))* N/NP).

Complexities of the parallel decomposition algorithm
From the two dfferent perts of the parallel decomposition dgorithm, we
corclude the transfer complexity is of order O(2*jp*(jp+1)) ard the
compuational complexity isof order O(nmax*2Xmax«2 Ymax/4ip)
In a simpler form, if N=4"m is the number of points (Xmax=Ymax=nmax)

and NP=4P is the number of processes then the transfer complexity is
O(2*[log,(NP)]?) and the computational complexity is O(log,(N)*N/NP).

8.3. APARALLEL WAVELET PACKET BEST BASIS
SELECTION

8.3.1. Definition

At the erd of the decomposition, we obtained the complete discrete analysis of
the inpu data. We must now extract a subset of waveet padets forming a
basis. There are indead, many methodsto extract a basis, kegping orly the
wavelet packets at a certain scale isfor exanmple a solution.

But if weconside a family of wavelet padkets " C/ with j OJand f OF,, sdect
a basis among all those padkets means that if a pdet ©Clo belongs b the



basis, al its descendants, the pakets o f°+d°Cj°+1, w f0+d")erle‘”z, ec ...
(with d,, d, equals0,1,2 or 3) cannat belongto the same basis.

The solution we have chasen consists in finding a"best basis'. At each packet
'c!, weassociate avalue M (fC‘), resut of ameasure M on the set.
For example, we can take a measue M which counts the non null wavelet

packet coefficients of awavelet packet. Anaother common wsed measure is Me,
the ore which evaduaes the entropy of a waveet packet

Me(0)=0

H
éivufci):—g<fc¢,.>2*ln[<fc¢,.>2]§-

Once the meaaure is chosen, we shall kegy a family of wavelet packets that
satifies the condtion for being a basis and that minimizes the vaue of the
measure.

i
value

of the measure of the best basis of wavelet packets in th e stbset below 'C/.
First, for al the frequencies f a scde j=nmax, we initialize

'cl,.=M (f C! ) Then we start the algorithm at scale j=nmax1. For all the

value

Thisis dore easily by an iterative dgorithm. We define fC, _to be thevalue

3 .
frequencies f at scalej, we compare V,=M (f C’) to Vl:; rC Ly vy

is smaller than or equal to v , we keep the wavelet packet  'C/, we set
"C e = Vo, and we cbnot keep dl its cescendants. If v oIS grester than v;, we

value —
4 f+d ~jHl fei
C'™, andwe gqual 'CJ, .

keep the four children padkets to v;. We

decrease j of one and start again the algorithm wntil j equals Q. At scale 0, all
the kept packets form the "best basis' of the signal.

8.3.2. General principle of a paralld best basis selection

To sdlect the begt basis in parallel, we will use how the wavelet packets are
stored on the dfferent processes after the deomposition. Thus, if we have 4°
processes, from scale 0 to scale jp-1, thewavel et packets will be shared by more
than one process and from scale jp to nmax, they will be part of a process.

From the dfinition of the best basis selection, one can see that there will be
again two different algorithms whether j is greater or smaller than jp. In orde

to know if a pecket is kept or not, we cefine 'Cl ('ICL. . for alocal



packet) a variable equal to KEPT if the wavelet packet "'Clis pat of the best
basisand NOT_KEPT if itisnat.

Before selecting the best basis, we will suppose that the user has dready chosen
a measure M and has aready compued M (f C’) for every packets of the
decomposition. In the rext algorithm, we will then consider it as a constant,
andtherefore, will not contribute to the computational complexity.

8.3.3. A paralld best basis selection algorithm

First, thecasewhenj 2jp

In that case, the best basis algorithm is the same as the squential one except
that it is done oneach subset of wavelet padketswhich belong b each process.

FOR f = 4macip * p TO 4macip * (p+1) - 1

fcl=KEPT
f j —_ f j
Cvjalue_ ( CJ)
ENDFOR f

FORj=nmax-1TOjp BY STEP-1
FORf=4iP* p TO 49P* (p+1) - 1

3
— 4 f+d ~ j+1
Vi _; Cval ue

v=M('c’)
IF(vo<vy)
'Cl . =KEPT

f C\/Jalu(-:‘:VO
factor=1
FOR jj=j+1 TO nmax
factor = factor*4
f base = factor*f
FOR ff = 0 TOfacto
bl =NOT _KEPT

ENDFOR ff
ENDFOR ji
ELSE



f~i —

Clas = NOT _KEPT
fi —

Cvfalue =V

ENDIF
ENDFOR f
ENDFO |

The computational complexity of this dgorithmis o order O(4/3*(4 "maxip - 1)),
Therefore, if we have NP=4P processes and N=4 "M points, this complexit
becomes O(4/3*(N/NP - 1)).

Second, the casewhen j <jp
From the marallel decomposition, we have seen that at scale j, the praess pis

Op O
storing the local packet WTRCT At scale j, we then have that the packet
*C I is shared by the pocesses p=4"" 10 to p=4"[{if +1)-1. wit
another small calculation, one can see that the padkets “' "4 C1**(d=0..3)
are sharedby exactly the same processes.

0O p O
From these three remarks, we deluce that if we add 1v,=M Eﬁm Aic E

between pocesses p=4""I[1 _base to p=4""[{f _base+1)-1 where

f_baSGZSj%E, we will obtain VO:M(f—baseCj) and if we add

o p O
WRCM  paween  the  same pocesses,  we will get

value

3
— 4* f _base+d j+l
\ _; Cvalue :

One solution corsists in adding dl those local valuesin order to ge v, and v,.

However, we are twice redundant : we do the same calculation at scalej+1 and
at scalej. (oncefor calculatig v, and the second tmefor v ). But we can easll

change the sequential algorithm to improve thisif at each scale j, after having

Op O
calculatedv, and v,, we set the local value e EIC\,’alue tothewinner.



47 _baserd ~ j+1

Then, each process sharing has the same loca value

w1 beserd|C 1ML | o the calculation of v, as we explained it formerly does not
give v, but gives 471713, Althoudh it seems worse than the first solution,
this appoach is much better because the cdculation of v ;, needs only the
addtion of four local values instead of 4/P1. Indeed, we can now calculate v, by
i=3 EUepI+(pmod4“”1’1)+4ip’rlm5
. 5 4ipmitt o j+ .
the following formula : V1=Z ic wit
1=

value
depl=4"™1{ _base.

An exampleismorethan advisable :
Supppse that jp=2, j=0 and p=5. To calculate v,, the previous formula

gives v,="IC L +3IC L +°IC 5t +BIC It s0 process 5

value value value value

only has to exchangeits datawith processes 1, 9 and 13.

In concluson, supposewe are on process p, the parallel algorithm becomes :
-Westart atj = jp-1.

. Op 0O .
- Firgt, we calculate f base=w and depl=4P7 [ base.
: - ip=] E -

4P~ -1 Hmep[‘*i ] ' H
Second, we calculate V,= Z M HB” el Hby addng all
1=
the values of the local packets at scale j. Third, we calculate
i3 el +(pmodai=i~t)+ir-i-iy 0
Vl:Z . ! 4CJ by addng al the values
1=

value

of thelocal packets at scalej+1. Finally, we compare v, to v,. If v,
is smaller than or equal to v, then we keep the local wavelet

Op O Op O
packet **7HCT | we eqal " EIC\,’alue

keg all its cecendans. If v, is grester than v,, we keep the local

to v, and we donat

o p O Op O
packet #*EIC 1" andwe equal #* EICV‘;ﬂue to v;.

- We decreasej of one and do theformer point until j equals O.



One solution to exchange the local values corsists in taking dl the processes
involved and exchangetheir local values two by two, until every processes have
thetotal sum. The next figure explainsgraphically how it works.

j=0 depl depl + 1 depl + 2 depl +3

P N\ \

depl ¢ cepl+l  depl+2¢ depl+3

depl  ¢——— depl+2
dpl+1 <> depl+3

Figure8.3.4.1 :
Transfer of thelocal valuesv, between pocesses ced to depl+3

To calculate v,, we will use the same inciple, except that the first transfe

may not be anymore between pracess ced and dep+1 but will be between aepl
and depl+4iri-l,

Hereisthen the algorithm of the function doing these transfers:

Here arethe parameters of function Local value transfer :
p isthe name of the aurrent process
npisthe number of processes doing the transfe
p_baseisthe pvot process
p_shift is the shift of processesto do the transfe
Iocal_valuep isthevalue of the rocess pto transfe

Hereareitscontents :
test=np
stepsize=p_shift
pvaluezlocal_valuep

WHILE (test > p_shift)
IF (((p - p_base) mod (2*stepsize)) < stepsize)
p2=p+stepsize
start=1



ELSE
p2=p-stepsize
start=0

ENDIF

IF (start = 1)
Send pvalue to process p2
Receive p2value from process p2
ELSE
Receive p2value from process p
Send pvalue to process p
ENDIF

pvalue = pvalue + pvalue

test = test/2
stepsize = stepsize * 2
ENDWHILE

total_value=pvalue
Local valuetransfer returnstotal value

The transfer complexty of this function is of order O(2*log ,(test/p_shift)) and
the computation complexity isof order O(log,(test/p_shift)).

Thebest basis selection dgorithm when j is smaller than jpis then:

p isthe name of the aurrent process
4ir jsthe maximum number of processes

FOR| = jp-1TO 0BY STEP-1
f=p/4ri
f_child =p / 4pit

v, = Local valuetransfer(p,4ii f,1, M (f IC! ))
v, = Local valuetransfer(p,4ipi f,4i, -9 | C M 1y

value

IF(vosvy)
"1C L =KEPT
f ICvJ;aIue :VO

factor=1



FOR jj=j+1 TO nmax
factor = factor*4
f base = factor*f
FOR ff = 0 TOfacto
fbeeric )t «=NOT _KEPT

ENDFOR ff
ENDFOR ji
ELSE

"1CJ,.=NOT _KEPT
"IC )=V

value —

ENDIF
ENDFOR j

Since we b the external loop jp times and we call twice the function Local
value transfer , thefirst time with test/p_shift equaling 4> and the second ime
with test/p_shift equaling 4, we dedice that the transfer complexity is of orde
O(2*jp*(jp+1)) ard the computational complexity is haf of it, O(jp*(jp+1)). If
NP=4P is the number of processes, then the transfer complexity is of orde
O(2*[log,(NP)]?) and the computational complexity is of order O([log,(NP)]?).

Complexities of the parallel best basis selection algorithm

For the whole parallel best basis agorithm, the transfer complexity is of orde
O(2*jp*(jp+l) armd the computational complexity is of orde
O(4/3(4™=iP-1) + jp* (p+1)).

In the case when we have N=4""& points and NP=4P processes, the transfe

complexity is O(2*[log,(NP)]? and the computational complexity is
O(4/3*N/NP + [log (NP)]?).

8.4. A PARALLEL WAVELET PACKET
RECONSTRUCTION

8.4.1. Definition

The reconstruction is the opposite of the decomposition, from a family of kept
wavelet packets ' C ! owit  jOJ (where JDNnmaX:{nDN;OSnSnmaX})
and f,LF; (where for each jLJ, F;LIN, ), we want to obtain



S =°CJ, (where 0<k<2™™ and 0<I<2"™) the corregponding signal
representation (S). We obtain Shy completing the following recursive formula
until weget °C° :

_Of;+d0

fi=G—0 . 3 Of. +d . )
R =; > Fij +d)m0d4,DB—J4 % =hrel

,m. — -
i 72051 —2m;

where F(d, f;), ,=Filter(gray _code2d(d, f;)), is exactly the
same asfor the decomposition.

Usually we cb not program directly this formula, rather wereconstruct a whde
branch of the tree, one level at a time. Instead of having its entire fathe
P
H*8c , we only have one part of it, but if we reconstruct from all the

packets at scale j, we will obtain their entire fathers. The formula we program
isthen :

fa=
=
T n4an

_ L of.
CoL= i CllL+tY FEfJ— mom,%j%
Ny m; )

%
=2n;,1;,=2m;

oo fio ~ - o
and the first time we encounter the packet ' C,/ 11| _Wwemust initidize it to
i

the null packet (its coefficients are all zeros) if it is nota kept packet.

8.4.2. General principle of a paralld reconstruction algorithm

We suppose again that we have 4P processes, and that the data ae dispatched
on each of them as before. In the same way that the sequential algorithm, we
will start at scale nmax and reconstruct each kept padket until we reach scde 0.
Therewill beagain two different a gorithms, onewhen scale jisgreater than jp
and the other one when scale j is smaller than or equal to jp.

8.4.3. A paralle reconsruction algorithm

First, we consider the casewhenj > jp
In this case, the algorithmis the same as the squential one:

p isthe process name
FOR|j=nmaxTO jp+1BY STEP -1



FORf = 41iPl* p TO 49P1* (p+1)- 1
IF("C'™ existy)
IF("Clt =NOT _KEPT)

status
weset 'C/J*=0,0k|
ENDIF

ENDIF
ENDFOR f

FORf = 4P * p TO 41 * (p+1) -1
IF("C' exsts)
IF (' Clas=KEPT)
1/ We set thefilter to use or reconstructing :
FF=F(f mod 4,f/ 4)
2/ We create ' '*C 1™ isit doesn't exist
by setting all its coefficientsto zeo.

3/Weset ""*CJL =KEPT
4/ We compute the partia recondruction :
flamij-1_flamj-1 f
CkJ,I - CkJI +Z I:Fk—Zn,I—Zm* Cr:m
n,m

5/ We don't need any more ' C
ENDIF
ENDIF
ENDFOR f
ENDFOR j

In the worst case, the best basis selected is composed of all the packets at scale
nmax. In that case, the computational complexity is of orde
O((nmaxjp)2Xmax*2 Ymax/4iP) |n any other casesit isless than this complexity.

If we have N=4"ma points and NP=4iP processes, the computational complexit
issmaller than or equa to O((log,(N)-log,(NP))*N/NP).

Second, the case when scalej <jp

A first solution for reconstructing is to consider that each process has an entire
data set. Each of them will do locally the reconstruction in ssquential and when
they reach scale 0, each of them has a partial signal. We need then to add all
these patial signalsin order to ge the whole signal. Unfortunately, even if w
do not have alot of transfers, the calculation complexity is exactly the same as
for the sequential algorithm, so the only advantage is that we used less memory



than in sequential. The solution we prgose will have a lower calculation
complexity, butwewill increase the number of transfers.

Op 0O
f=q P ,
At scaej (1 <j < jp), we reconstruct the local packet W HCTin areal
size temporary father packet ''*tC'™ by the following formula:
Flag i=1_ flag j-1 flesi .
tCkJ,I = tCkJ,I +Z FFn—Z(base_x+k),m—2*(base_y+|)* IC,),, whereFFis
n,m

n,m

thefilter F(f mod 4,f / 4), and base_xand base y are the x- and y- shiftsto have
the real pogition of thelocal packet "ICT. At this pant wemust addthelocal
packet eI o this temporary packet if itis a lept padcet. Then, each

process sharing the paket Hacit exchange and add all the temporary
packets in order to have the whole one. After the transfer, they ke their own
part of this father f/4|C /™. Then we derease of one and gart agan until j
equs Q

One prdilem occurs when all concerned processes have to exchange the
temporary packets : what happens when nat all the processesare waiting for the
transfer ? This case is not impossible, it happens when there is no kept packet
when scale | is greter than or equd to jO (with 0 < jO < jp) on at least one

process. We hendle this problemin avery smple manner, if the packet P|C P
does not exist, we create it artificidly to the rull packet. The piopagation of
this paket in all scalesj smaller thanjp will handle the problem once and fo
all.

In afirst part, we study the function we usetotransfer all the temporary packets
between the concerned processes, then we explain the algorithm for the
reconstruction.

Thefunction ddng these transfers is similar to thelocal vaue transfer function
we studied in the best basis selecion algorithm. Here, we consider the transfer
andtheaddtionof local arraysinsteal of local values.

Here arethe parameters of function Local array transfer :
p isthe name of the aurrent process
npisthe number of processesdoing the transfe
p_baseisthe pvot process
p_shift is the shift of processesto do the transfe
Iocal_arrayp isthearray of the process pto transfe

size array isthesize of thelocal array



Hereareitscontents :

test=np

stepsize=p_shift

pvalueli]=local_value,[i] for O<i<size _array

WHILE (test > p_shift)

IF (((p - p_base) mod (2*stepsize)) < stepsize)
p2=p+stepsize
start=1

ELSE
p2=p-stepsize
start=0

ENDIF

IF (start = 1)
Send array pvalueto process p2
Receive array p2value from process p2
ELSE
Receive array p2value from process p
Send array pvalueto process p
ENDIF

pvalugfi] = pvaludi] + p2valudi] for O<i<size _array

test = test/2
stepsize= stepsize * 2
ENDWHILE

total_valug[i] =pvaludi]
Local array transfer returns the a ray total_value

The transfer complexty of this function is of order O(2*log ,(test/p_shift)) and
the computational complexity isof order O(size_array*log ,(test/p_shift)).

Hereisthen thereconstruction algorithm:

p isthe name of the process

2XmaxpYmX js the size of thefield at scale 0
wh = 2Xmax-ip

ht = 2Ymaxip

FORj=jp TO 1BY STEP-1



np:4ip'j
f=p/4ri
f2=1/4

IF("IC exists)
IF("IC, =NOT _KEPT)

status

U Weset 'IC}=0,000< k<wh,0<l <ht

2/ Weset "IC., . =KEPT

ENDIF
ELSE

1/ We create " IC ! by setting all its coefficients to zeo
f j —
2/ Weset ' IC 4.« =KEPT
ENDIF

IE(TIC! exist)
IF("IC! =KEPT)
1/ We calculatelocal shifts
bx:cx(p, jp,2°™ )—cx(f 2, —1,2"™)
by=cy(p, jp.2"™ }ey(f2, j -1,2)
base_x:cx(p, jp,2°™ )—cx(f ) 1,27
base _y=cy(p. jp.2"™ }ey(f, j,.2™)

2/ We create ared sizetemporary fathe "2tC '™
with null coefficients

3/ We update it if needed
IF("21C 1™ exists)
IF("?IC L =KEPT)
21~ j-1 _ 21~ i1
tC be+O. wh-1by+0..ht-1" I COJ..Wh—l,O..ht -1

ENDIF
ENDIF

4/ We calcul ate the partial recongruction
f2um j=1_ f2¢m j-1 i
tCkJJ = tCk,I +Z FFk‘Z*(”JfbaSE_X),I—2*(m+base_y)* ICn,m
n,m



5/ We calculate thesumof all "2tC '™t
len = 2Xmaxj+l * pXmax-j+1

24C 1™ =Local arraytransfer (p,4"°71*t, f 2% 4711 1,72tC 1, |en)

6/1f "21C '™ does 't exist weset it to the null vecto
7/ Weset "IC ) =KEPT

8/ We trandfer thedatafrom "?tC 7 to "2|1C '™

f21~j-1 2~ 1
I CO..wh—l,O..ht—l = thx+O..wh—1,by+O..ht—1

9 We don't need any more '2tc i+ and ' |C
ENDIF
ENDIF
ENDFO

As the function Local array transfer is dore jp times, we deluce that the
transfer complexity of the algorithm is of order O(2*jp*(jp+1)) and the
computational complexity isof order O(jp*2Xmax«2 Ymax/4ip)

If N=4"& points and NP=4P processs, the transfer complexity is
O(2*[log,(NP)]?) and the computational complexity is O(log,(NP)*N/NP).

Complexities

In the worst case, if we consider that the best basis is composed of the all the
wavelet packets at scale nmax, the transfer complexity is O(2*jp* (jp+1)) and
the computational complexity is O(nmax*2Xmas2Ymax/4ip),

If we now suppase that N=4 " points and NP=4P processes, the transfe
complexity is smaller than or equal to O(2*[log ,(NP)]?) and the computational

complexity issmalle than or equal to O(log,(N)*N/NP).

8.5. A PARALLEL MATRIX-VECTOR
MULPTIPLICATION IN THE WAVELET PACKET BASIS
EXPANSION

8.5.1. Definition




We try to compute the product of a matrix C = (c;;) by a vector D = (d) in the

wavelet packet expansion. We suppose that 0<i < 2™ and 0< j < 2™
sotheresutisavector E = (e).

In a first pat we ceaompose the matrix C in a wavelet padet best basis, we
obtain a family of kept wavelet padkets il wit j0J  (where
JON . ={nON;0<nsnmax}) and of OF, (where for each jOJ,
F, 0 N4J_1). In a second pat, we ceaompose the vector D in all the possible

one dimensioral wavelet packets ©' D ! wit O< jsnmax and O<df, <2l

Each freqency ch is the combinaison of a frequency cf_xj among the x-axis
and a freqency cfy among the y-axis. We write that
cf, =(cf _x;,cf _y;) andwecalculate cf_x and cf_y, by :

i cf

=

S ;0
— 1=
cf _x;=) 2 J._J.J._l[rnodZE

The multiplication in thewavelet packet expanson consistsin obtaining all the
packets YV ET solution of the multiplication of MECELE ol by

Cf_XJDj.

Then, wereconstruct all the packets a - E' toobtainthevector E.
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Figure85.1.1:
Example of the multiplication in the wavelet packet expansion,

weconsder °E3=C9C3x3p?3

8.5.2. General principle of a paralle multiplication algorithm

We can use the former parallel algorithms in order to perform in a smple
manner the nultiplication of a matrix by avector.

At the begning, we decompose on 4P processes the matrix C in all the wavelet
packets and we select its best basis. On each process we deeomposein all the
one dimensional wavelet packets the vector D.

The multiplication between the wavel et packets can now take place:

- for each kept padket "'Cla scale j, we first find the frequencies fx
andfy correspondng to f, then
-if j is smaller than jp we d a nultiplication between

FIC! and the correponding local packetof *D'!
(named 1D '), we obtain the local packet YIE .
Weinsert it in thenull packet " E .



-if j is greter than or equd to jp, we do the
multiplication between 'C! and "D’ to have
nyJ

At the end of the rrultiplication, each process has a partid vector E ina

wavelet packet expansion (it is nat usually abasis). They will recongruct all the
kept packetsto get their partid vector E.

In alast pat, each process exchange and addall the pertid vectors E in orde
to get thewhdeore. E is the result of the multiplication of C by D.

8.5.3. Algorithm of the parallel multiplication

Hereisthisalgorithm :

p isthe process name

2Xmax by 2YmaX jsthe size of the matrix C
2Xma jsthe size of the vector D

so 2Ym& jsthe size of the vector E

wh=2Xma<ip gnd ht=2Ymaxip

A/ In parallel, using all the processes
We decompose C in all the 2Dwavel et packets,
We select the best basis for C

B/ On each process,
We decompose D in all the 1Dwavelet packets

C/ We do the multiplication when apacket is
sharedby morethan one process
FORj=0TOjp-1
f= p/ 4ipi

IF("IC ! exists) THEN
IF ("1CJ,«=KEPT ) THEN
1/ We set the ggnd shifts
base_x:cx(p, jp,2°™ )—cx(f ) 1,27
base_ y=cy(p, jp.2™ }-oy(f, j.2"™)

2/ We st the frequencies anongthe x and y- axis
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j-1
fy= 217t

=

3/ We keep thelocd vecto

fx j — XN
ID 0.wh-1"—" Dbase_x+0..wh—1

4/ We perform the smaller matrix-vector multiplication
fy|EJ' - f=(fx,fy)|CJ'x fX|D j

5/ Weinsert YIE ! into YE'

fyi —fy i
Ebase_y+0..ht—1_ IEO..ht—l

6/ Weset YEJ  =KEPT

ENDIF
ENDIF
ENDFOR j

D/ We db the multiplicationwhen a packet belongs to aprocess
FORj = jp TO nmax
FORf=4ip* p TO 4P * (p+1) -1
IF("C! exists) THEN
IF (" CJs =KEPT ) THEN
1/ We perform the smalle
matrix-vector multiplication
nyJ': f=(fx,fy)CJ'x fXDJ'
2/Weset YEJ  =KEPT
ENDIF
ENDIF

ENDFOR f
ENDFOR j

E/ On each process,



We Reconstruct from all the kept wavelet packets VE!
Each process hasits awvn part of the partia vector E

F/ We exchange all the partid vector E to havethewhole vectorE
E=Localarraytransfer (p,4” 0,LE,2™)

G/ The multiplicationis finished,
Each pracess has thewhde vector E.

8.5.4. Complexities

To calculate the transfer and compuational complexities, we have to add the
complexities of one prallel 2d decomposition, one paralel 2d best basis
selection, one sequential 1d decomposition, one matrix vector multiplication,
one sequential 1d recomposition and one array t ansfer.

If we consider the case when all the coefficients in the best basis are non
nedigible, this is of course nmuch worse than the drect computation. But, if
instead of all the coefficients (N), we consider that only R are non negligible,
the matrix vector multiplication becomes of order O( 2), and if R << N then
thismethodis very efficient.

8.6. CONCLUSION



