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ABSTRACT

Wavelet and wavelet packet transforms are presently used for image compression and denoising. There has been
recent progress on three fronts: implementing multiplication operations in wavelet bases, estimating compress-
ibility by wavelet packet transform coding, and designing wavelet packets to control frequency spreading and
pointwise convergence. Some open problems are mentioned.
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1. INTRODUCTION

Wavelets and wavelet packets are special functions having three useful properties:

e They are almost as well localized in both time and frequency as the Heisenberg uncertainty inequality
allows;

e They form orthogonal bases;

e They come equipped with fast, well-conditioned transforms: to compute N expansion coefficients of a
function costs only O(N log N) operations.

A simple almost-example of wavelets, which lacks only adequate frequency localization, is the Haar basis!
generated by the compactly-supported “mother” function ¢ = ¥ (z) = 1(2z) — 1(22 — 1), where 1(x) is the
characteristic or indicator function of the interval [0, 1). The linear span of the following orthogonal unit vectors
is dense in L?(R):

def

{en(e) & 27/ 2p(2 % —n) s s,n € 2}, (1)

This generalizes to Walsh functions, which are almost wavelet packets. Fix the initial functions wy = 1 and
wy = ¢ in L?(R), and for each integer n > 0 define

Wap () = wy (22) + wy, (22 — 1); Wapt1(2) = wy(22) — wy (22 — 1).

Putting wy, x(z) def wy(z — k) gives an orthonormal basis {w,  : n € N,k € Z} for L*(R).

Daubechies’ famous smooth generalization? of Haar’s basis is constructed using the two-scale equations:

o2) =Y V262 —k) € Ho(); (@)= g vV26(2z —k) € Go(x). (2)
k k

where h = {hy : k € Z} and g = (—1)!"%h;_; are finitely-supported sequences satisfying the following
conditions for all integers n, m:

Z hi higron = 6(n); Z [Py ok hinror + Gnrok Gmyok] = 0(n —m). (3)
% k



Here ¢ is the Kronecker symbol; §(0) = 1, but 6(n) = 0 if n # 0. Sequences h, g satisfying these conditions are
called (orthogonal) conjugate quadrature filters, or CQFs. One nontrivial example is the “Coifman 12”7 (C12)
filters.®> Here hy =0 if k < 0 or k> 12, and {hy : 0 < k < 12} is the following table of values:

{1.6387336463179785 x 1072, —4.1464936781966485 x 1072, —6.7372554722299874 x 10~ 2,
3.8611006682309290 x 1071, 8.1272363544960613 x 1071, 4.1700518442377760 x 1071,

—7.6488599078264594 x 1072, —5.9434418646471240 x 1072, 2.3680171946876750 x 102, (4)
5.6114348193659885 x 1073,  —1.8232088709100992 x 1073, —7.2054944536811512 x 10~}

The conjugate filter is gx = (—1)'Fhy;_y, shifted by 12, so that like & it is nonzero only at indices 0,...,11.

Similarly, wavelet packets are smooth generalized Walsh functions. Let wg = ¢ and w; = 9 be the scaling
function and mother wavelet, respectively, of an orthonormal wavelet basis, with operators H, G defined by
CQFs h, g, and put

wan () = Hwy (), Wan+1(7) = Gun (), (5)

for each n = 1,2,.... Shannon wavelets and wavelet packets can also be obtained by this recursion, if the
condition that h and ¢ be finitely supported is removed. Take

_sin [%(k - %)} _ B B sin [g(k — %)]
hi = Tk %) ; g = (=1)%hy_p = (_1)kW’ (6)
to define H and G, and
sl b st ] sinfre D)
o) =TT W D , (7

for the initial functions.

This overview paper will describe recent progress and open problems in three areas: multiplication of
functions given their wavelet aproximations; estimation of source coding efficiency, or compressibility, from
wavelet packet coefficient distributions; and control of frequency spreading and convergence in wavelet packet
bases.

2. COMPUTATION WITH ADAPTED WAVELET BASES

Speedups in numerical simulations have been obtained by representing solutions to complicated problems as
superpositions of relatively few wavelet packets. This approximation scheme is nonlinear, keeping only a short
series of those component functions with significant amplitudes; the others are discarded. Making this choice
to minimize a description length or information cost criterion is called a best basis algorithm.*

Computed simulations of fully-developed turbulence in the two-dimensional Navier—Stokes equation (2D-
NSE) provide an example.> ¢ 2D-NSE simulations on 10* to 10° grid points indicate that 10% of the components
suffice for deterministic predictability for short, and 1% suffice statistical predictability such as estimates of
the vorticity power spectrum. Turbulence simulations are thus an example “compressible” high-dimensional
problem.

After reduction, all of the numerical computations are done in wavelet packet coordinates. Some of the
known algorithms are matrix-vector and matrix-matrix multiplication,”® numerical differentiation,” ™ mul-
tiplication,'>'® and certain integral operators.'®® The multiplication algorithm is key to solving nonlinear
equations and is sketched here.

Given two functions approximable with short wavelet packet series, their sum is evidently approximable
by another short wavelet series. If the wavelets are smooth and have vanishing moments, then the same is
true for products. The short wavelet series representing their product may be found by pre-calculating the
connection coefficients which express the product of two wavelets or scaling functions as a wavelet series. A
method suggested by Daubechies and also used by Dahmen, et al., allows rapid computation of these coefficients



by matrix fixed-point iteration. The complexity of the multiplication algorithm is bounded by the number of
nonnegligible connection coefficients.

Only compactly-supported wavelets of Daubechies and Mallat? 16 are considered here, rather than the more
general wavelet packets. These are refinable functions, expressible as short linear combinations of dilated and
translated versions of themselves. Refinable functions have a cross-scale self-similarity that can be used to
compute integrals of their products, and thus to find connection coefficients.

The algebraic properties of refinable functions are well known, and have been heavily exploited in recent
papers on wavelets and numerical analysis. Dahmen and Micchelli'? considered the problem of evaluating
integrals of products of refinable functions and their derivatives. Kunoth'” later implemented the algorithms
described in that paper. Latto, Resnikoff, and Tenenbaum!'® also derived a linear system of equations for
connection coefficients involving two-scale equations for refinable functions.

Suppose that {ej : k € Z} is an orthonormal basis for L?(R) consisting of bounded functions. Then the
triple product ejere; is defined and integrable over R, so the abstract connection coefficients of this basis may
be defined as the following integrals:

Tjp = (ej ener) < /R e;(t) e (t)ey(t) dt. (8)

These coefficients are used to find the expansion of a product. If u(t) =, urer(t) and v(t) = >, viei(t), then

u(t)u(t)zz ZI‘jklukvl e;(t). (9)
kil

J

An example simpler than L?(R) is the space of sequences ¢? with the Kronecker basis ex(n) = d(n — k),
where 0(x) is the Kronecker symbol which is 1 if z = 0 and 0 otherwise. The inner product in Equation 8 is
a sum rather than an integral, and we see that I'ji; = §(j — k)d(j — ). The inner summation of Equation 9
simplifies into the pointwise multiplication formula ol Ujrugv = ujvj.

Another simple example is the Fourier basis e (t) = ¢?™* &k € Z, for L?([0,1]). This basis is both orthonor-
mal and closed under multiplication, so I'ji; = 6(k + 1 — j). A change of variables in the inner summation of
Equation 9 gives the usual convolution formula ), , Tjuurv = Y, urvj—s-

A less simple example is the Haar basis of Equation 1. Its basis functions are indexed by a pair of integers,
so their connection coefficients require six integer indices:

sir 4t /R an (&) o (201 () d (10)

The integral may be evaluated explicitly, since the Haar functions are almost closed under multiplication.
The product of two Haar functions g, and y, is either zero (if their support intervals are disjoint), or
2751(27 %z —n) (if they are equal, as when s =t and n = m), or iZ’ST“wtm (if their support intervals intersect,
and s > t). Reordering so that s >t > r gives

2792, ifs>t=randm=ke 2t n,n+1) Cr L(s—t,n);

str - __
Dome = { —2-5/2, ifs>t=randm=ke2'n+3,n+1) C R(s—t.n); (11)
0, otherwise, with s > ¢ > r.

Now n € L(a,j) < 27%n— 1 <j<2 % andn € R(a,j) < 27n—1<j <2 %% — 1. For fixed
n and a > 0 exactly one of these inequalities will have a solution j def M(a,n), and that solution will be



unique. Putting S(a,n) = +1 if n € L(a, M(a,n)) and S(a,n) = —1 if n € R(a, M(a,n)) yields the following
multiplication formula:

s—1
> Dhmatomvre = 272301 3wt~ 30 tamtm
t,m,r.k t=—00 [meL(s—t,n) meR(s—t,n)
+ Z 27128t — s,n) [t M(t—s5,m)Vsn F UsnVt M(t—sm)] - (12)
t=s+1

Finally, consider orthonormal wavelets.? The two-scale equations produce the connection coefficients
through iteration and filtering. As in the Haar case, there are six indices: I'S!", . One starts with the co-
efficients derived from the scaling functions:

def
Alrie [ Gun(@)bun(2)6rn() da (13)
R
One may suppose without loss that s > ¢ > r. Also, changing variables gives
Astr =075 A8 B0 2*5148;:f;ﬂn7k7254n, for n,m,k€Z and s >t >r € Z. (14)

Thus, to obtain A% it suffices to compute Aff;k ef Aijolc for m,k € Z and i > j € Z. These values are

themselves computed by fixed point iteration. For all triplets (n,m, k) of integers, define

Ay 28 000 /R 6z — n)o(z — m)d(x — k) dz, (15)

This quantity will vanish whenever the triplet is so large that the scaling function factors have disjoint support.
It also satisfies Apmi = An—k,m—k,0, S0 it suffices to compute the simpler quantity:

Aln,m) & Ao = [ 6la = n)o(a — m)o() da (16)
R
But this matrix satisfies its own two-scale equation!3:

THEOREM 2.1. Suppose that hy, = 0 unless 0 < k < L. Then A(n,m) =0 unless —L <n < L and —L <m < L.
Also, A satisfies the homogeneous fixed-point equation

A(n,m) = Za(p, q)A(2n — p,2m — q), —L<nm<L,
psq
where
def o
O[(p, q) = \/Ezhkfphquhk; -L< p,q < L.
k=0

The complete set of connection coefficients I's", may be obtained from the following numbers, which must

be computed for all m,k € Z and for all i > j € Z:

rid, o= /117/’(2_%)1/)(2_% —m)Y(z — k) dz; Tome = 2_£F7Sn_r72t5_*:n,k725*'"n‘ (17)
' comes from A% by filtering:
y y def ij
FZ’LJmIc =2 Z gn'gm’gk’A12J1’L+n’,2m+m’72k+k’ = ﬁGlGQG?’Aim:k’ (18)

n’,m’,k’



written as a separable filtering operation.

Likewise, A% comes from A__ by filtering. The two-scale equation for ¢ gives one step:
(5 - i—1,j5 def i—1,j
Anmk - Z h”’A2n+n’,m,k - HlAn,m,k' (19)
n/

Iterating ¢ times in the first scale index and j times in the second gives A:fmk = H{H% Apm k. using the
commuting operators

HB(,m. k) % S haB@n4+n',m k) HpB(nom,k) S b Bn2m+ml k). (20)
vn// m/
Combining the H and G operations yields I' from A by filtering:
Ty = V2G1GoGsH HS Ay i (21)

The C12 filters of Equation 4 provide a good example. They define the following «, whose entries are
multiplied by 1000 and truncated to integers for display purposes:

0 o -1 -1 0 o -1 -1 —1 0 0 —1 0 0 0 0 0 0 0 0 0 0 0
0 o -1 -1 0 o -1 -1 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0
-1 -1 0 o -1 -1 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0
-1 -1 o -1 -1 0 0 0 -1 —1 —1 0 0 —1 0 0 0 0 0 0 0 0
0 o -1 -1 0 o -1 =2 -2 -2 -2 -1 -1 0 0 -1 0 0 0 0 0 0 0
0 o -1 -1 0 -1 -1 -1 1 1 0 —1 —2 —1 0 -1 -1 0 0 0 0 0 0
-1 -1 0 o -1 -1 3 8 8 10 14 9 0 —2 0 0 -1 0 0 0 0 0 0
-1 -1 0 0o -2 -1 8 7 -9 =21 -12 11 14 1 -2 0 0 0 0 0 0 0 0
—1 0 o -2 1 8 -9 —45 —65 —-76 —61 —12 10 1 —2 o -1 0 -1 0 0 0
0 0 o -1 -2 1 10 —-21 —65 32 122 8 -76 —21 8 -1 -1 -1 -1 -1 -1 O 0
o -1 0 -1 -2 0 14 —-12 —-76 122 549 543 122 —65 —9 8 -1 0 -1 0 -1 0 0
-1 -1 -1 -1 -1 -1 9 11 61 8 543 941 549 32 —45 7 3 -1 0 0 0 0 0
0 o -1 0 -1 -2 0 14 -—12 -76 122 549 543 122 —-65 -9 8§ -1 0 -1 O -1 0
0 0 0 0 o -1 -2 1 10 —-21 —-65 32 122 8 -7 -21 8 -1 -1 -1 -1 -1 -1
0 0 o -1 0 0 0 —2 1 8 -9 —45 —-65 —-76 —61 —12 10 1 -2 0 -1 0 -1
0 0 0 0O -1 -1 0 0 -2 -1 8 7 -9 =21 -12 11 14 1 -2 0 0 0 0
0 0 0 0 0 1 -1 0 0 -1 -1 3 8 8 10 14 9 o -2 0 0o -1 0
0 0 0 0 0 0 0 0 -1 -1 0 —1 -1 —1 1 1 o -1 -2 -1 0 -1 -1
0 0 0 0 0 0 0 0 0 -1 -1 0 0 -1 -2 -2 -2 -2 -1 -1 0 0o -1
0 0 0 0 0 0 0 0 —1 —1 0 0 —1 —1 0 0 o -1 -1 -1 0 0o -1
0 0 0 0 0 0 0 0 0 -1 —1 0 0 —1 —1 0 0 0 0 o -1 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 -1 -1 0 o -1 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 o -1 -1 -1 0 0o -1

The origin m = k = 0 of a(m, k) is at the center, m increases downwards, and k increases to the right as in
the convention for matrices. The corresponding fixed point A is plotted below in Figure 1.

After computing the kernel « of the fixed-point problem, iterate from the elementary double sequence
A(m,k) =1 <= m =k = 0 until the maximum change per iteration in a coefficient of A falls below 107¢. To
get the other scaling and connection coefficients, apply the filter operators G1, G2, G3, Hy, and Hs as needed.

Each application of an operator Gy, G2, G3, Hy, or Hy costs L operations per output coefficient. Unfortu-
nately, the number of output coefficients grows with each application. For filters supported on {0,1,...,L —1}
and fixed 4,7 > 0, the matrices A% (m, k) and T'% (m, k) will vanish outside —L < m < 2*=/L and —L < k < 2°L.
However, as seen in the graphs, many of the coefficients with indices in this range are negligible. The graphs show
level lines of the logarithm of the absolute value of scaling and connection coefficients. The origin m =k = 0 is
always at the center of the square. The graphs are oriented such that m increases to the right and k increases
upwards as in the convention for xy plots in the first quadrant.



Figure 1: A, A"® and A"! for C12 filters.

Figure 2: T, T1% and T for C12 filters.

Figure 3: A%', A%2 and A%3 for C12 filters.
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Figure 4: T'*1 T'%2 and I'*3 for C12 filters.

3. ENTROPY OF WAVELET PACKET COEFFICIENTS

Having a choice of transforms for data compression suggests choosing one that optimizes coding efficiency.
If the transform coefficients are independent random variables, then the Shannon—-Weaver entropy'® of the
sequence determines the minimum bit rate needed to transmit them. This entropy cannot be calculated before
the transform is chosen and all the coefficients are known, but if large coefficient values are very sparse, as is
commonly observed in practice, then the entropy is equal to the logarithm of the theoretical dimension of the
coefficient sequence, which can be computed on pieces of the signal to guide the transform choice. The result
is a best-basis algorithm®* that minimizes theoretical dimension over a library of transformations, choosing the
transformation that yields best compression and also giving an estimate of the compression rate.

Transform output coefficients {z,, : m = 1,2,...} are modeled by independent Bernoulli trials of a random
variable with a fixed probability density function p = p(¢). For technical reasons, assume that p is continuous

and strictly positive on (0,1). It defnes a probability P{E} o [ p(t) dt for each measurable E C [0, 1].

For fixed 1 < N < o0, (uniform) quantization to N values is defined by the formula Q () o |[Nz]|/N.
If € [0,1) then Qn(z) € {0, 4. %,..., %}, For coding or transmission, {z,} is replaced by a quantized
version of itself, namely {Qn(xy,) :m=1,2,...}.

After quantization, the root-mean-square error, or distortion, per sequence element will have the following
expected value:

1/2
/2

Dy % (E{lrm — Qn(om)?}) —( / |tQN<t>|2p<t>dt) . (22)

Since the terms in the sequence are independent and identically distributed random variables, the distortion
is independent, of m. Each quantized value z,, will have the following discrete probability density function,
independent of m:

e -1 %
pn P{QN(xm): ”N }:/ pt)dt;  n=1,2,...,N. (23)

Shannon’s theorem!? states that the expected number of bits per element required to encode this quantized
sequence cannot be less than, but can be made arbitrarily close to, the entropy of the distribution, defined
below:

N
def
Hy = *g Pn logy P (24)
n=1

Huffman coding?’ is one way to achieve this efficiency.



A simple rate-distortion curve for this combination of quantization and coding is obtained by plotting
10log,q DN against Hyr, so that the units are decibels of distortion versus bits per coefficient. The number of
quantization intervals N parameterizes the curve. Hy and Dy can be estimated from p.

n—1 n

For Hy, write p, = %-p({,) for some &, € (%%, £&). Then

N 1 1 N 1
Hy = — z_:l Np(gn) ]()g2 |:Np(§n):| = 10g2 N — Z Np(fn) IOgZ P(fn) (25)

n=1

The second term is a Riemann sum approximating — fol p(t) log, p(t) dt, which may be called the source entropy
H(p). The log, N term is present because at super fine quantizations the less significant digits contain most of
the information even though they have almost no connection with p.

Now Dy, if p is continuous, has the following asymptotic behavior as N — oo:

1/N 1 1
Nli_rgoN?D%V = N3/0 t2dt = 3 = Dn~ AN (26)
Combining Equations 25 and 26 shows that
10logyq Dy ~ —10logyo N — 5logyg3 ~ —AHN + BH(p) — C, as N — oo, (27)

where A, B, C are positive constants. Thus the rate-distortion curve is asymptotic to a line of negative slope
with an intercept at BH(p) — C. Shifting the curve to the left improves the rate-distortion relationship in the
sense that the same transmission quality is obtained at a lower bit rate. Such a shift is accomplished by reducing
H(p), or equivalently by transforming the sequence {x,,} so that it appears to come from a lower-entropy source.

Fix 1 < M < o0, let {x1,...,2n} be a sequence of M Bernoulli trials of the random variable with density
p, and let {z7,...,2%,} be the decreasing rearrangement: ey > ] > 25> x>0 def Thryq- Let

x* = z*(t) be defined on the interval [0, 1] as follows:
g (t)=a),, A <t<T 2%(0)=1 (28)

This is a decreasing step function. The same sequence determines another step function as follows:

m M * *
v =M i <s<an y1)=0 (29)
These two step functions y and z* are approximate inverses: y (z*(t)) = Qs (t), while 2* (y(s)) = max{x, :
zh, < s} def Q.(s). Thus y inverts x* up to the precision of the M-bin uniform quantization, while z* inverts

y up to the precision of the generally nonuniform quantization defined by the monotonic sequence {z},}.

Now y(s) is the fraction of values of m € {1,2,..., M} for which x,, > s. Since the x,,’s are independent,
this expectation depends only on p, not on M:

Fy(s) = / o(t) d. (30)

Thus d%Ey(s) = —p(s), so Ey(s) is strictly decreasing and continuously differentiable. Hence Fy has a differ-
entiable inverse function z = 2(t), and the source entropy may be written in terms of 2’:

H(p) = — /0 " (8) o p(s) ds — /0 1 {m} log L(E_iyl(q))] ds — /0 g [ (1)] dt. (31)

ut sin i roxim. inver x*, while z i inver: ne m roxim z &~ x* an
But since y is the approximate inverse of z*, while z is the inverse of Fy, one may approximate * and

1 M
/0 log [—2'(t)] dt = Y log[~Ax},], (32)



def
where Az}, = z} —az)  form =1,2,...,M. If z;,..., 2, are so concentrated near 0 that z* decreases

exponentially, then —Az}, =~ bz}, for some constant b > 0, and

M M
H(p) =~ Mlogb+ Zlog|xfn|:M10gb+Zlog\xm\, (33)
m=1 m=1

since the right-hand sum is independent of the order of summation.

Finally, note that I(z) = S.2_ log [,,] is an additive information cost function.2! Tn the best-basis method
with I, a transform T is chosen for a signal u such that I(Tw) is minimized. If the minimizing coefficient sequence
x = Twu has an exponentially decreasing rearrangement, then it will appear to come from a source whose entropy
is approximately I(z).

4. WAVELET PACKET SPREADING

Wavelet packets defined by a single filter pair have uncontrolled size and basis properties, in general. By
substituting different filters at different scales according to a rule, these can be controlled. One can obtain
Schauder bases of uniformly bounded, uniformly compactly supported wavelet packets. By controlling size and
support, one can apply the Carleson—Hunt theorem to show that certain wavelet packet Fourier series of a
continuous function converges almost everywhere.

With the definitions Fj 4 H and F 1 e G , it is possible to write the filter formulation of wavelet packets:
Wy, = Fp, Fo, -+ Fy,wo, (34)

where 2771 < n < 27 is written in binary as n = Z;.]:l n;27=t n; € {0,1}. The numbering is chosen so that
ny is the least significant bit and n; is the most significant bit of the J-bit expansion of n. The restriction
271 <'n < 27 implies that ny = 1.

But operators H and G also act as Fourier multipliers:

ian© = gma (5 ) (5)5 mna(© =g (§) n (§). (3)

where mo(£) = 3, by e ™2™ and my(€) = 3, gk e 72"k are 1-periodic functions. They are trigonometric
polynomials whenever h and g are finitely supported, as in the Walsh example where mg(§) = 1+ e2mie =
2e™¢ cos €, and my(€) = 1 — ¥ = —2je™ ¢ sin €. Hence, there is also a multiplier formulation of wavelet

packets:
1
€)= grin(y) s (o7 ) mnscs () - (53 ) s (§)- (36)

For every positive integer N > 1 there is a Daubechies wavelet supported in [0,2N — 1] which belongs to
the smoothness class C¢ for d ~ N/5.2 Since Daubechies’ wavelets form an orthonormal basis, the associated
wavelet packets {wy : n € N,k € Z} form an orthonormal basis for L?(R), and they are just as smooth as
the mother wavelet and scaling function, because the filters are finitely supported. Unfortunately, though they
are smooth, these wavelet packets are not uniformly bounded??:

THEOREM 4.1. For any orthogonal CQF's (h,g) for which mo(§) # 0 on —% <& < T, the wavelet packets {wy, }
satisfy

. [P N
limsup — ([|do[|y + -+ + [[@n]}1) = cc.

n—oo

The nonvanishing condition on my is satisfied by Daubechies’ filters. If in addition mg is nonnegative, then
|tn |1 and |jwy, || Will be equivalent, so

. 1
limsup — (lwollec + -+ + [lwnllec) = 00
n—oc N



Thus, such wavelet packets are not bounded on average, as the frequency index increases. This result was
refined by M. Nielsen?3:

THEOREM 4.2. For Daubechies’ filters of length L = 4 through L = 20, there exist ppi, < o0, C' > 0, andr > 1,
all depending on L, such that ||wan_1||p, > Cr"™, for all p > pmin.

In particular, the theorem holds for p = co. In the L = 4 case, pmin = 2 is the smallest possible value, and the
same result holds for some other well-known CQFs, but the sharp lower bound is not known in general. There
is numerical evidence that the wavelet packets with frequency index 2" — 1 have the fastest growth as n — oo,
while those with frequency index 2™ seem to be uniformly bounded. It is not known whether Daubechies’
wavelet packets have the almost everywhere convergence property.

N. Hess-Nielsen?* 25 originally introduced the idea of building wavelet packet bases with more than one CQF
pair in order to design a single short CQF pair with the same frequency localization as longer CQFs. Given a
desired depth J of wavelet packet decomposition, this resulted in a savings of approximately half the arithmetic
operations in subband decompositions. The algorithm is based on two generalizations of Equations 34 and 36.
Let {(h7,g7 : J =1,2,...} be a family of orthogonal CQF pairs, fix wg, and for J > 2 and 277! < n < 27/
define nonstationary wavelet packets by

wn (@) = Fy F3, - Fywo(2), (37)

or alternatively, in the multiplier formulation, by

i (5) 1 (5) - (§). 5)

The superscript indicates which pair of CQFs defines the filter operator or multiplier. The idea is to change the
filters used to generate wavelet packets as their frequency increases. The associated transforms are as fast as
ordinary wavelet packet transforms, but the new functions are better behaved. They may be designed to have
the almost everywhere convergence property, or else to have uniform size, independent of frequency.

For example, (h”, g”) might be the Walsh CQF pair for all sufficiently large J > Jy. The resulting wavelet
packets are called Walsh-type. Likewise, if (b7, g”7) is the Shannon CQF pair of Equation 6 for all sufficiently
large J > Jy, then the resulting wavelet packets are called Shannon-type. M. Nielsen?? proved:

THEOREM 4.3. Both Walsh-type and Shannon-type wavelet packet series converge pointwise almost everywhere.

These theorems are direct consequences of the Carleson—Hunt theorem?® for Walsh series and Shannon series.
Generalizing a result of Y. Meyer, M. Nielsen showed that for each Walsh-type wavelet packet basis and each
1 < p < o0, there is an isomorphism of P that maps the basis onto Walsh functions. The LP boundedness of
the Carleson operator follows. Similarly, each Shannon-type wavelet packet basis is an LP isomorphic image of
the Shannon basis functions.

One can also use nonstationary wavelet packets to control the growth of ||w,||, for large p, as n — oo, using
lengthening filters. the idea is to get a uniform bound from |jwy, || < ||@, |1 by controlling frequency spreading
|t |l1- A. Cohen and E. Séré*” showed the following:

THEOREM 4.4. Suppose (h”,g”7) is a family of orthogonal CQFs whose length function L = L(J) satisfies
L(J) > ¢J3€ for some ¢ > 0 and € > 0. Then the associated nonstationary wavelet packets {w,} satisfy

277 (|[doll1 + -+ + llibps _1]1) < B,
for some B < oo and all J > 0. Thus,
277 (Jlwollee + -+ + lwzs_1lle0) < B,

as well.
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M. Nielsen?? refined this result in the special case where k7, g’ are the Daubechies orthogonal CQFs of
length L(.J). It is necessary to redo the entire recursion for each new level. Let

{((hJ’J,gJ’J), e (hJ’l,g‘]’l)) :J=1,2,...},

be a family of sequences of orthogonal CQF pairs. Fix wg, and for J > 2 and 2771 < n < 27 define highly
nonstationary wavelet packets by
wp(z) = FrﬁanJf e F;L]}on(zz;), (39)

or alternatively, in the multiplier formulation, by

1
g (5 (5) ()

Here the superscripts indicate which pair of which sequence of CQFs defines the filter operator or multiplier. In
fact, h’7 4 17 and g’ def g’ for all j =1,2,...,J. One may suppose that wy is any scaling function that
generates an orthonormal basis, not necessarily a Daubechies scaling function. One must suppose, however,
that wy is smooth enough so that | (&) = O(1/|£]*+€) for some € > 0. One first obtains a basic result, part of
which was also shown in27:

THEOREM 4.5. For any length function L = L(J), the nonstationary wavelet packets derived from {h”, g’} and
the highly nonstationary wavelet packets derived from {h”7, g7} form an orthonormal basis for L*>(R).

The additional properties of Daubechies’” CQFs give a better growth result:

THEOREM 4.6. If the length function satisfies L(J) > ¢J?T€ for some ¢ > 0 and € > 0, then the nonstationary
wavelet packets derived from Daubechies’ filters {h”?,g”} are uniformly bounded functions.

The support diameter of the nonstationary wavelet packet w,, grows without bound as n — oo, if L(J) — oo
as J — oo. This is overcome, strangely enough, by backing up and introducing longer filters earlier in the highly
nonstationary wavelet packet algorithm?3:

THEOREM 4.7. If the length function satisfies cJ?>T¢ < L(J) < Cf% for some ¢ > 0 and € > 0, and wy has
compact support, then the highly nonstationary wavelet packets {w,} derived from Daubechies’ filters {h*J, g7}
are uniformly bounded and have uniform compact support in a fized interval independent of n.
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