SIZE PROPERTIES OF WAVELET-PACKETS.

R.R. COIFMAN, Y. MEYER AND V. WICKERHAUSER.

1. Introduction

Wavelets are the building blocks of wavelet analysis in the same way as the functions
cos nx are the building blocks of the ordinary Fourier analysis. But in contrast with sines
and cosines, wavelets have a finite duration which can be arbitrarily small. This is the
reason why the challenge of the construction of wavelets is to keep the best frequency

localization which is allowed by Heisenberg’s uncertainty principle.

The wavelet orthonormal basis with the best frequency localization was constructed in

[4]. Tt is defined as the collection
(1.1) Vin() = 2292z —k) |, jEZ,keZ,

where 1) has the following properties

(1.2) (x) belongs to the Schwartz class S(R)
(1.3) the Fourier transform (¢) is supported by
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where 0 < §(§) < 1 and 0(—&) = 0(¢)
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The frequency localization of 1) is given by (1.3) while (1.4),(1.5) and (1.6) are convenient
to provide an orthonormal sequence. The fact that this collection ¥, j € Z, k € Z, is
complete in L?(R; dz) is, as often, related to some operator theory which will be described

in section 2.

The Fourier transform ) ; is supported by the “dyadic annulus” 227 < |¢| < 8727 and
this frequency localization is poor when j is large. Even if it means minor modification in
the construction of 1, one can achieve a slightly better frequency localization and replace
2w /3 by m — J, 87/3 by 21 4+ 2. Then 5 still belongs to the Schwartz class when § > 0

sin 27z _ sin 7w

but the limiting case 6 = 0 gives the “Shannon wavelets” y(x) = — . The

2wz T

relation with cardinal sines will be explained in section 4.

In some applications as speech signal processing one would like to be able to switch
from a wavelet expansion to some orthonormal expansions offering a better frequency
localization. This flexibility should not be ruined by the computational cost. In other
words, most computations leading to wavelet coefficients should also provide the new
coefficients. Basic wavelet-packets will be defined in section 4 and general wavelet-packets
in section 8. They provide these new and efficient expansions (theorem 6). This remarkable

efficiency is verified in numerical experiments on speech signal processing.

We would like to understand why wavelet-packets work so well and first to investigate
their frequency localization. It will be proved (see theorem 3) that wavelet-packets do not
enjoy the sharp frequency localization which has been announced in [2]. By S. Bernstein’s
inequalities, a sharp frequency localization would imply a uniform bound on L*°-norms of
the basic wavelet-packets w,, (). But theorem 3 shows that the average growth of ||wp|| oo

is n7 for some positive 7.

The fact that ~ is rather small plays a key role in the construction of a large library of

wavelet-packets orthonormal bases. Even if the problem of describing the full collection
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of such bases is still unsolved, the already known bases offer enough flexibility for the

applications to speech signal processing.

2. The scaling function ¢

In order to prove that the collection vk, j € Z, k € Z, is complete in L?*(R), one tries

to construct an approximation to the identity which is related to our wavelets.
This approximation to the identity will follow naturally from the following scheme.

DEFINITION 1. A multiresolution analysis of L?(R) is an increasing sequence V;, j € Z,

of closed subspaces of L?(R) with the following properties

(2.1) ﬂ V; ={0} , U V; s dense in L*(R)
(2-2) Viel?R),VjicZ, [flx)eV; < f(2x)€Vin
(2.3) there exists a function ¢ € S(R) such that

o(lr — k), k€Z, isan orthonormal basis of Vj.

If we are given a multiresolution analysis, (2.2) implies

1

(2.4) 590(

T

2) = Z.ovw(ﬂk)

where

for any m > 1.



Passing to the Fourier transform, one obtains
(2.5) p(26) = mo(p(&) , mo(§) = D me™.
We then define
(2.6) mi(§) = e mo(§+7)

and ¢ € S(R) by

A

(2.7) ¥(28) = mi(§)@(E) -
Denoting by W; the orthogonal complement of V; in V;; it is easy to check that
(2.8) Y(x—k), k€ Z, isan orthonormal basis of Wj.

An obvious rescaling shows that 27/ 2(2x — k), k € Z, is an orthonormal basis of W;.
Since ™, V; is dense in L*(R), the full collection ¢;x, j € Z, k € Z, is an orthonormal

basis of L?(R).

It remains to be shown that the explicit ¢ which is defined by (1.4) can also be obtained
by (2.7). To prove this assertion, we define ¢ € S(R) by the following conditions : ¢(—z) =

(), the Fourier transform ¢(§) of ¢(x) is non-negative, $(§) =1 on [—27/3, 27 /3] and
(2.9) > @€+ 2km))* = 1.

Condition (2.9) alone implies that ¢(z — k), k € Z, is an orthonormal sequence. This
sequence spans a closed subspace denoted Vj. The other V;’s are defined by (2.2). It
is easy to verify that all the other conditions in definition 1 are satisfied and that this

algorithm leads to the function 1 as defined by (1.4).

3. Quadrature mirror filters



S. Mallat working on image processing made a fundamental discovery. He pointed out
that some discrete algorithms named quadrature mirror filters (QMF’s) were intimately
related to multiresolution analysis (the latter concept was created by S. Mallat and one of

the authors).

Quadrature mirror filters belong to a larger group of algorithms called subband coding
which are used in speech processing as well as in image processing. The reader is referred

to [3] or [4].

In our approach, a pair of quadrature mirror filters provides a dichotomy for every
infinitely dimensional separable Hilbert space H, equipped with an orthonormal basis e,
k € Z. A trivial dichotomy would be given by H = Hy @& H; where Hj is generated by
(ear) and Hy by (ear+1), k € Z. In a second example, Hy is the closed linear span of the

eaktean it

orthonormal sequence <=2, k € Z, while H) is similarly spanned by %, keZ.

We now pass to the general case. Let (uy) and (vx) be two sequences in [2(Z). We

consider the sequence (f) of vectors of H defined by

o0

for = E Ugk—1 €]
— 00
o0

f2k+1 = § V21 €] -

— o0

(3.1)

We would like to know whether ( fx) is still an orthonormal basis of H. If so, H = Hy®H;

where the sum is direct and orthonormal, Hy being spanned by (faxr) and Hy by (fort1)-

We consider the following symbols

mo(0) = % Z.ouk k0
(3.2) N
my(0) = % ;yk ekl

and we have



PROPOSITION 1.. The three following properties are equivalent

(3.3) (fr)kez is an orthonormal sequence in H

(3.4) (fx)kez is an orthonormal basis of H

for every 0 € [0,2m), the matrix

mo(0) m1(6)

(3.5) .
S0) = (m0(9+7r) m1(9+7r)> is unitary.

The first example corresponds to mg(6) = \/Li and mq(0) = % e~%. The second example

to mo(0) = (14 €?), mi(0) = 1(1 — ).

We now consider the mapping F' = (Fy, F1) which transforms the “old coordinates” (o)

into the “new coordinates” (3o and o as defined by the relation

(3.6) > arer = Y Borfor + Y Yorfort -

We have (fax) = Fo[(ag)] and (vy2r) = Fi[(ak)]. The mapping F' is a unitary isomorphism
between [?(Z) and [2(2Z) x [*(27Z).

These two operators Fy and F; will be called quadrature mirror filters.

4. Wavelets and quadrature mirror filters

Let us return to the multiresolution framework as defined in section 2. We have at

our disposal two orthonormal bases for V;, j being kept fixed. The first one is simply
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er = 29/2¢(27 - —k) while the second one is fj where

far = 2072 (@)

(4.1) . '
fokt1 = 9(i—-1)/2 80(2]_1 k).
These two bases are connected by (3.1) if my(f) = % S uge™ and mq(0) =

% Ziooo vpe™*? are defined by

(4.2) P(26) = mo(€) ()
and
(4.3) Bh(26) = mai(€) p(€) .

In other words, mg(§) is 27 -periodic, even, C*°, non-negative, mg(§) = 1 on [—7/3,7/3]

and in the end
(4.4) my(&) + mi(E+m) = 1.

If [—%, %] is replaced by [—% +94,5 — (5] 6 > 0, the other properties of mg can be kept

and this new mg(0) is closer to the ideal filter.

If mo(§) =1lon [-Z,Z), me(£) =0on [—m, 7/2) and [x/2,7), then ¢(¢) =1 on [-m, 7)
and ¢(£) = 0 outside which gives ¢(z) = S2TZ_ In that case V; is the subspace of L?(R)
defined by the condition that the Fourier transform of f € V; is supported by [—27,27) and,
in the same way, W; is defined by the condition that f is supported by 2/ < |¢] < 20+,

The price to be paid for this sharp frequency localization is the corresponding lack of

localization of ¢(x) and 1 (z) with respect to the x variable.

It should be noticed that (4.2) and ¢(0) = 1 imply

(4.5) B(E) = mol€/2) mo(€/4) mo(E/8) ...
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Similarly we have

(4.6) D(€) = m(E/2) mo(€/4) mo(£/8). ..
That leads to define w. € L*(R) by

(4.7) () = me, (§/2)me, (§/4) ... me, (€/27) ...

when € = (g1,€2,...), 5 € {0,1} and ¢; = 0 when j is large enough. These functions

we(x) will be our basic wavelet-packets and our goal is to investigate their properties.

An other approach to basic wavelet-packets will be proposed in section 5 and the LP-

norms of these basic wavelet-packets will be estimated in section 6 and 7 when p is large.

5. Definition of wavelet-packets

We consider two sequences (ug) and (vy) satisfying one of the equivalent conditions in
proposition 1. It will be assumed that there exists a multiresolution analysis (V) of L?(R)
which is connected to this pair of quadrature mirror filters by (2.5), (2.7) and (3.2). But

we do not need more specific informations on the construction of ¢ and .

The basic wavelet-packets w,(z), n =0,1,2,... are defined by the following recursion
(5.1) won () = V2 iukwn@x + k)
coupled with
(5.2) Wont1(x) = V2 ivkwn@x + k),
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the function wy(z) belonging to L'(R) and being normalized by

(5.3) / " wolw)ds = 1.

— 00

Let us start with wg(x). By (5.1), we have
(5.4) wo(z) = V2 Zukwo(%} + k)
and therefore

(5.5) wo(28) = mo(§)wo(§)

(5.6) Wo(0) = 1.

But the unique continuous function satisfying (5.5) and (5.6) is ¢(&) and therefore wq(x)

o(x).

We now turn to (5.2) with m = 0. We obtain wq(x) = ¢(x). We can proceed and (5.1)

gives wa(x). Then (5.2) gives ws(x) and so on...

Let us modify the labelling of the basic wavelet-packets. They will be labelled by the

denumerable set E of all sequences € = (g1,¢€2,...) wheree; € {0,1} and ¢; = 0 eventually.

Let E; C E be defined by 0 =¢;41 =€j42 = .... Then E; T E. Finally the new labelling

is given by wy,(z) = w.(z) when n = g1 + 269 + --- + 27 1¢;.

Then the Fourier transform . (§) of we(z) is given by

(5.7) We(§) = me, (€/2) mey (€/4) - me,; (€/27) $(€/27).

Since ¢(§) = mo(&/2)mo(§/4)... and since ¢ € Ej;, (5.7) can be rewritten w.(§) =

me, (§/2) me,(§/4) ... and the fact that € belongs to E; can be ignored.
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Wavelet-packets provide new orthonormal bases as theorem 1 shows.

THEOREM 1. For each j, j = 0,1,2... the collection w.(x — k), ¢ € E;, k € Z, is an

orthonormal basis of Vj.

Roughly speaking, theorem 1 means that the space V; has been decoupled into 27 or-
thonogonal channels W), ¢ E;. Since the band width of W}, as defined by (1.3), is
of the order of magnitude of 27, it was natural to expect the bandwidth of each w.(z),

e € E;, to be 0(1). One of the goals of this work is to disprove this conjecture.

For proving theorem 1, we return to the labelling n = 0,1,... We want to prove that

the collection
(5.8) wp(z—k) , 0<n<?2 |, kecZ

is an orthonormal basis of V;.

When j = 0, we have n = 0, wo(z) = ¢(z) and we know that p(z — k), k € Z, is
an orthonormal basis of V. Let us assume that w,(z — k), 0 <n < 27! k € Z, is an
orthonormal basis of V;_;. Then (2.2) implies that 2w, (22 — k), 0 <n < 2971 k € Z,

is an orthonormal basis of V;. But (5.1) and (5.2) can be rewritten
(5.9) won(x — k) = V2 iu%_l wp, (22 — 1)
and

(5.10) Woni1(x —k) = V2 i vok g wp (22 — 1) .

This transformation is orthogonal since it has the same form as the one defined in (3.1).
Therefore wy,(z — k), 0 <n < 27, k € Z, is an orthonormal basis of V; and theorem 1 is

proved by induction on j.
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COROLLARY. The collection w,(xz — k), n =0,1,2,..., k € Z, is an orthonormal basis of

L*(R).

6. L°°-norms of wavelet-packets

Our goal is to study the frequency localization of the basic wavelet-packets w,(z). A

convenient way for estimating this frequency localization is to compute

(6.1) o = dnt [ e &P 10, OF 55

&€ER

Since [ [dy,(£)[* d¢ = 2, we have

(6.2) /MM£W%§wﬁTE.

But 0. (&) = me, (£/2)me, (€/4) -+ = e7EE my(€/2 + e1m) mo(£/4 + ) ... where

Me)=SF ++....

Since 0 < mp(&) < 1, we obtain

1 0
(6:3) fuelle = weME) = 5 [ fe(©)]dg
and therefore

1
(6.4) |lwnlloo = 5 V240, .

That means that the growth of ||w,|~ as n tends to infinity gives a lower bound of the
frequency localization. In a still unpublished work, E. Séré assumed that mg (&) is strictly
2 ™

increasing on [—7, —5} and satisfies the following condition

(6.5) sup (mo(ﬁ) + (g +§)m'0(§)) =r < 2.
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One can construct examples of 27-periodic C* functions mg(§) satisfying these two condi-

tions and the ones mentioned above : (4.4), mo(§) =1 on [—n/3,7/3] and 0 < mq(§) < 1.

Defining var(e) as .7 |ej+1 — €|, E. Séré proved the existence of two constants 3 >

a > 1, depending on mg(&), such that, for every ¢ € E,

(66) Cl&var(s) < ||w6||oo < Czﬁvar(e)

where cg > ¢1 > 0 are two other constants.

Dropping (6.5), we want to prove a more general estimate.

THEOREM 2. Let us assume that mg(§) =1 on [—%, %], mo(—&) = mo(), 0 < mo(€) < 1,

m3(&) +m¢(€ +7) = 1 and lastly

(6.7) mo(§) is decreasing on [0, 7] .
Then we have (forn > 1)

(6.8) [wnllee < CnM*

Moreover if my(§) =1 on [—g +6,5 — (5], 0 < <7/2, we obtain

(6.9) fwnlloe < Cn7®

where (6) tends to 0 as 0 tends to 0.

The two proofs are similar and we begin with (6.8).
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We already know that, if ¢ € E}, we have

1 0
|welloo = o | mo(g + &) ...mo(% +5jﬂ)¢(%)d£
— % mo(§+¢e;m) ... mo(2771 4+ e1m) p(€) dE
< §2j /7r mo (€ +e;m) ... mo(27 ¢ + ) dé
2 .
= \2/—; 27 (e) .

This estimate follows from the fact that ¢ is compactly supported and mg is 2m-periodic.

Since ¢(§) > % on [—m, 7], we obtain the following two-sided estimate for ¢ € E;
27 V2
6.10 —— J(e) < ||lwelloo < =—27J(e).
(6.10) 27“/5()_” I 5 2J(€)

For estimating J(¢), we apply the following observations (lemma 1).

LEmMMA 1. If both P(§) and Q(&) are 2m-periodic and continuous functions of the real

variable &, then, for any integer q > 1,

I = / " P(e)Q(2e) de =

—T

271 /7r [P(279¢) + -+ P27+ 27927 = 1)2m)] Q(§) d¢

—Tr

and therefore
(6.12) 1] < M|Q[
where [|Q[ly = 7, 1Q(€)| d¢ and
M =277 sup (|P(E)|+---+[P(E+27927—1)2m)]) .

0<€<2m
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This observation will be applied to P(§) = mo(§ + ;7)) mo(2§ +¢j_17), Q(§) = mo (& +
gj om)...mo(27 3¢ + e17m) and ¢ = 2. We check by brute force that M = %. Therefore

e

m0(§ + €j7'(') m0(2§ + €j,17T> .o .m0(2j_1§ + 617’(’) df

T
o V2

1 mo (€ +ej_am) ... mo(27 %€ +eym) dE

—T

and an obvious induction gives (6.8).

To prove (6.9) we first consider the limiting case where mg(§) is replaced by the charac-
teristic function xo(¢) of [-7/2,7/2). Then xo(é+e07) ... x0(29" 1 +&,17), once restricted
to [—m, ), is either the characteristic function of [—727%, 7277) or the characteristic func-
tion of the union U(e) of two intervals of length 7279, If 0 < § < 7279 ! then the
product mo (€ +eo7) ... mo(2971¢ + ¢, 1) defines a bump function which is supported by
U(e)+[—26,26]. It follows that the mean values of our product on &y +2km279,0 < k < 29,

do not exceed 5 - 279,

Returning to our problem of estimating J(g), we write mq < j < (m + 1)q where ¢ will
be frozen and m tends to infinity. Then lemma 1 implies J(¢) = J,,(¢) < 5-279,,-1(¢)

and an obvious iteration gives J(g) < C5™ - 279, Finally, ||we|/cc < C5™.

An optimal choice of ¢ is to pick the largest integer such that § < 7279~!. Therefore

7(8) = 0(log 1/8)~".

Theorem 2 is now completely proved. The estimate given by (6.8) is sharp since, in a

way, the reverse inequality is true, as theorem 3 shows.

THEOREM 3. The assumptions on mg(§) being the same as in theorem 2, there exists a
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constant r > 1 such that, for j > 0,

. 1 .

6.13 27 Welloo > r .

(0.13 > el > 5
EEEj

Sl

To prove (6.12), we return to (6.10) and are led to estimating

sy

Sj = Z m0(§+€17r)...m0(2j_1§+€jﬂ')d§

€€Ej -n

= [ o@oe).. o7 e a

—Tr
where

o(&) = mo(&) +mo(+7m) > 1.

But

log {% /_7r o(t)o(2t)...0(27711) dt}

1
S
- 27

J

/_TF log {o(t)...0(277 )} dt

= 5 log o(t)dt = By where (>0.
T™J_x

If mo(§) =1 on [—% +6,5 — 5}, then o(t) > 1 on [g —0,% -|—(5} and in general 8 will be of
the order of magnitude of CJ. Finally the average lower bound of ||wy, ||« is %) where

B(6) tends to 0 as § tends to 0.

7. LP-norms of wavelet-packets

THEOREM 4. Let us keep the notations and assumptions of theorem 2 and theorem 3.

Then there exists a pg > 2 such that, for each p > pg, one can find a positive v = ~(p)
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with the property that

(7.1) lim n 7([Jwi]p + -+ [Jwallp) > 0.

n—-4+oo

In other words, the average growth of ||wy||, is n7®) where v(p) > 0 when p is large. Tt
means that w, (z) cannot be a product u,, (x)v, (z) between some highly oscillating bounded

factor u,(z) and some envelope v, () which would keep a given shape with bounded sizes.

Theorem 4 easily follows from S. Bernstein’s inequalities. When ¢ € Ej;, the Fourier
transform @, (€) of w.(z) is supported by the interval |¢| < 2727, Bernstein’s inequality

gives
(7.2) lwelloe < C2/P el

and since the average value of ||w, ||~ is large, so is [Jw.||, as long as 2!/? < r (and therefore

po tends to co as J tends to 0).

8. Other orthonormal bases

Let us begin with the description of a rather general splitting scheme indexed by a dyadic
tree. Let us fix two sequences (ug) and (vy) defining a pair of quadrature mirror filters,
as in section 3. We start with a Hilbert space H equipped with a given orthonormal basis

(ex)kez and we split H accordingly to (3.1). Let us write e,io) = for, and e,(cl) = fopt1.

We now consider Hy equipped with egj), k € Z, and we go on splitting Hy with the same
sequences u; and vg. We obtain two new subspaces Hy o and Hp 1 equipped with the

corresponding orthonormal bases e}(€070) and 6120,1) as defined by (3.1). Similarly H; is split

into Hl,O &) Hl,l-
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At the j-th step we have obtained 27 subspaces H,, o € {0,1}/, of H. A very convenient
notation will be to write H, = H; where I is the dyadic interval [% + -4 % , B+
-+ g—j + 2%) when o = (a1, ...,a;). This labelling has the following advantage. If I is
a dyadic interval (contained in [0,1)) and if [ = I; ULy U---U I, is a partition of I by

dyadic intervals, then

(8.1) H = H,©---®H;

m

the sum being direct and orthogonal.

Does this identity still hold when an infinite sequence I,,,, m = 1,2, ... of dyadic intervals
forms a partition of I 7 If this is true we can raise the more difficult problem where I,
except for a null set, is covered by a sequence I, of disjoint dyadic intervals. By null set
we mean either a null set with respect to the Lebesgue measure or to some other measure

adapted to the given quadrature mirror filters.

A first answer is given by the following theorem.

THEOREM 5. Let us assume that, except for a denumerable set, a dyadic interval I is
covered by the union |J;° Iy, of disjoint dyadic intervals I,,, m =1,2,....
00 ik

Let us also assume that mo(0) = == Y7 uge*® satisfies the same hypothesis as in

theorem 2. Then

H = H,eoH,&® - ®H_&...

where the sum is direct and orthogonal.

Before proving theorem 5, let us give an application. The basic wavelet-packets are

wp(x—k),n=0,1,2,..., k € Z, and the general wavelet-packets will be defined as
(8.2) 2920, (2% —k) , neN,qeZ,keZ.
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This full collection clearly is an over complete system in L?(R) and our goal will be to

construct orthonormal bases of L?(R) with sub-collections of the form

292w, (2% —k) , keZ, (nq) €E.

An obvious solution is given by ¢ =0, n =0,1,... and an other one by n = 1 and ¢ € Z.

To describe some other possibilities, let us associate the dyadic interval I(n,q) =
[297,29(n 4 1)) to each of the wavelet-packets 29/%w,, (2%z — k), k € Z.
We then have

THEOREM 6. If a subset EE C N x Z has the property that, except for a denumerable set,
[0,00) is covered by the disjoint union of the dyadic intervals I(n,q), (n,q) € E, then the

corresponding wavelet-packets

(8.3) 292w, (292 — k) , keZ, (nq) ecE,

form an orthonormal basis of L?(R).

Theorem 6 can be deduced from theorem 5 if the following simple remark which has
already been used is kept in mind. We first identify the abstract Hilbert space H equipped
with an orthonormal basis (eg)xez to the space Viy equipped with the orthonormal basis
oN/2p(2Nx — k), k € Z. We denote by Ey the subset of E defined by 2=VI(n,q) C
I = [0,1). If the intervals I,, appearing in theorem 5 are precisely these 2=V 1(n,q),

(n,q) € En, then theorem 5 states that the collection
(8.4) 292, (2% — k) , keZ, (nq)eEy

is an orthonormal basis of V.

It suffices to let IV tend to infinity to obtain theorem 6.
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THE PROOF OF THEOREM 5:
To prove theorem 5 as stated, it suffices to consider the case where I = [0,1) and
H; = H. We denote by m,, : H — Hj_ the orthogonal projector and we want to show

that, for each x € H, we have

(8-5) lwl* = > llmm (@)

This relation will ensure that H is the closed linear span of the orthogonal subspaces Hy, .

To prove (8.5), we consider a given € H and without losing generality we can assume

|z|| = 1. If I is any dyadic subinterval of [0,1), we write w(I) = ||7;(x)|* where 7;(z) is
the orthogonal projection of x on Hj;. This functional w is finitely additive and we want

to extend this property and prove
(8.6) w(l) = wh) +wla)+ - +wlm) +-..

when, except for a denumerable set, I is the union (J{* I,;, of the pairwise disjoint dyadic

intervals I,,.

The following lemma 2 will immediately imply (8.5).

LeEMMA 2. For z € H, ||z|| = 1, there exists a continuous measure ;1 on [0,1) such that,

for every dyadic interval I C [0,1),

(8.7) (@2 = / dp(t) |

To prove the existence of p, it suffices to check the following continuity property of the

additive set functional w([I) :

if IW 1@ 5...5710) 5 where the length
(8.8) _ _ _
of IV is 277 | then w(IY)) tendsto 0.
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We will show a more precise estimate.

LEMMA 3. For x = ZiVN Ewer, N =1,2,... and ||z| = 1, we have
(8.9) |mr(2)| < ONIIV

where C' is an absolute constant and |I| denotes the length of I.

If we admit lemma 3, (8.7) follows easily. Assuming ||z| = 1, we write z = Y.~ _ ey
and denote by xx the finite sum ZJXN &rer. We then have ||mr(x)| = ||71(z — xp)| +

Iz (@n)ll < llo — x| + CN2IVE <&

whenever ||z — zx|| < &/2 (which fixes N) and then CN?|I|'/* < /2 (which gives

I} < n(e)).

To prove lemma 3, we will use a specific realization of H and of the corresponding
subspaces Hy. There are several (isometrically equivalent) such realizations and our choice
will be dictated by convenience.

We consider the realization where H is LQ([O, 27], %) and where e; becomes e+,
k € Z. Then the vectors fo, will be v/2mg(0) e 2% and for1 will be v/2my(0) e~ 20,

We can proceed further and finally the orthonormal basis of H; will be
21/ 2, (0)...me, ,(27710) e K0

when

5 T 5 Tt T



Finally our vector = = ZJ_VN &rer will be a trigonometric polynomial f and

2
129 k6 d_9

27
) f(O)me,(0)...m., (27710)e .

lmr (HIF =27 )

(8.10)
= 273 G R)P

We need exactly the same estimate as the one in theorem 2 :
27 ) o
(8.11) / me, (0)...me,(27710)|do < C27729/*
0

As we know this estimate is not optimal and the factor 27/% can be replaced by 27(9)7

depending on the properties of mq(6).
If k=0, [A(4,0)| < C|f|loc 277 27/* which is the required bound.

When k # 0, we integrate by parts and rewrite
)‘(jv k) =

27 ‘
—i(k27)7 /0 d% {£(O)mey(0)...me, (29710)} K0 g _

The term where f(0) is differentiated is treated as above. The term

where m,_(270) is differentiated (0 < ¢ < j) is bounded by C|k|™* 2977 X(q, j, k) where
Mg, j, k) =

/0 W}mgo(H)...meqil(QqAH)‘ }m€q+1(2q+19)...m€j71(2j_10)}d0.

To estimate this integral, we return to the argument used in theorem 2. We group the first
q terms (or ¢ — 1 terms if ¢ is odd) by pairs and apply lemma 1 inductively. We gain a
factor (v/2/4)(@=1)/2, We then repeat this treatment on the second half of the integrand,
starting from m._,, (29710). We obtain a factor (v2/4)U~9-1/2. All together, we have
obtained C(v/2/4)7/? and the sum over ¢ gives %(\/5/4)9'/2. Finally the [? norm of this

sequence is C’(1/2/4)7/? as announced.
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Theorem 5 is completely proved.

It would be interesting to know whether all the measures p = p,, * € H, are absolutely
continuous with respect to the Lebesgue measure on [0,1). In that case, theorem 5 could

be extended to the situation where except for a null set, [0,1) is covered by " Ipn.
The study of these measures pu, can be simplified by the following remark.

LEMMA 4.

e = gyl <[l = wll(ll ] + Nyl -

For proving this estimate, it suffices to write

lta =yl = lim > pa(l) = pa(D)]
Ij=zm

where the sum runs over all dyadic intervals I C [0, 1) with length 2. But
2 (T) = py (D] = [lI71(2)|* = 72 ()|
= [Ilmr @)l = llwr I (7 @)l = llm)])

< |lmr(@)[H 7z (z =)l + [lwr @) 1w (@ =)l -

The two terms are similar and the Cauchy-Schwarz inequality applied to

> lm@)l liwr( =)l

1]=2—m

gives

(mz ||7T1(1’)||2)1/2< > ||7nr(:1:—y)||2>1/2 = [zl llz =yl

=2-m |I]=2—m
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9. Conclusion

To conclude, we describe an example showing that theorem 5 or theorem 6 do not give
the final answer to the problem which has been raised. More precisely we show that some
Cantor sets may play the role of the exceptional denumerable set. We denote by K C [0, 1]
a symmetric Cantor set with dissection ratio 1/4. It means that K can be covered by 27
intervals of length 477 and it will be the only property we shall use. Consider the open
intervals |a,,, by, | which are the components of [0,1] \ K and assume that I,,, = [ay,, by)
in theorem 5 or 6. Returning to theorem 2, let us assume that ||w,|. < Cn” with
0 < v < 1/4. We know that this can be achieved. Then the reasoning which was used
for theorem 5 gives u(I) < C2~(1=277 for each dyadic interval I contained in [0,1) with

length 277. Finally u(K) = 0 and the conclusions of theorem 5 or 6 are valid.

This example shows that there exist some wavelet-packets orthonormal bases far beyond
the ones described in theorem 6. It also shows that this fact is related to the slow growth

of ||wn || is announced in the introduction.
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