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ABSTRACT. We describe a decomposition of L2(R) into an orthogonal direct sum of copies of L2(T). The decom-
position maps smooth functions to smooth periodic functions. It generalizes certain earlier constructions of smooth
orthonormal windowed bases. In particular, it shows the existence of smooth orthonormal windowed exponential,
wavelet, and wavelet packet bases for L?(R).

1. INTRODUCTION

Orthogonal projections which map smooth functions to smooth compactly supported functions appeared
in the work of Malvar [M] and Coifman and Meyer [CM]. In those papers the projections were used to build
a smooth overlapping orthogonal basis on the line, composed of windowed sine (or cosine) functions. In
this paper we observe that a variation of the method provides a smooth orthogonal projection onto periodic
functions. Conversely, it permits arbitrary smooth periodic bases to be used as smooth “windowed” bases
on the line. It evades the Balian—Low obstruction by a modification of the definition of “window.”

Many of these bases’ properties were only briefly described in the short papers of Malvar, Coifman, and
Meyer, but are developed in detail in [AWW]. We do not wish to overlook the original sources, but we will

take advantage of some of the later paper’s structure and notation for purely pedagogical reasons.

2. SMOOTH ORTHOGONAL PROJECTIONS

The main ingredient in the recipe is a pair of orthogonal projections which can be factored into simple

pieces. Let r = 7(t) be a function in the class C?(R)) for some 0 < d < oo, satisfying the following conditions:

0, ift<—1
1 DR+ lr(—t)P =1 f 11teR,; t:{’ - ’
(1) ()2 + [r(—t)] O I

)

An example function r € C* is the following:

0, if t < -1,
(2) r(t)=1q sin[Z(1+sinZ)], if-1<t<1,
1 if ¢ > 1.

)
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Figure 1.

Example of C' cutoff function.

A general construction for such functions is given in [AWW]. Now define the folding operator U = U(r)
and its adjoint unfolding operator U* = U*(r):

r(t)f(t) +r(—t)f(—t), if¢>0,

(%) vie) :{ () — TS (—1). i1 <0
\ r(t)f(t) = r(=t)f(=t), ift>0,

(4 UTi®) _{ r(=t)f(t) + () f(=t), ift<0.

Observe that Uf(t) = f(t) and U*f(t) = f(t) if t > L or t < —1. Also, U*U f(t) = UU*f(t) = (|r(t)|* +
Ir(—t)|?) f(t) = f(t) for all t # 0, so that U and U* are unitary isomorphisms of L?(R). As an example we

compute U f in a particularly simple case, using the cutoff function defined in Eq.(2):

Figure 2.

Action of U on the constant function f(t) = 1.

It does not matter how we define U f(0) or U* f(0) for functions f € L?; for smooth f we may just as well

define U f(0) et f(0), and for f satisfying certain smoothness and boundary limit conditions we will show

that there is a unique smooth extension of U* f across ¢t = 0.



SMOOTH LOCALIZED ORTHONORMAL BASES 3

Lemma 1. Supposer € C4R) for 0 < d < oo. If f € C4R), then Uf has d continuous derivatives in
R\ {0}, and for all 0 < n < d there exist limits [Uf]" (0+) and [Uf]™(0—) which satisty the following
conditions:

() (¢ it i
t£%1+[Uf] (t)y=0  ifnisodd,

(5)

tliI(I]li[Uf](n) (t)=0 if n is even.
Conversely, if f belongs to C*(R\ {0}) and has limits f™)(0+) and f) (0—) for all 0 < n < d which satisfy
the equations

lim f™(t)=0  ifn is odd,

t—0+

thr(? ™) =0 if n is even,

(6)

then U* f has a unique continuous extension (across t = 0) which belongs to C4(R).

Proof. The smoothness of Uf and U*f on (0,00) and (—o0,0) follows from elementary calculus. We can

calculate the one-sided limits of the derivatives as follows:

i 017 ()= tim > (1) [0 790 + (177000 010 o)

t—0+ t—0+ Pt

) -3 (Z) [P O4) + (=1 (0) O (0-)]

dim A 0 = tim 3 (3) [0 ST - ()@ )
k=0
) =3 () (- 1F [(-r I 0-) - TP o)
k=0

If n is odd, with 0 < n < d, then the summands in the right-hand side of Eq.(4) are =) (0)[f*) (0+) —
F*(0-)] = 0, since f*¥) is continuous at 0 for all 0 < k < d. If n is even, then the summands in the
right-hand side of Eq.(—) are %) (0)[f*)(0=) — f*)(0+)] = 0 for the same reason.

The converse requires showing the equality of two one-sided limits:
(7 Jim (U™ (0) = Jim (U1 (@0) = (U™ 04) = 0™ (0-)
- Z (1) [0 00) = ae 0 0-)
—(=1)" R (0) fB(0-) — (= 1)Fr0=RI(0) 19 (0+)
=3 (3) [0 - 0@ 04 - (1) {1+ (0} 0 00 0-)

k=0

The right-hand side is zero, since both {1— (—1)k} f®)(04) and {1+ (—1)*} f*)(0—) vanish for all k.

Since the one-sided limits agree, we know that lim; .o [U* f] (m) (t) exists for 0 < n < d. Now the function
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U* f has a unique continuous extension across t = 0. By the mean value theorem, for each ¢t # 0 there is

some tg between 0 and ¢ such that

0™ ) - [v=1™ (0)
t

(8) = [ (1)

By letting ¢ — 0 in this equation, we show that [U*f]®) (0) = lim, o [U*f]®) (t) = [U*f]** (0) =
limy_,q [U* f](kH) (t) for 0 < k < d. Induction on k then shows that the unique continous extension of U* f
belongs to C4(R). O

This lemma shows that just a trivial boundary condition is needed to obtain smoothness. In particular,
the 0 function satisfies the condition, and we shall use this fact to clarify the construction of the smooth

orthogonal projections in [AWW]. Recall that these were defined directly in terms of the cutoff function:

(9) Pof(t) = [r()Pf(t) + r(O)r(=t) f(—t);  POf() = [r(=t)Pf(t) = r(E)r(—t) f(—t).
We can relate Py, P? to some trivial orthogonal projections given by restriction to intervals, as defined below:

f@), iftel,

0, otherwise.

(10 s = {
Then P? and Py may be defined as operators on L?(R) by the following formulas:
(11) Py=U'xg+U;  P'=U'xg-U

Since the operators Py, P? are obtained from the trivial orthogonal projections by unitary conjugation,
they are themselves orthogonal projections. We call them smooth projections onto half-lines because of the

following properties:

Corollary 2. If f € C4(R), then the unique continuous extensions of Pyf and P°f belong to C%(R), and
supp PUf C (—o0, 1] and supp Py f C [1,00).

Proof. The result follows from a two-way application of Lemma 1, since xg+U f(t) and xg-U f(t) satisty
Eq.(6) at t =0. O

It is evident from either formula that Py + P° = I and that both Py and P° are selfadjoint. We remark
that these formulas follow the “local cosine” polarity, and that we can just as well exchange the + and — in
the definitions of P? and Py (likewise for U and U*) to obtain the “local sine” polarity.

Now consider the usual translation and rescaling operators:

Tof(t) = f(t+a);  7of(t) = f(t—a);
1

(12) (0 = Ve B0 = A ().

Here a and € > 0 are real numbers. The “range of influence” of the folding and projection operators can be
dilated and translated to an arbitrary interval (a—e, a+e€) by conjugation with . and 7,. We can also use
an arbitrary smoothly rising cutoff function r as long as it satisfies the conditions in Eq.(1).

We can now define smooth orthogonal projections onto compactly-supported functions in the notation of

[AWW]. We dilate P° and Py by conjugation with §. and then translate by conjugation with 7,:

(13) Pre = 7267 PydeTa; P = 1287 PY%.7,.
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If ep+e1 < a1—ayp, then the operators P and P,,., commute. In that case the following operator is an

orthogonal projection:
( 14) P(Oéoyoél) = PaonPOqﬁ

This projection maps smooth functions on the line into smooth functions supported in [ag—¢€g, ag+e€1]. Tt
may also be factored using the translated and dilated folding and unfolding operators. To do so we conjugate
by dilation and translation to obtain a family of folding (respectively unfolding) operators indexed by the

triple (r, a, €):
(15) U(r,a,€) = 7505U(r)0cTa; U(r,a,€) = 720U (1)0cTo-

For future reference, we expand the formulas for U(r, o, €) f and U*(r, a, €) f and write them explicitly:

r(=0)f) +r(e=h) f2a—t), fa<t<a+te,

(16) Ul(r,ae) f(t) =4 r(0)f(t) —r(E2)f(2a—t), ifa—e<t<a,
f(t), otherwise;
r(t;a)f(t)fr(o‘;t)f(Za—t), ifa<t<a+e,

(17) U™ (ryae) f(8) = § r(22t) f(1) + r(52) f2a —t), ifa—e<t<a,
f(t). otherwise.

Where convenient we will write Uy for U (o, ap, €g), and so on. We note that if the intervals (cg—eq, ao+€o)
and (ag—e1, ag+e;) are disjoint, then the operators Uy, U, U§ and Uy all commute. In this case we will
say that the pairs («g,€9) and («1,€1) are consistent. For consistent («,€g) and (a1, €1) the projection P
factors as follows:

(18) Plagyay) = UgUfX(QO:al)UlUO

In the sequel we will make frequent use of these consistency hypotheses on the parameters r, o, ¢ which

we group together below for convenience:

Definition. We say that the consistency conditions hold for the triplets (rg, ag, €9) and (r1, aq, €1) if
(1) ro and r; belong to C4(R) for some 0 < d < co and satisfy Eq.(1);
(2) € and €; are positive;
(3) The pairs (aq, €9) and (aq, €1) are consistent, i.e., the intervals (cg—e€g, aote€p) and (o —e1, ag+er)

are disjoint.

3. ADJACENT COMPATIBLE INTERVALS

The development of the Coifman Malvar Meyer bases in [AWW] defines adjacent compatible intervals to
be the intervals I = (ag, ) and J = (ay, a3) corresponding to mutually consistent pairs («;,€;), 4 =0,1,2,
with associated smooth cutoffs r;, i = 0,1,2 satisfying Eq.(1). We can give a simpler proof of one of the

lemmas which appears in that paper:
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Lemma 3. If I and J are adjacent compatible intervals, then P; + Py = Pryy and PrPy = P;P;r = 0.

Proof. The operators Uy, Uy, U, Ug, Uf and Uj all commute because of the consistency condition. Fur-

thermore, Uy and U5 commute with x; and Uz and U; commute with x;. Thus:

Pr+ Py = U Ui x1U Ug + Uy U x sU Uy
(19) = Uy [Usx1Uo + Us xsU2] Uy
= Uy UsUT [xr + x5] U1U2Uy

We note that U; and Uy commute past [x7 + xj] = xrus and cancel. This shows that P; + Py = Pryy.

Similarly, after interchanging various commuting operators we obtain

( 20) P;Pr = P[Py = UgUl*XIUonUfUz*XJUQUl = U(TUl*UZ*XIXJUOUZUl =0. O

The factored construction for P; not only simplifies the proof of Lemma 3, it also points the way to a
natural generalization. There is no reason to require that the map P; be a projection if what we want to do

is to transform one orthonormal basis into another.

Lemma 4. Write I = (ag,1). Suppose that (rg, ao,€o), (11,01,€1) and (r2, ap, €2), (3, a1, €3) satisty
the consistency conditions. Define Uy = U(rg, g, €0), Ur = U(r1,00,€1), Vg = U*(re, ap,e2) and Vi* =
U*(r3,ai1,e3). If f € C*(R), then Prf &f Vo Vix1tUrUo f has a unique continuous extension in C%(R) which
is supported in the interval [ag—ea, a1+€3). Furthermore, Py is a unitary isomorphism between PjL?*(R)

and P;L2(R), where P; % UzUsx Vo VA

Proof. The smoothness and support properties of Py f follow from Lemma 1, since x;U Uy f satisfies Eq.(6)
at t = ag and ¢ = a; and has support in .

Since Uy and U; are unitary isomorphisms we may write PrL%*(R) = V5V xrL*(R). Similarly we may
write P;L?(R) =2 UsU;xrL?*(R), which shows that Pr is an isomorphism between P;L?*(R) and P;L*(R),
with the inverse map being the adjoint P;. O

Notice that this proof shows P;L?(R) to be unitarily isomorphic to L?(I), with the isomorphism given
by VuVi. This isomorphism replaces the traditional windowing of periodic bases. We remark that P; will
be a projection if and only if VijUy = UgVy* = Id and V{*U; = U V{* = Id. Since these are all unitary, it is
equivalent that Uy = V; and Uy = Va. If we use a single € and a single r, then the interval I = (ap, 1) and
its adjacent translate by |I| = a3 — « are compatible. The main consequence of this observation is that Py

composed with |I]-periodization is still a unitary isomorphism. This will be stated more precisely below.

4. PERIODIZATION

Our goal is to expand smooth functions in orthonormal bases of smooth compactly supported functions
arising from arbitrary periodic bases. To achieve this goal we must first define the A-periodization Q) f of a

function f = f(t) by the usual formula:

(21) DFOES fE+hN) =D maf ().

keZ keZ

If f belongs to L?(R) and is compactly supported, then Q2 f belongs to L7 (R) and is periodic of period A.
If in addition f belongs to C4(R), then €, f also belongs to C4(R).
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We can now define a “periodized” version of the folding and unfolding operators. The periodization is

hidden in the definition of the following operators:

r(B20) f(E) +r(2et) flag +oa —t), ifag <t<ag+e,

(22) W (r, (a0, 1), €) f(t) = (A=) f(E) — (B2 flag +oa —t), ifan —e<t<an,
f(t), otherwise;

t—a

r(E2e) f(t) — r(2=) flao +a — 1), if ag <t <ag+e
(23) W= (r, (a0, 1), €) f(8) = § (28 f(1) + r(520) flag + a1 — 1), ifar —e<t<a,
I

1), otherwise.

For these to be well defined, we must assume that (r, g, €) and (r, a1, €) satisfy the consistency conditions.

Using 2, we can write the relationship between W and U:

Lemma 5. Suppose that (r,aq,€) and (r,aq,€) satisfy the consistency conditions. Then for allt € I =

(oo, 1), we have:

W(r,1,¢€) f(t) = U(r,an, €)U(r, a1, €)1 x1 f(1);

(24)
W*(r,1,¢) f(t) = U*(r, a0, €)U" (7, a1, €)pyx1 f(t)-

Proof. We observe that for the periodic function f = Qpxrf of period |I| = a1 — ag we have the following
identity:
(25) f(Oé0+061—t)Zf(Zozo—t)zf(Zal—t).

Also, f(t) = f(t) for all t € I. Using these facts and Eq.(16), the formula for W;f inside I becomes the

following:

(E=20) f(t) + r(22=t) f(200 — t), ifag <t<ag+e,
W(r.Le) f(t) = r(S0)f(t) — r(E20) f(201 — 1), ifag —e <t < an,
f(
Ulr,an,e)f(t), ifag<t<ag+e,
= U(T,al,e)f(t), ifa; —e<t<ay.
ft), otherwise.

r

t), otherwise;

The result follows immediately. [

When there is no possibility of confusion, we will write Wy for W (r, I, €) where I = (g, o1), suppressing
the r and e. We observe that W; and W} are unitary isomorphisms of L?(R) (i.e., W;W; = W;W} = Id)
because |r(t)|> + |r(=t)|> = 1 for all t. Also, if t < ag or t > ay, then W f(t) = f(t) and W f(t) = f(t).
Thus if I and J are disjoint intervals, the operators W, W, W, and W all commute. We also note that if
f is smooth in the interval I, then W7 f is also smooth there. Furthermore, W f satisfies the same boundary

conditions at ag+ and a1 — as UpU, f:
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Lemma 6. Suppose that the consistency conditions hold for (r,cq,€) and (r,aq,€), and write I =
(ag,a1). If f € C4R) is |I|-periodic, then Wrf belongs to C4(R \ {ag,a1}), has limits [Wrf]"™ (ao+)
and [Wy f]™ (ay—) for all 0 < n < d, and satisfies the following conditions:

lim (W)™ () =0, if n is odd;
(27) et
t_l)iglli wrf]™ (1) =0, if n is even.

Conversely, if f belongs to C4(I) with limits ™ (ag+) and f(a1—) for all 0 < n < d which satisfy

lim £ (t) =0, if n is odd;

( 28) t—ap+
, lim f™ (t) =0, if n is even,
—Q]—
then W f satisfies the equation
(29) im (W7 A @ = lim (Wif™ @),  forall0<n<d.
—Qq —Q] —

Thus W7 f has a continous periodic extension in C4(R).

Proof. If f is |I|-periodic, then Q7 xrf = f. Thus Eq.(27) follows from Lemma 5 and an application of
Lemma 1 at ag+ and aq—.
Given Eq.(28) we deduce that f = Qr)xr1f satisfies the conditions

T (ag+) = f™ (aq+) = 0, if n is odd;

30 - -
(130) ™ (ap—) = f(ay—) =0, if n is even.

We can evaluate the one-sided limits of Eq.(29) by using Lemma 5:

W* (r.1,6) 1™ (a0+) = U ] " oot),  forall 0< n<d:

(31) -

W* (r, 1) f]™ (a1—) = [Uf (1), forall0<n<d.

Ly

n n

i _ i ~ () ()
But U f = 3 Usminf = 7 Us £, since [ is |I]-periodic, so that [Ug f} (ao+) = [Uf f} (a1+) and

(n) q(n)
[Uo*f] (g—) = [Ul*f} (a1—). Finally, the converse of Lemma 1 applied at ag (or just as well at a;)

() )
implies that [U5 7| " (aot) = [vs ] " (ag—) for all 0 < n < d, from which follows Eq.(29). O

5. ORTHONORMAL BASES

Lemma 7. Suppose that (r,ag,€), (r,a1,€) and (ro, ag, €0), (11, a1, €1) satisty the consistency conditions,
and write I = (ap, 1) and Wy = W (r,I,€). If {e;};ez is a collection of |I|-periodic functions which form
an orthonormal basis for L*(I) when restricted to I, then Ey = {UiU;x1Wre;} ez is an orthonormal basis
of U;UTL*(R). In addition, if {e;}jez C C*(R), then Ey C C§(R).

Proof. The functions {x;Wye;}jecz form an orthonormal basis of L2(I), since Wy is unitary. Then Fj is an
orthonormal basis of UgU; x;L?(R) since USU; is unitary on L?(R).
Lemma 6 implies that x;Wre; satisfies Eq.(6) at o and a1. Then the converse of Lemma 1 implies that

each function in Ey belongs to C4(R), in fact with support in the interval [ag—eg, ay+er]. O
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We can define a segmentation of the line into arbitrary windows with varying overlaps. Fix a sequence
{(rg, ag, €x) = k € Z; e, ar, € R;e, > 0} such that adjacent triplets satisfy the consistency conditions. We
also require that ay < ag41 for all k € Z, and that

(32) R=Jlarari) € |J Ik

keZ kEeZ

Note that Uy = U(rk, o, €;) and Uy = U(ry, oy, ;) commute for all k,1 € Z. We likewise define U} =
U*(rg, a, €). The first main point of this paper is that from arbitrary smooth periodic orthonormal bases
we can construct smooth compactly supported orthonormal bases for L2(R). This is a consequence of our

previous lemmas, which combine to give the following:

Theorem 8. Suppose that
(1) R is decomposed as in Eq.(32);
(2) for each k € Z the triplets (rg, oy, ex) and (rgi1, Qgy1, €xr1) satisfy the consistency conditions;
(3) for each k € Z the family of |Iy|-periodic functions {ey; : j € Z} has the property that when
restricted to Iy it forms an orthonormal basis of L*(I});

(4) for each k € Z the pair (7, o, €x), (Tr, akt1, € ) satisfy the consistency conditions.

We define U} = U*(rg, o, €;) and Wy, = W (7, I, ). Then the collection
(33) E={U;UgsixnWeer; : .k € Z}

is an orthonormal basis for L?(R)) consisting of functions of compact support. If in addition all the functions
er,;j and 1, k, j € Z, belong to C4(R) for some 0 < d < oo, then the functions in E belong to C§(R).

Proof. Since adjacent intervals Iy, Iy 1 are compatible for all k£ € Z, Lemma 3 gives us the decomposition
L*(R) = @cz P1,L*(R). By Lemma 7, each of the spaces P;L?*(R) has an orthonormal basis Ej, =
{Us U ixn, Wheg,j : j € Z}. Putting these bases together into £ = J,., Ex yields the result. O

In practice it is often better to transform a smooth function into a smooth periodic function and then
expand it in a periodic basis, rather than expand a smooth function in the basis E described above. This
is because well-tested computer programs exist for the first algorithm but not the second. The second main

result is just the adjoint of Theorem 8:

Theorem 9. Suppose that the triplets (ro, ag, €o), (r1, @1, €1) and (r, ag, €), (r, a1, €) satisfy the consistency
conditions. Write I = (ag, 1), Uy = U(ro, ap, €0), Ur = U(r1,01,€1), and W; = W*(r,I,€). If f belongs to
C4R), then Ty f def Wix1UoUy f has an I-periodic extension which belongs to C4(R). Also, Ty is a unitary
isomorphism from UiU; x1L*(R) to L*(I).

Proof. Since x1UgU,; f satisfies Eq.(28), the converse of Lemma 6 implies that

lim [WixrUoUs f]™(8) = lim [W7xrUoUs £ (2),
t—ao+ t—a —
for all 0 < n < d. Hence Wjx1UopU: f has a unique continous periodic extension in C?¢(R).
For the second part, we note that UpUs is a unitary isomorphism from UgU; x1L?(R) to x7L*(R) = L?(I),
and W;x; is a unitary automorphism on y;L*(R). O
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6. EXAMPLE BASES

We consider some examples of the action of a specific folding and unfolding operator. The Mathematica™
program which generated the graphs below is available in electronic form by anonymous ftp [FD]. Let r be
defined as in Eq.(2), let ag = 0, a; =4, I = (0,4), and € = e¢g = €; = 1. From the function ey (t) = €™ we
get the following basis function for L?(I):

| |
T
- : fr - :
B

1 -1

Figure 3.

Real and imaginary parts of y;Wrey.

When these are unfolded, we obtain the following basis function for P;L*(R):

Figure 4.

Real and imaginary parts of U;U; x1Wrey.

Conversely, computing the frequency 4 member of the Fourier series of the function Wjx;UpU;f is

equivalent to finding the inner product of f with UjU] x1Wres.

7. HisTORICAL NOTE

The projection operators P° and P, were first described to the author by R. R. Coifman in 1985, in a
discussion about some work of Y. Meyer. Originally they were used to approximate the Hilbert transform
with H defined by (Hef) = Poe f — poe f , a better-behaved operator which retains the algebraic properties of

the original. Their usefulness to signal processing became most apparent during the author’s implementation



SMOOTH LOCALIZED ORTHONORMAL BASES 11
of the Malvar transform in a package of adapted waveform analysis computer programs [AWA].

8. APPENDIX: SOURCE CODE

The following is an implementation of the operator U described above. It folds an array in place:

/x fold()

%

x Given an array, smoothly fold the odd part into the left half and the even
x part into the right half. This is implemented as a transformation in place
x of two arrays:

* —the left half- —the right half-

%  ominus[-reach] . . . ominus|[-1] oplus[0] . . . oplus[reach-1]

*

+ Here reach is a positive integer. This indexing is chosen so that ‘oplus’

* and ‘ominus’ are typically identical pointers to the first element of a

x block of the given array. The function then folds the leading edge of the
x block into the trailing edge of the previous block. However, the array

* locations ‘ominus[-reach]...ominus[-1], oplus[0], ..., oplus[reach-1]’

* must not overlap.

x The formulas for the transformation are:

« oplus[k] = rise[-k-1]xominus[-k-1] + rise[k]xoplus[k], k= 0....,reach-1
* ominus[k] = rise[-k-1]xominus[k] - rise[k[xoplus[-k-1], k= -reach,...,-1

x Temporary variables are used to allow transformation in place.

x Calling sequence:

* fold( ominus, oplus, rise, reach )

*

x Input:

* (real * )ominus Values ominus|-1]...ominus[-reach] must be
* allocated and defined.

*

* (real *)oplus Values oplus[0]...oplus[reach-1] must be
* allocated and defined.

*

* (const real *)rise This array must contain a valid rise

* function’s ”left half”, increasing from

* ‘rise[-reach]’ to ‘rise[reach-1]’.

*

s (int)reach This positive integer determines the size of
* the rise and the range of the folding.

*

* Qutput:
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x  Array values oplus[0]...oplus[reach-1] and ominus/[-1]...ominus[-reach]

x  are replaced with orthogonal linear combinations.

+/

void

fold(
real xominus, /x Negative (left) side: -reach < x < 0. */
real xoplus, /* Positive (right) side: 0 < x < reach. x/
const real *rise, /% Rise increases on -reach < x < reach. %/
int reach) /* Positive integer. */

{
int k;
real templus;

const real xrneg;

rneg = rise;
for( k=0; k<reach; ++k)
{
templus = (krise)x(xoplus) + (x——rneg)x(x——ominus);
xominus = (krise++)x(xominus) — (xrneg)x(xoplus);
xoplus++ = templus;
}

return;

}

The following is an implementation of the operator U* described above. It unfolds an array in place:

/% unfold()

*

x Given an array, smoothly fold the even part into the left half and the odd
x part into the right half. This is implemented as a transformation in place

x of two arrays:

* —the left half- —the right half-
x  ominus[-reach] . . . ominus[-1] oplus[0] . . . oplusreach-1]
*

*

Here reach is a positive integer. This indexing is chosen so that ‘oplus’

*x and ‘ominus’ are typically identical pointers to the first element of a

x block of the given array. The function then folds the leading edge of the
x block into the trailing edge of the previous block. However, the array

x locations ‘ominus[-reach]...ominus[-1], oplus[0], ..., oplus[reach-1]’

*x must not overlap.

« The formulas for the transformation are:
oplus[k] = rise[k[xoplus[k] - rise[-k-1]xominus[-k-1], k= 0,...,reach-1
ominus[k] = rise[-k-1]xominus[k] + rise[k]«xoplus[-k-1], k= -reach,...,-1

*

*



SMOOTH LOCALIZED ORTHONORMAL BASES 13

x Temporary variables are used to allow transformation in place.

x Calling sequence:

* unfold( ominus, oplus, rise, reach )

*

* Input:

* (real * )ominus Values ominus|-1]...ominus[-reach] must be
* allocated and defined.

*

* (real *)oplus Values oplus[0]...oplus[reach-1] must be
* allocated and defined.

*

* (const real *)rise This array must contain a valid bell

* function’s ”left half”, increasing from

* ‘rise[-reach]’ to ‘rise[reach-1] .

*

* (int)reach This positive integer determines the size of
* the rise and the range of the folding.

x Output:

x  Array values oplus[0]...oplus[reach-1] and ominus/[-1]...ominus[-reach]

% are replaced with orthogonal linear combinations.

+/

void

unfold(
real xominus, /¥ Negative (left) side: -reach < x < 0. %/
real *oplus, /x Positive (right) side: 0 < x < reach. %/
const real *rise, /% Rise increases on -reach < x < reach. x/
int reach) /x Positive integer. */

{
int k;
real templus;

const real xrneg;

rneg = rise;
for( k=0; k<reach; ++k)
{
templus = (srise)*(xoplus) — (x——rneg)*(x——ominus);
xominus = (krise++)x(xominus) + (xrneg)x(xoplus);
xoplus++ = templus;
}

return;

}
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