Wavelet approximations to Jacobians
and the inversion of complicated maps

Mladen Victor Wickerhauser*
Department of Mathematics

Washington University in St. Louis
Missouri 63130 USA

December 8, 1993

Abstract

Principal orthogonal decomposition can be used to solve two related problems: distinguishing elements from a
collection by making d measurements, and inverting a complicated map from a p-parameter configuration space to
a d-dimensional measurement space. In the case where d is more than 1000 or so, the classical O(d®) singular value
decomposition algorithm becomes very costly, but it can be replaced with an approximate best-basis method that
has complexity O(d?logd). This can be used to compute an approximate Jacobian for a complicated map from
RP? — R in the case p < d. This paper is a condensed version of an invited lecture given at Math-Chem-Comp
1993 in Rovinj, Croatia, 21-25 June 1993.

1 Introduction

Consider the problem of most efficiently distinguishing elements from a collection by making d measurements.
In general, we will need all d measured values to fully specify an element. However, it is possible to use less
information if some of the measurements are correlated. For example, if the objects are parameterized by a small
number p < d of parameters, then the d measurements should separate them in a redundant fashion. That is,
we can change basis locally in the d-dimensional measurement space to find just p combinations of measurements
which change with the p parameters. This idea works even if there are many parameters but only p of them are
relatively important.

Note the resemblance between the problem of distinguishing elements and the problem of inverting a compli-
cated map from RP to R%. In the first problem, we must find a discrete object given its description in R%. In
the second, we must find the parameters in RP from the description in R?. These problems are identical if the
collection of objects is produced by evaluating the complicated map at discrete grid points in RP.

The combinations of measurements which root out the underlying parameters are called principal (orthogonal)
components or factors; they have a precise meaning, and the well-known and well-behaved method of singular
value decomposition or SVD produces them with arbitrary accuracy. However, SVD has a complexity that is
asymptotically O(dS), making it impractical for problems larger than d ~ 1000. In this paper, we will describe the
classical principal factor algorithm, then give a lower-complexity approzimate principal factor algorithm. Finally,
we will give two example applications of the approximate algorithm to the two mentioned problems.

*Supported in part by AFOSR award F49620-92-J-0106 and NSF grant DMS-9302828.

2 Notation and definitions

We need some definitions from probability theory.

2.1 Random vectors, means and variances
Let X ={X,:n=1,...,N} C R% be an ensemble of vectors. Write

B(X) < %an (1)

for the average vector in the ensemble, i.e., the expectation of x over the set X.
Let 0(X) C R? be the vector of the standard deviations of the coefficients of X. Namely,

o(X) = VEXY)-B(X)? 2)
N 1/2
(X)) = (;Z[xn(m—E(X)(k)P) 3)

We define the wvariance ellipsoid of an ensemble X to be the ellipsoid centered at E(X) € R?, with semiaxes
a(X)(1),0(X)(2),...,0(X)(d) aligned with the d coordinate axes. Its volume is wq x [o(X)(1)] x [0(X)(2)] x
-+ X [o(X)(d)], where wq is the surface area of the unit sphere in R

If the ensemble X is fixed forever, then we can assume without loss of generality that % Ziv:an(k) =0 for
all k=1,2,...,d, namely that E(X) = 0, because this can always be arranged by subtracting the average vector
E(X) from each of X1, Xs,...,Xn. It results in a simpler formula for o(X):

E(X)=0= o(X)(k) = (% an(k)2> (4)

Then the variance ellipsoid is centered at 0.
We write Var(X) for the total variance of the ensemble X. This is the sum of the squares of the coordinates

in the variance vector o(X) € R%. In other words, Var(X) = ||o(X)]|? def ZZ:1 o(X)(k)?, or
i, L& 2
p— —_ 2 — JE—
Var(X) = Z_j [¥ lenw) (¥ Z_jlxm))] : ()

2.2 The Karhunen—Loéve transform

The autocovariance matrix for the ensemble X is defined by

N
def S o . 1 N
n=1
Here we have taken X, L X, — E(X) to be the original vector with the average vector subtracted. Thus

E(X) = 0. The matrix coefficient M (i, j) is the covariance of the i*® and j'® coordinate of the random vector X,

X
Variance
ellipsoids
M X
. X
Standard basis Karhunen-Loéve basis

Figure 1: The variance ellipsoids for the standard and Karhunen—Loeéve bases

using the ensemble as the sample space. The matrix M is evidently symmetric. It is also positive (some would
say positive semidefinite) since for every vector Y € R? we have

I
M=~
M=
Iy
=
<
=
<

(Y, MY)

Therefore, we can find an orthonormal basis for R? consisting of eigenvectors of the matrix M, and these eigen-
vectors will have positive real eigenvalues. Thus we are assured that the Karhunen—Loéve basis exists for the
ensemble X of vectors; this is the orthonormal basis of eigenvectors of the autocovariance matrix E(X ® X).

The Karhunen Loeve basis eigenvectors are also called principal orthogonal components or principal factors,
and computing them for a given ensemble X is also called factor analysis. Since the autocovariance matrix for the
Karhunen—Loeve eigenvectors is diagonal, it follows that the coordinates of the vectors in the sample space X with
respect to the Karhunen—Loeéve basis are uncorrelated random variables. Let us denote these basis eigenvectors
by {Yn :n=1,...,N}, and let us denote by K the d X d matrix whose columns are the vectors Yi,...,Yy. The
adjoint of K, or K*, is the matrix which changes from the standard coordinates into Karhunen—Loéve coordinates;
this map is called the Karhunen—Loéve transform.

Unfortunately, finding these eigenvectors requires diagonalizing a matrix of order d, which has complexity
O(d3). In addition, even after already computing the Karhunen—Loeve eigenvectors of an ensemble, updating
the basis with some extra random vectors will cost an additional O(d®) operations since it requires another

x = fast transform bases; o = Karhunen—Loeéve basis; xx = best fast basis.

Figure 2: Orthonormal bases for R?

diagonalization.

Such a high order of complexity imposes a ceiling on the size of problem we can do by this method. In many
cases of interest, d is very large and X spans R?, implying N > d. Thus even to find the coefficients of the
autocovariance matrix requires O(d®) operations. At the present time, we are limited to d < 10° if we must use
common desktop computing equipment, and d < 10* for the very most powerful computers.

So we shall take another perspective. We shall pose the problem of finding the Karhunen—Loéve eigenvectors
as an optimization over the set of orthogonal transformations of the original ensemble X. The quantity to be
maximized will be a transform coding gain, or the amount of compression we achieve by using another basis to
represent the ensemble. Alternatively, we could simply introduce a distance measure on the set of orthonormal
bases for R?, treat the Karhunen-Loéve basis as a distinguished point in this set and then try to find an efficiently-
computable basis which is close to the Karhunen—Loeve basis.

2.3 A metric on the orthogonal matrices

Consider Figure 2, which schematically depicts all the orthonormal bases of R%. These can be identified with
orthogonal transformations of R%. The points marked by “x” represent bases in some library of fast transforms.
The point marked “o” represents the optimal, or Karhunen—Loéve basis, for a given ensemble of vectors. The
point marked “xx” represents the fast transform closest to the Karhunen—Loeve bases.

Let U be an orthogonal d x d matrix, and write Y = UX to signify that Y,, = UX,, for each n =1,2,...,N.
Since U is linear, E(Y) = E(UX) = UE(X), which will be 0 if we started with £(X) = 0. Since U is orthogonal,
it preserves sums of squares, so Var(X) = Var(Y). Using wavelet packets [1] or adapted local trigonometric
functions [3], it is possible to build a library of more than 2¢ fast transforms U of R? to use for the “z” points.
We will illustrate the construction using the simple Haar Walsh wavelet packets in the example below. These

transforms are arranged in a structure that permits us to search for the one closest to the “o” point in O(dlogd)

operations. We will use a notion of closeness that is derived from the function minimized by the Karhunen Loeve
transform.
As in [4], define the transform coding gain for an orthogonal matrix by the formula

d
Grc(U) =Var(UX)/exp H(UX), where H(X)= éZlogo(X)(i). (7)

From this formula we see that Grc(UX) is maximized when H(UX) is minimized. The quantity H has various
interpretations. It is the entropy of the direct sum of d independent Gaussian random variables with variances
o(X)(@),i=1,...,d. It is also equal to the logarithm of the volume of the variance ellipsoid (if we add logwg), so
we see that minimizing H(UX) or maximizing Grc(UX) is equivalent to minimizing the volume of the variance
ellipsoid for the ensemble UX over all orthogonal matrices U.

The Karhunen—Loeéve transform is therefore a global minimum for H, and we will say that the best approx-
imation to the Karhunen Loéve transform from a library U of orthogonal matrices is the minimum of H(UX)
with the constraint U € U. We can define the approrimate factor analysis algorithm to be the searches through a
library of orthonormal bases for the one closest to the Karhunen—Loeve basis. If the library of bases is organized
to facilitate a fast search, we will dare to call the result a fast approximate Karhunen—Loéve algorithm.

The “closeness” of a basis U to the Karhunen—ILoéve basis K can be measured by computing the transform
coding gain of U and subtracting that of K. This give us a transform coding gain metric:

Sx(U,V) = |H{UX) - HVX)|

Notice that we get a different metric for each ensemble X. This is a degenerate metric on the orthogonal group,
since it gives a distance of 0 between bases which have the same transform coding gain for X. However, this
technical point can be overcome by constructing a topological quotient space in which such bases are considered
equivalent.

A minimum for H(VX) is the Karhunen-Loéve basis V = K, so minimizing dx (U, K) over fast transforms U
finds the closest fast transform for this ensemble in the transform coding sense.

3 The approximate KL transform

We will now describe a large library of rapidly-computable orthonormal bases, constructed by a recursive decom-
position algorithm which takes advantage of the rapid growth of the number of subtrees of a binary tree. We also
describe an efficient search algorithm which can be used to maximize transform coding gain (or minimize entropy)
over all the bases which fall from the tree. The vectors which make up these bases are discrete approximations to
wavelet packets, which are described in detail in several papers [1, 3, 2]. We will fix our attention on the Haar—
Walsh wavelet packets. It is relatively easy to generalize this example to the other wavelet packet approximate
Karhunen—Loeéve expansions.

Let S and D be two operators which, together with their respective adjoints S* and D*, are defined on
sequences by the following formulas:

Sz(n) = [2(2n) +z(2n+1)] /V2; (8)
. %x(%), if n is even,
§a(n) = { %x(”T_l), if n is odd; ©)
Dz(n) = [z(2n) —z(2n+1)]/V?2; (10)
Lz(n), if n is even,
Drz(n) = { 2%(;()"71), if n is odd. (11)

S is the so-called low-pass filter and D is the high-pass filter conjugate quadrature filter. They are also called
Haar-Walsh filters, since they are used to produce Haar and Walsh bases. The factors 1/ V2 insure that the
operators conserve energy and variance. S* and D™ are the adjoint filters, and it is easy to see that SS* =
DD*=1,8SD* =DS* =0and S*S+ D*"D = I. Those facts are used to establish some remarkable orthogonality
relations among wavelet packets.

| x(0) x(1) X(2) x@3) e x(d-1) | Level O
s / \ D
| O i SK(d/2-1) | Dx(0) Dx(1) T Dx(d/2-1) | Level 1
s /\ D s /\ D
| - . SX(d/4- 1)| - X(d/4-1) - SDx(di4- 1)| -+« DDx(d/4- 1)| Level2

T /\ TN N

Figure 3: Decomposition into Haar—Walsh wavelet packets

Starting with a signal x = {x(n) : n = 0,1,...,d — 1} of d = M2% samples, we can recursively apply S and
D a total of L times because the number of samples is divisible by 2 at least L times. We arrange the resulting
sequences in a binary tree as in Figure 3. Notice that if we take a “graph” of blocks from that tree, namely a
collection with the property that each vertical line goes through exactly one block, then the numbers in the blocks
are coefficients with respect to an orthonormal basis. Each graph gives a different orthonormal basis; for example,
the shaded blocks depicted in Figure 4 contain the so-called “wavelet basis” coefficients.

We then sum the coefficients of each tree into two “accumulator” trees:

e the tree of means, which contains Z DSSD .. Dz, (k) in location k of block DSSD ... D, and so on;

e the tree of squares, which contains Zn:O [SDSD...Dz,(k)]* in location k of block SDSD...D, and so
on.

| x(0) x(1) X(2) x(3) - x(d-1) | Level O
s / \ D
| x0) XD - (d/2-1) | Dx©0) Dx@) - - - Dx(d/2-1) | Leve 1
s o N,\°
| C SS((d/4-l)| - DS((dl4—1)| Level2
s - ‘D

| S_&(M-1)| | DS.S((M-1)| Level L

Figure 4: Example graph basis: the Haar wavelets

Computing all the coefficients of all the blocks in an L-level tree starting from d samples takes O(dL) =
O(dlog d) operations per random vector, for a total of O(Ndlogd) operations. After we do this for all the random
vectors X, in the ensemble X, we can produce the binary tree of variances by using Equation 2: at index k of
block DSD...S, for example, it contains

N—-1 N-1 2
obs p(X)(k) % % 3 DS... Daa(k) - [% 3 Dps. ..Dwn(k:)]
n=0 n=0

This is the variance of the wavelet packet coefficient defined by the filter sequence DSD ... S and the location k.
Forming this tree takes an additional O(dlog d) operations. For convenience we introduce the following notation
for these blocks which compactly encodes filter sequences such as DSDSSD. Let n = (np—1i...ning)2 be the
binary representation of the nonnegative integer 0 < n < 2. Thenn = nr 12" '+ - 4n:12' +no with n; € {0,1}
for i =0,1,...,L — 1. This will represent the filter sequence FyFi ... Fr_1, where

S, ifng =0,
Fi_{ D, ifn;=1.

Block n at level j of the variance tree will be denoted Vjy; its coefficients form the sequence which may be denoted
(0jn(X)(0),05m(X)(1), ..., 05 (X)(d/2) = 1)).

Notice that the two children of block Vj, are the S block Vji1 2, and the D block Vji1,2n41, both at level j + 1.
The tree of variances may now be searched for the graph basis which minimizes H. We begin by defining the

information cost function:
d/29 —1

H(Vin) € logosa(X)(k). (12)
k=0

Since this calculation will always be done at some fixed finite precision € > 0, we never really have a singularity
and we will simply replace log 0 by loge.

Now let I;, be the information cost of the best graph basis in the subtree whose root is Vj,. Let Uj;, be
the collection of blocks in that best graph basis. In other words,) U H(V') is minimal with all the blocks

V = Vji in the graph Ujn being descendants of Vj, and satisfying j° > j. Then we can find the minimum for
the whole tree by the following preorder recursion:

e Compute I;n, = H(Vjn).

e If j = L, then set Ury, = {Vzn} and return.

e Find Ujt1,2n and I11,2, recursively.

e Find Uji1,2n+1 and Ij41,2n4+1 recursively.

o If I;r, < Ijt1,20n+ Ijt1,2n+1 then Vj, by itself gives as good a representation of X as Ujt1,2n UUj41,2n+1, SO
— Retain I, as the information cost;
— Set Ujn = {Vjn}, a single-block graph.

e Else I, > Ijt1,2n + Ij+1,2n+1, S0 it is cheaper to represent X using the descendant blocks in Ujt1,2, U

Uj+1,2n41, SO

— Set Ijn = Ijy1,2n + Ljt1,2n41;5
— Set Ujn = Ujt1,2n UUjt1,2n+1, the union of the best graph bases for the descendants of Vj,.

e Return.

This recursion terminates leaving the best graph basis in Uy and the lowest information cost of any graph basis
in Ioo. The rather straightforward proof of these facts can be found in [3].

Notice that each block is examined twice: once when it is a parent and once when it is a child. This means
that the best-basis search requires as many comparison operations as there are blocks in the tree, which is O(d).
Computing H costs no more than a fixed number of arithmetic operations per coefficient in the tree, which is
O(dlog d). Thus the total cost of the search is O(dlogd).

Uopo will be called the joint best basis for the ensemble X, in the Haar—Walsh wavelet packet library. We can
denote by U the d x d orthogonal matrix which corresponds to the orthonormal basis Upo. Abusing notation, we
write {U; € R%:i =1,...,d} for the rows of U. We may suppose that these rows are numbered so that o(UX)
is in decreasing order; this can be done by sorting all the d coefficients in all the blocks V' € Upp into decreasing
order, which can be done in O(dlogd) operations.

If we fix € > 0 and let d’ be the smallest integer such that

4’

> o(UX)(n) > (1 - e)Var(X),

n=1

then the projection of X onto the row span of U’ = {U; ...Ug } contains 1 — e of the total variance of the ensemble
X. Call this projected ensemble X. The d’ row vectors of U’ are already a good basis for the ensemble X, but
they may be further decorrelated by Karhunen—Loeve factor analysis. The row vectors of U’ are just U; = U; for
1 <i < d, and the autocovariance matrix for this new collection is given by

N
1 _ _
Mj; = N E Ui XnUjXn.
n=1

Here X,, = X,, — E(X) is a vector in R?, and E(X) = 0. Thus M’ is a d’ x d’ matrix and can be diagonalized
in O(d’ 3) operations. Let K’ be the matrix of singular vectors of M’. Then K'* changes from the joint best basis
coordinates (calculated from the standard coordinates by U’) into coordinates with respect to these decorrelated
singular vectors. We may thus call the composition K*U’ (associated to €) the approzimate Karhunen—Loéve
transform with relative variance error e.

3.1 Complexity

The algorithm is fast because we expect that even for small ¢ we will obtain d’ < d. To count operations in the
worst case, assume:

1. N random vectors;
2. d-dimensional parameter space R?;

3. Full-rank autocovariance matrix (N > d).

Finding the approximate Karhunen—Loéve basis

Expanding N vectors {X, € R :n =1,2,..., N} into wavelet packet coefficients: O(Ndlogd);

e Summing squares into the variance tree: O(dlogd);

Searching the variance tree for a best basis: O(d + dlog d);

Sorting the best basis vectors into decreasing order: O(dlogd);

Diagonalizing the autocovariance matrix of the top d’ best-basis vectors: O(d's).

Adding these up, we see that the total complexity of constructing the approximate Karhunen Loéve transform
K"™U’,is O(Ndlog d+d'®). This compares favorably with the complexity O(Nd?+d?) of the full Karhunen-Logve
expansion, since we expect d’ < d.

Depending on circumstances, the last step U’ — K'*U’ may not be necessary, since a large reduction in the
number of parameters is already achieved by transforming into the orthonormal basis determined by U’. This
reduces the complexity to O(Ndlog d), with the penalty being less decorrelation of the factors.

The approximate Karhunen—Loéve transform of 1 vector

e Computing the wavelet packet coefficients of 1 vector: O(dlogd).
e Applying the d’ x d’ matrix K'*: O(d'?).

Since d’ < d, this estimate compares favorably with the complexity of applying the full Karhunen—Log¢ve
transform to a vector, which is O(dz). Further savings are possible, notably because only a small fraction d”’ < d’
of the Karhunen—Loeve singular vectors are needed to capture almost all of the original ensemble variance. Hence
we can take K" to be just the first d” of the columns of K’, and then the total complexity of applying K"*U’ is
bounded by O(dlogd + d"d").

If we expect to update the Karhunen—Loéve basis, then we might also expect to update the average vector
and the average value of each coordinate in the library of bases, as well as the variance of the ensemble. But
since we keep a sum-of-squares tree and a sum-of-coefficients or means tree rather than a variance tree, each
additional random vector just contributes its wavelet packet coordinates into the means tree and the squares of
its coordinates into the sum-of-squares tree. The variance tree is updated at the end using the correct new means.
This results in the following update complexity:

Updating the approximate Karhunen—Loéve basis

e Expanding 1 vector into wavelet packet coefficients: O(dlogd).
Adding the coefficients into the means tree: O(dlogd).

Adding the squared coefficients into the squares tree: O(dlogd).

Forming the variance tree and computing the new information costs: O(dlogd).

e Searching the variance tree for the joint best basis: O(d + dlogd).
So one new vector costs O(dlogd), and updating the basis with NV > 1 new vectors costs O(Ndlogd).

4 Classification in large data sets

The Karhunen—Loeve transform can be used to reparameterize a problem so as to extract prominent features with
the fewest measurements. When the number of measurements is huge, the fast approximate algorithm must be
used at least as a “front end” to reduce the complexity of the SVD portion of finding the Karhunen—Loéve basis.

We list a few examples to give some indication of the size of problem that can be treated by the approximate
method on typical tabletop computing equipment.

4.1 The rogues’ gallery problem

The “rogues’ gallery” problem is to identify a face from among a collection of faces. This probelm was first
suggested to me by Lawrence Sirovich, who also provided the data used in this experiment. The random vectors
were several thousand digitized 128x128x8bit pictures of Brown University students, so d = 128% = 16, 384. These
were initially normalized with the pupils impaled on two fixed points near the center of the image. In [6, 5], a
supercomputer was used to compute the Karhunen—Loéve transform either of the complete set of pixels or else of
an oval subset centered about the eyes. In the following, we will follow Sirovich’s methodology and nomenclature,
only we will replace the Karhunen—Loéve transform with the lower-complexity approximate algorithm.

Figure 5: Face, minus the average face, yields a caricature.

For the experiment described below, we start with a more limited data set containing 143 pictures. Since the
ensemble was fixed, we could subtract the average vector at the outset. Thus we transformed the data to floating
point numbers, computed average values for the pixels, and then subtracted the average from each pixel to obtain
“caricatures,” or deviations from the average. Figure 5 is one of these caricatures:

The left graph in Figure 6 shows how the variance accumulates pixel by pixel, with the pixels sorted into
decreasing order of variance.

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 2500 5000 7500 10000 12500 15000 200 400 600 800 1000

Figure 6: Accumulation of variance in the original basis and the joint best basis.

Each caricature was treated as a picture and expanded into 2 dimensional wavelet packets as described in
[7]. The squares of the amplitudes were summed into a tree of variances, which was then searched for the joint

20 40 60 80 100 120 140

Figure 7: Accumulation of variance in the approximate Karhunen Loeéve basis.

best basis. In the joint best basis, 400 coordinates (of 16,384) contained more than 90% of the variance of the
ensemble.

The right graph in Figure 6 shows the accumulation of total variance on the first d’ coordinates in the joint
best basis, sorted in decreasing order, as a fraction of the total variance of the ensemble, for 1 < d’ < 1000. Using
1000 parameters captures more than 95% of the ensemble variance, but requires somewhat more computer power
than is readily available on a desktop. A 400 parameter system, on the other hand, can be analyzed on a typical
workstation in minutes so we choose d’' = 400”.

The top 400 coordinates were recomputed for each caricature and their autocovariance matrix over the ensemble
was diagonalized using the LINPACK singular value decomposition routine.

Figure 7 shows the accumulation of total variance on the first d”’ coordinates in the approximate Karhunen—
Loeve basis, sorted in decreasing order, as a fraction of the total variance of the 400 joint best basis coefficients,
for 1 < d” < 143. The Karhunen-Loéve post-processing for this small ensemble concentrates 98% of the retained
variance from the top 400 joint best-basis parameters into 10 coefficients.

4.2 The fingerprint classification problem

Virtually the same method as the one applied to faces can be applied to fingerprints for identification purposes.
The United States FBI uses 8 bits per pixel to define the shade of gray and stores 500 pixels per inch, which works
out to about 600,000 pixels and 0.6 megabytes per finger to store fingerprints in electronic form. This means
that d ~ 10°, so we are forced to use the fast approximate algorithm if we wish to compute the Karhunen—Lo&ve
expansion of a fingerprint.

There is no apparent relation between the parameters chosen by the Karhunen—Loéve transform and the
traditional parameters (location of “minutiae” points in a fingerprint) which are used by police inspectors to
describe fingerprints. Thus the additional classifying values would have to be stored alongside the more traditional
values. No one is likely to complain, though, since the Karhunen Loéve parameters occupy only a few hundred
bytes, which is a negligible amount of space compared to the million bytes of raw data.

4.3 Rank reduction for complex classifiers

The principle behind the fast approximate Karhunen—Loeéve transform is to employ a relatively low-complexity
O(d*logd) “front end” to reduce the rank of the subsequent high-complexity O(d®) algorithm from d to d’ < d.

If some measurements on an ensemble of random vectors are to be processed further by some other complex
algorithm, we may similarly gain a significant speed advantage by pre-processing the data to reduce the number of
parameters. A typical example would be processing for statistical classification from a large set of measurements.
Classes, or regions in the measurement space R, may have complicated boundaries which must be approximated
by high-order polynomial hypersurfaces. Deciding at high orders whether a point lies in a particular region
becomes very expensive when the dimension d grows large, so a reduction in the number of parameters will gain
speed even if does not by itself simplify the geometry of the regions.

High complexity classifiers are used in speech recognition and machine vision systems. Adding a front end to
reduce their workload is like adding a hearing aid or glasses so they can better focus on the most-varying features.
In some cases, the speed is desirable because we wish to perform the classification in “real time” or least fast
enough to keep up with the inflowing data. Some examples are:

e Mechanical failure detection from strain gauge data: d ~ 10?;

e Target recognition from 1-dimensional radar range profiles: d ~ 107%;
e Detection of irregular heartbeats from acoustic samples: d ~ 10?;

e Phoneme detection: d ~ 10°;

e Optical character recognition: d ~ 10%;

e Detection of machine tool breakage from acoustic samples: d ~ 10°;

5 Jacobians of complicated maps

Suppose that T : RP — R? is some smooth vector field with p < d. We may think of making plenty (d) of
measurements of 7'z for a variable x with only a few (p) degrees of freedom. This situation models one course of
action to determine what a complicated map 1" is doing.

5.1 Approximating the tangent space in principal components

Recall that the Jacobian of 1" at a point x € RP is the d X p matrix J = Jr[z] which gives the best linear
approximation to 7" in a neighborhood of x. The coefficients of J are the various partial derivatives of T'.

Jelal(ing) % lim < Tw+ Tej)T(””)>, (13)

r—0 T

Here 1 < i < d, 1 < j < p, and e; is the i'" standard basis vector. However, the numerical computation of
this Jacobian poses some difficulties because the difference quotient is ill-conditioned. Furthermore, the Jacobian
might itself be an ill-conditioned matrix, but this difference quotient procedure offers no way of estimating the
condition number of J. We will address these difficulties by replacing the difference quotient formula with an
approximation based on the Karhunen—Loéve transform for the positive matrix JJ*. The error will lie solely in
the approximation, since the Karhunen—Loéve transform is orthogonal and thus perfectly conditioned. We will
estimate the condition number of J from the singular value decomposition of J*J. Then

cond(J) = \/cond(J*J) R~ \/,ul/up, (14)

where 1 and p, are respectively the first and n'™ singular values of our estimate for J*.J.

Suppose first that T is a linear map, so that 7' = J is its own Jacobian. Fix x € RP, and consider the

ball B, = B;(x) = {y € R? : |ly — z|| < r} of radius r > 0, centered at x. We can consider the image

JBr ={Jy:y € Br()} C R? of this ball under the transformation .J to be an ensemble of random vectors. This

will have expectation E(JB,) = JE(B,) = Jz, and we can compute the autocovariance matrix of the zero-mean

ensemble J B, def J B, — Jx as follows:

E(JBr® JB;) = Eyep,) (Jy[J3]")
= JEyep,) (@y")J" =1"JJ"

Here § = y — = and the last equality holds since Eycp,.(2)(77") = 721, is just a constant times the d x d identity
matrix and thus commutes out from between J and J*. Thus 1“72E(JBT ® JBy) = JJ".

Proposition 1 For every matriz J,
Rank JJ* = Rank J = Rank J" = Rank J"J.

Proof: To prove the first equality, notice that Range JJ* C Range J implies that Rank J > Rank JJ*. Now
suppose that Range JJ* # Range J. There is some y # 0 with y € Range J and (y,JJ*z) = (J"y, J*z) = 0 for
all z. Putting z = y we see that J*y = 0. But by its definition, y = Ju for some z, so we have ||y||* = (y, Ja) =
(J*y,x) = 0, a contradiction. The third equality follows from the same argument if we substitute J* for J. For the
middle equality, note that Rank AB < min{Rank A, Rank B}, so that the first equality gives Rank J < Rank J*
while the third gives Rank J > Rank J*. a

Suppose J is an d X p matrix with d > p. If J has maximal rank p, then J*J also has rank p. Now, the

condition number of J is 1
(Sup ||Jz||> <inf ||Jy||) 15)
w70 [zl v#0 [yl

If J*.J has n nonzero singular values p1 > --- > up > 0, counting multiplicities, then the supremum is \/p1 and
the infimum is /. To see this, let 21, ..., 2p be the orthonormal basis of R consisting of unit singular vectors
for J*J, which is guaranteed to exist because J*J is a Hermitean matrix. Writing z = Z, a;z; we have

22— 2l el e

This average is maximized when just a; is nonzero and minimized when just a, is nonzero; it then equals p; and
Hp, respectively. Thus we can compute the condition number of J using the formula in Equation 14.

Now suppose that T is any smooth vector field from R? to R%, and z is some point in RP. We compute
zr = E(I'B,), where T'B, = I'B,(z) = {I'y : ||y — x| < r}; this is the expected value of 1y for y in the ball B,(x)
of radius r centered at x. This average gives a second-order approximation to T'x:

Proposition 2 llzr — T'z|| = O(r?) as r — 0.
Proof: 'We can use Taylor’s theorem to write T'(z +y) = Tz + Jy+O(||y||*) for ||y|| < r. But E(Jy) = JE(y) =0
because we evaluate the expectation over y € B,.(0). Thus E(TB,) = Tz + O(r?). O

We now define a positive matrix
A=A, =E(IB, — 2z ® [I'Br — z]), (17)
where the expectation is taken over the ball of radius r. Our main theorem is the following:

Theorem 3 lim %Ar =JJ".
r—07T

H171

(2]
Tx+Range J

By (x)

Figure 8: Tangent space (Range J) of T' and its approximation (Range A,)

Proof: Using Proposition 2 we write z. = Tx+O(r?). We then use Taylor’s theorem to get the following estimate:

[T(z+y) — 2] @ [T(z+y) —2] = [Jy+O(lyl)] @ [Jy+O(|lyl*)]
= ()" +0(lyl.
Taking the expectation of both sides over y € B,.(0) gives A, = r2JJ* +O(r3), yielding the desired result. Notice
that we also get an error estimate: ||JJ* — 5 A.|| = O(r). O

Now suppose that © € RP is a point for which the Jacobian Jr[z] has full rank p. Full rank is an open
condition, i.e., is it possessed by all matrices sufficiently close to J as well, so we have the following reassuring
fact:

Corollary 4 For all sufficiently small r > 0, Rank A, > Rank J = p. a
Then we can approximate the map 7" in a neighborhood of 1"z using the singular vectors for A;:

Corollary 5 If {z1,...,2,} C R? is a set of unit orthogonal singular vectors for A,, then there are p linear
functions c1, ..., cp on RP such that T(x +y) = 247 | ¢i(y)zi + O(r||y] H. O

We are not really concerned with the rank of A, being too small, since A, is a d X d matrix and d > p is
the interesting situation. Rather, we worry that choosing a too-large value for r will result in Rank A, being too
large, so that we will not be able to identify the top few singular vectors which approximately span Range J. The
problem is that if 7' has nonvanishing higher-order derivatives, then the range of A, will be higher-dimensional
than the tangent space to T at Tx, which is the range of .J. Schematically, this is depicted in Figure 8. The
range of A, is drawn as the two unit singular vectors z1, zo multiplied by their respective singular values p1, p2.
Notice that pe < 1, illustrating what happens with smooth 7: the variation us of T'B, in the nontangential
direction z2 is much smaller than the variation g1 in the tangent or z; direction. In practice, we will always have
Rank A, = d because to a finite precision machine every approximate matrix looks like it has full rank. However,
if we arrange the singular values of A, (with multiplicity) in decreasing order p1 > --- pp > --- > 0, then for small
enough r we expect a steep drop between pip and pip41. This then provides a method of choosing the largest r for
which the singular vectors of A, provide an accurate parametrization of T' near . Namely, we let r increase until

v/ lp+1/ pp reaches some preset threshold of precision €,. Then the nontangential components will contribute an
error which is 1/¢,, times smaller than the tangential components.

The functions ¢y, ..., ¢p in Corollary 5 correspond to partial derivatives, but they are computed by orthogonal
projection. We define matrix coefficients ¢;; using the elementary basis vectors e; of R? as follows:

def 1

Cij - (z3, T'(x +1ej) — 2) (18)

Then we extend this to the superposition y = >_*

=1 aj€; by taking linear combinations as follows:

P
def
ci(y) = E Cija;. (19)
i=1

Comparing Equation 18 with Equation 13, we see that the d X p matrix J has been replaced with the p x p
matrix C, the limit has been reduced to a single evaluation using the largest acceptable r, the initial point 1z
is now an average z, and the standard basis {e; : j = 1,...,d} in the range space has been replaced with a new
orthonormal basis which is locally adapted to 7'

Notice that the columns of the p X p matrix C' = (C};) are given by the top p coordinates of the Karhunen—Logve
transform of the secant vectors

1 1 1

- [T(z+ rer) —z],; [T'(z+ re2) — 2] SR [T(z+rep) — 2],
since the unit singular vectors z1, ..., 2, of A, are the Karhunen-Loeve eigenvectors for the ensemble T'B,.. These
secant vectors are approximations to the directional derivatives of 7" in the directions ei,ez,...,¢ep, and the

Karhunen Loeve transform projects them onto the principal orthogonal components along Range 7T'.

5.2 Fast approximate Jacobians

We can use the fast approximate Karhunen Loeéve algorithm to compute the approximate Jacobian. Suppose that

the domain of T" includes a cube centered at the origin, namely B, = B(0) o {z eRP: |1 < ... |zp| <7}

Suppose we lay down a uniform grid of points of the form x; = k where k = 0,4+1,42,... and ¢ = 1,...,p. The
intersection of the cube with this grid, which we will also call B, contains (2r+1)? points in all. We now compute
Tz at all points x € B, and call the resulting set 7'B,. This will be our ensemble of “random” vectors. Each
x € B, produces a vector T'z € R% which requires d numbers to store, so 1T'B; will contain |By|d = (2r +1)? x d
floating-point numbers.

The approximation to 7" at 0 using B, will be computed by the wavelet packet best-basis algorithm above.
The mean vector z = E(T'B,) is computed in all wavelet packet bases at once in the means tree. We form the
variance tree from the squares tree and the means tree, and search it for the joint best basis of T'B,. We may
assume that this basis is sorted into decreasing order of variance.

Now we take d’' of the most-varying terms out of the d in the joint best basis to retain 1 — e of the total
variance. We then form the d’ x d’ autocovariance matrix for these d’ joint best basis vectors and diagonalize it,
finding the singular vectors zi, ..., zq and corresponding singular values pu; > ... > ug. We put the singular
vectors into the columns of a matrix K’, and get the approzimate Karhunen—Loéve transform K'*, a d’ x d’ matrix
which gives the approximate principal components when applied to the top d’ joint best basis coordinates.

We now test whether the cube B, is too large for the singular vectors to well-approximate the tangent space.
The rank of the Jacobian is at most p, so we must have €,(r) = \/pp+1/pp < 1. This gives the first parameter
of the algorithm: we know that €,(r) — 0 as r — 0, so if it exceeds a preset threshold we need to reduce r.
However, if €,(r) meets our requirements, then we can discard all but the first p columns of K’ to get the d’ x p

o (<] o o o o (o]

o o o o o o (o]

X

1

o (o) o o o o
0

o o o o (=] o (=]

Figure 9: Cubes of various radii centered at 0

matrix K”. The range of K" serves as the approximate tangent space at 70, and K”* computes coordinates in
this space from the top d’ joint best basis coordinates.

Finally, we form the approximate Jacobian into this approximate tangent space by using Equation 18 with an
approximate principal factor for z;. One by one, we take the secant vectors % [I'(x +rej) —z] for j =1,2,...,p,
which live in R?, and we find their joint best basis expansions. We then extract from each of those expansions
the previously-chosen d’ coordinates which have most of the variance over the ensemble and apply K'* to the
vectors of these coordinates. That gives a list of p vectors in RP which approximate the coefficients of the partial
derivatives 01T,...,0p,T in the approximate tangent space basis.

The approximate Jacobian data consists of

e the joint best-basis description down to d’ coordinates (d' numbers),

e the p vectors of the approximate tangent space expressed as combinations of the first d’ joint best basis
vectors (pd’ numbers), and

e the p X p matrix C of partial derivatives expressed as combinations of the approximate tangent vectors.

Computing these quantities will cost us O(| B,| x [d"* +d? log d]) arithmetic operations, where we expect d’ < d.

5.3 Efficient storage of complicated maps

Suppose for this application that the domain of T is the unit cube in @ C RP defined by Q ={x € RP : 0 < 21 <
1,...,0 <z, <1}, and suppose we lay down a uniform grid of points of the form z; = r/R where r =0,1,..., R
and i = 1,...,p. We will call this grid G; it has mesh 1/R and contains |G| = (R + 1)? points in all. We now
compute T'z at all points € GG, and call the resulting set 7'G. This is an enormous data set: each x € G produces
avector T'z € R® which requires d numbers to store, so T'G will contain |G|d = (R+1)P x d floating-point numbers.

We now use approximate Jacobians to reduce the size of the data set. We will do this by building up patches
in the domain where 1" is well-approximated by its approximate Jacobian. With the fast update algorithm, we

Q4
AR P o) o o (o)
Q3
3IRP °)) o o
Q
2IRP ° o o o ()
Q1
R P °) o))
Qo
o) o o) o o) > Xq
0 YR 2R 3R 4R 5R

Figure 10: Patches of gridpoints at various radii from 0

can segment the domain of 1" into patches on which we are sure that the approximation remains within a preset

error. Suppose we start at 0 € G, at one corner of the cube Q). For each r = 0,1,2,... we define the set

Qr = Qr(0) o {reG:0<x;<r/Rfori=1,...,p}. We also define the set P. = P,.(0) &t Qr(0)\ @r-1(0),

the partial cubical shell at radius r/R. Then Qry1 = Qr U Pry1. This arrangement is depicted for the two-
dimensional case p = 2 by the points enclosed in lightly-colored boxes in Figure 10. Note that), contains
|Qr| = (r + 1)? points, while P, contains |Pr| = |Qr| — |Qr—1| = (r + 1)? — r? ~ prP~" points.

The segmentation algorithm works by first initializing » = 1, and then iterating through an algorithm that
enlarges a patch on which 7' is linearly approximated by its approximate Jacobian. We stop enlarging the patch
Q- when the variance of T'Q, along the approximate tangent vectors to 71" stops being much larger than the
variance along approximate normal vectors. In following, we assume that the approximate Karhunen—Loeve basis
for TQ,_1 has already been determined, using the algorithm in Section 3 above. The update algorithm is also
defined in that section.

e Compute the wavelet packet means and sums-of-squares trees for the extra vectors 1'P;;
e Update the joint best basis for T'Q,—1 by adding in the data from TP, to get the joint best basis for T'Q;

e Compute and store the approximate Karhunen—Lo¢ve basis K, for T'Q, and the singular values p; > ... >
Har > 0;

o If €,(r) = \/p+1/1p is too large, then:

Compute and store z = ET'Q,_1 for the center;

Compute and store the approximate tangent vectors K, ; for the patch TQ,_1;

Compute and store the approximate Jacobian using K,_; and Equation 18;
Reset k =1;
— Move to the next free point in G;

e Else if €, (r) is still small enough, then increment r by 1;

e Repeat.

This algorithm will eat away at the domain G, producing a covering of patches @ of various sizes, each with
its center point zg = ET'Q, its local approximate tangent space Kg and its approximate Jacobian Cg. These
quantities will require d’, pd’ and p? real numbers to store, respectively. If there are a total of N patches, then
the total amount of data to store is N (d’ 4 pd’ +p®) = O(Npd') numbers since p < d’. If p is small, N < |G| and
d' < d, then this compares favorably with the storage requirements for TG, namely O(d|G|).

The complexity of computing these quantities on all of the patches can be estimated from the complexity of
finding the approximate Jacobian for the a single patch containing all of G, since this if the worst case. But from
the previous section, we see that this is O(|G| x [d"® + d*logd]) arithmetic operations.

Applying this approximation of 1" to a vector z € R? involves first finding the patch @ with z € Q. Suppose
that ¢ is the center grid point of Q. Then in the first d’ joint best-basis coordinates,

Tz = zg + K4Colw — 20). (20)

We finally superpose the d’ joint best basis vectors to get the coordinates of the point Tz € R? from Tz. The
complexity of computing 7'z this way is O(p+ p? +pd +d +dlog d) which under our assumptions is bounded by
O(dlogd).

5.4 Precomputation for inverse problems

The final application is to use the local approximate Jacobians to invert the map x — Tz, which we suppose has
already been computed at all points x on a finite grid G.

One classical way is to use linear interpolation: given y € R?, we find the nearest points T'z; € R? computed
from grid points z; € G and write y = Zk arTzr. Then the linear approximation to 77y is just Zk axxk. This
is exactly correct for linear maps 7" and has at least O(h) accuracy for a differentiable map 1" on a grid with mesh
h. However, it requires that we store the precomputed values {T'z : x € G} and that we search the whole list for
the points close to y. The last step, in particular, requires computing |G| distances for a grid G.

If we have invested the effort to compute the approximate Jacobian representation of 7', then the inverse
can be approximated from that data instead. Let N be the number of patches in the cover of GG, and suppose
that N < |G|. We also suppose for the sake of simplicity that we keep the same number d’ of joint best basis
components in each patch, although of course they may be different components in different patches. Finally, we
suppose that we have already computed the inverses C’é L of the approximate Jacobians on each patch Q, which
requires a one-time investment of O(N p?’). Then the necessary computations and their complexities for computing
T~y at a single y € R? are the following:

e Find the complete wavelet packet expansion of y, which simultaneously computes all joint best-basis expan-
sions 7: O(dlog d);

e Compute the distances from § to the means zg for each patch @, and let @ henceforth be the patch with
nearest mean: O(Nd');

e Compute the approximate inverse,
T 'y~ 2q+Cq K"q(j— 2q) (21)

for the nearest-mean patch Q: O(d’ + pd’ + p + p) = O(pd’).

References

1]

Ronald R. Coifman, Yves Meyer, Stephen R. Quake, and Mladen Victor Wickerhauser. Signal processing and
compression with wavelet packets. In Yves Meyer and Sylvie Roques, editors, Progress in Wavelet Analysis and
Applications, Procedings of the International Conference “Wavelets and Applications”, pages 77-93, Toulouse,
France, 8-13 June 1990. Observatoire Midi-Pyrénées de I’Université Paul Sabatier, Editions Frontieres. ISBN
2-86332-130-7.

Ronald R. Coifman, Yves Meyer, and Mladen Victor Wickerhauser. Wavelet analysis and signal processing.
In Mary Beth Ruskai et al., editors, Wavelets and Their Applications, pages 153—-178. Jones and Bartlett,
Boston, 1992. ISBN 0-86720-225-4.

Ronald R. Coifman and Mladen Victor Wickerhauser. Entropy based algorithms for best basis selection. IEEE
Transactions on Information Theory, 32:712-718, March 1992.

Nuggehally S. Jayant and Peter Noll. Digital Coding of Waveforms: Principles and Applications to Speech
and Video. Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

Michael Kirby and Lawrence Sirovich. Application of the Karhunen—Loéve procedure for the characterization
of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12:103-108, January 1990.

Lawrence Sirovich and Carole H. Sirovich. Low dimensional description of complicated phenomena. Contem-
porary Mathematics, 99:277 305, 1989.

Mladen Victor Wickerhauser. High-resolution still picture compression. Digital Signal Processing: a Review
Journal, 2(4):204-226, October 1992.

