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Abstract

This is a survey of some new perspectives on transform coding im-
age compression. We mentions some mathematical properties of sam-
pling, entropy, and time-frequency localization of analysis-synthesis func-
tions. Then we discuss several experiments in picture compression us-
ing wavelets, wavelet packets, local sines and cosines, and the adaptive
“best-basis” method. We calculate the efficiency of several techniques to
describe a fast transform from a library, with the aim of transforming
each image into its own best-adapted coordinates for transmission with
minimal overhead. Standard C algorithms for the local sine and cosine
transforms are included in the appendix.

1 Introduction

In this summary I will describe several experiments in picture compression us-
ing wavelets and the local cosine transform of Coifman and Meyer. I will also
describe an adaptive wavelet transform coding method and a local cosine trans-
form algorithm based on the idea of a “best basis,” and provide Standard C
algorithms for computing some of the described transforms.

*Research supported in part by NFS Grant number DMS-9302828 and AFOSR contract
number F49620-92-J-0106.



2 Relevant Notions from Mathematics

By a “picture” we will mean any function S = S(z,y) € 12(Z?). In practice, of
course, pictures will be nonzero only at finitely many points. Also, they must
represent band-limited functions, since it is impossible to distinguish spatial
frequencies above K cycles per unit distance from those below K if we use a
sampling rate 2K samples per unit.

2.1 Sampled signals and approximation

Suppose f € L*(R") has d uniformly continuous derivatives, for d > 0, and
that ¢ € L?(R) satisfies the additional conditions

/qu(x) dx = 0; /R 2"o(x)dr =0, 0 <m < d; /Rxdqﬁ(x) dx < oc.

Then Taylor’s theorem implies that the discrete values f(k27") are very good
approximations to the inner products (f,¢_, ), for k € Z™ and v € N. We
obtain the estimate

sup |<f7 ¢7u,k> - f($)| < 02_Vd7

.’l‘EI,,)k

where I, = X[ ,[27%k;,27"(k; + 1)[, and 0 < C' < oo may be chosen
independently of v and k.

By a signal we shall mean a compactly supported function belonging to
C4(R"), which thereby satisfies the hypothesis for f above. For simplicity, we
will at first consider the 1-dimensional case. By rescaling we may assume that
SUP e ot1[ | (fs o) — f(2)] < € for some acceptably small € > 0. If d > 1, then
this error decreases faster than the number of samples grows.

2.2 The Heisenberg uncertainty principle

The functions underlying transform coding techniques can be judged by their
simultaneous localization in space and wavenumber. This localization cannot
be better than a universal fixed amount, as shown by Heisenberg’s inequality or
the uncertainty principle.

A nonzero function of compact support cannot also have a compactly sup-
ported Fourier transform. The Fourier transform of a compactly supported
function is entire analytic, and an entire function which vanishes on an open
set must be zero everywhere. Various refinements of this result exist, posing
difficulties for time-frequency analysis.

Heisenberg is credited with observation that in quantum mechanics, one can-
not simultaneously specify both the location and momentum of a wave function
to arbitrary accuracy. The product of the location and momentum uncertain-
ties must exceed the quantization h. Without developing the whole of quantum



mechanics, we can sketch the proof of this fact and relate it to the present
discussion of time-frequency atoms.

Let ¢ € L*(R) be a wave function, normalized with [[1/||> = 1. The location
and momentum operators are X and P, respectively, where X (z) = z(x)
and Py(z) = ih%&f). Assume that the wave function has a derivative in L2
and that x¢)(x) is in L2 Then the location and momentum are calculated
from the wave function by (¢, X1)) and (1), P1)), where <,) > is the inner
product in L?(R). Location evaluates to the integral sz z[y(x)|? dz, which may
be interpreted as an expectation E(x), since |[¢(z)|* is a probability density
function. Momentum may be also be mterpreted as an expectation by first
applying the Fourier transform, a unitary change of variable:

i () de = [ eliop @ = 56

The uncertainties of location and momentum are AX = /E(2?) — E(x)>?
and AP = /E(£2) — E(£)?, respectively. Now we ask the question, what is
the minimum value of AXAP? Observe that we are asking how well we can
localize a function in L? simultaneously in time and frequency.

Without loss, we may assume that the spatial coordinates and initial phase
are chosen so that E(z) = 0 and E(¢) = 0. Define A(v)) = E(x)2E(£2) in this
case; any minimum ) for the functional A is also a minimum for AXAP.

Using the calculus of variations, we can compute critical points for A. We
look for a stationary v, namely a function for which 6 A(1)) = 0. The component
of this variation in the direction of an arbitrary perturbation function n(z) in
L? is computed below, where we have adjusted the time units so that i = 1:

Gawia = 5 ( [ a@Piax [ o +aere)

e=0

- ( /R 22 [(a)7i(2) + D) ()] dm) x B(&?)

?) ( [ 1O + 3o dg)
= on(Bie) [ e B [ e )
= R(APX*) + AX P%p,n)

Now §A = 0 implies that the last expression vanishes for all 5, which implies
that
APX?) 4+ AXP*) = 0.



2.3 The entropy of a sequence

Let p = {p; : i = 0,1,2,...} be a discrete probability distribution function
(pdf), that is, 0 < p; < 1 for all ¢ and ), p; = 1. The entropy [SW64] of p,
H(p), is defined to be the following sum:

1
H(p): E pilog;'
. 1

In this sum, 0log0 is taken to be 0. Since all the terms in the sum are positive,
H(p) > 0. Roughly speaking, entropy measures the logarithm of the number of
meaningful coefficients in the signal. It is not hard to show (see, for example,
[Wic94]) that if only N of the values p; are nonzero, then H(p) < log N. Such
a pdf is said to be concentrated into at most N values, but we can use entropy
to define the theoretical dimension d(p) of a pdf:

d(p) = "),

This is a more general notion of concentration of a pdf, one that might be finite
even if p; > 0 for infinitely many values of i, so long as all but finitely many of
those values are negligibly small.

Entropy and theoretical dimension are preserved by renumbering the prob-
abilities p; and thus we may assume that the pdf is strictly decreasing: py >
p1 > p2 > .... We may measure the rate at which a pdf decreases in terms
of its partial sum sequence S, = S,(p) = Y., ,pi; since S, increases and
lim,, .~ S, = 1, we will say that the pdf p decreases faster than the pdf ¢ if and
only if S,,(p) > Sp(q) for all n = 0,1,2,.... Again, it is not hard to show (see
[Wic94]) that if p decreases faster than ¢ by this definition, then H(p) < H(q)
and thus d(p) < d(q).

Unfortunately, the converse is not true because rate of decrease gives only
a partial order on pdfs. There are pairs of pdfs p and ¢ for which H(p) is
finite and H(q) is infinite, but the rates of decrease are not comparable because
Sn(q) starts out by dominating S, (p) only to fall behind as n — co. However,
theoretical dimension is still useful as an indicator of which pdf has the longer
“tail” of nonnegligible probabilities.

Now let x = {x : k = 1,2,...} be an arbitrary sequence of positive integers.
This is what we obtain, for example, after approximating a sequence of positive
real numbers by their integer parts. There are two distinct notions of entropy
for such sequences, which happen to be roughly equivalent in the special cases
we will be considering. Both require forming a pdf p = p(z) from the sequence
x, but this is done in different ways.

The first notion is the traditional entropy of a source. We consider zj to
an independent Bernoulli trial of some process taking the value ¢ > 0 with
proability p;. By the law of large numbers, this may be approximated by
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Then H(p) gives the lower bound for the expected number of bits per trial
required to describe the sequence = in the most efficient alphabet, one which
uses short code sequences for the most common values and longer sequences for
rare events. (To be completely honest here, when talking about “bits” we must
use log, rather than log in the definition of entropy and 2 rather than e for the
base of the exponential in the definition of theoretical dimension). If H(p) is
small, then z is concentrated into a few values 7, with all other values being
rare. If we renumber p into decreasing order, then the common values of x; will
be labeled 0, 1, etc., the “small” values. The “large” values will be rare; we
expect few of them in any finite subsequence of z.

The second notion is geometric. We form probabilities from the zj’s them-
selves by letting ||z = (3, [z|?) "/ and defining p; = |2;]?/||z]|* whenever ||
is finite. This obviously gives a pdf, and if H(p) is small then we may conclude
that large values of zj are rare since there can only be a small number of k
for which |zx|? has a significant portion of the total energy ||z||?. This notion
of entropy can be generalized to arbitrary real or complex valued sequences.
Furthermore, we can calculate H(p) directly from z with the following formula:

t(x)

1
H(p) =1 2p s Y(z) = ?log —5-
(p) Og||$|| + ||xH2a ($) ;|Zﬂk| og ‘xk|2

Note that H(p) is monotonic with £(z), so that they are equally useful for
comparison purposes.

3 Transform Coding Methods

These work by performing a change of variable on the pixel values, with the
expectation that most of the new coordinates can be discarded with minimal
loss of image quality. The transforms must be invertible in exact arithmetic,
but since some information will be discarded by rounding or quantization, they
will not be perfectly invertible in practice.

3.1 Local cosine transform

Let {I;;} be a collection of disjoint compact intervals of R, indexed by the
integers k. Coifman and Meyer showed how to construct an orthonormal basis
of L?(R) subordinate to the partition R = UI}, in which the basis vectors are
cosines multiplied by smooth bumps. For definiteness we will use a particular
symmetric bump function

br) = sin % (1 + sin7z), if—%<$<%,
1 0, otherwise.

It is easy to see that this function is symmetric about the value z = . It is

L
smooth on (—1, 2) with vanishing derivatives at the boundary points, so that it



has a continuous derivative on R. Notice that we can modify b to obtain more
continuous derivatives by iterating the innermost sin wx: n iterations will yield
at least 2"~ ! vanishing derivatives at —% and %

We may translate and dilate the bump b onto an interval I by the formula

b(x) = b(x‘;fl’“ ), where ay, is the left endpoint of Ij. Let ¢(n,z) = /2 cos mnz,

and consider the set of functions ¢(n + %,z) for n > 0, z € [0,1]. These form
an orthonormal basis for L%([0,1]). They may also be dilated and translated to
the interval I, by the formula cy(n,z) = ——c(n, %&) Now define ¢ (x) =

NG
b(x)ck(n + 3, x) for integers n > 0 and k. These form an orthonormal basis
for L?(R): the proof is a direct calculation. Cosine may be replaced by sine,
and there are some other modifications possible, but this set of functions is
sufficiently general for our present purposes.

Observe that 1, is well localized in both space and frequency. In space, it is
compactly supported on a proper subset of 31y, which is defined as that interval
centered at the center of I, but having three times the width. In frequency, ¥,k
consists of two modulated bumps centered at n + % and —n — %, respectively,
with spread equal to that of ZA)k. But l;k is well localized because by is smooth.

The construction generalizes to higher dimensions. For multi-indices n and k,
define W, (2) = Pk, (1) « - - 1, (14) to obtain an orthonormal basis for R?
made of tensor products. Of course, it is possible to use a different partition in
each dimension, as well as different bump functions. For the present exposition,
we will concentrate on the special case of 2 dimensions, all intervals I, of equal
width, and always the same b(x), as defined above. At the end of the paper, we
will consider dyadic intervals with a restricted range of widths, as well.

3.2 Discrete local cosine transform

The functions ), have discrete analogues which form a basis of 1?(Z), or I?(T).
For the former, let I be a finite interval of integers with least element ay, and

let |I;| be the number of elements in Ij. The following vectors form a basis of
1%(Z):

1 1 1
Ynk(3) = br(5 + i)ck(n + 5,]’ + 5), for integer k and 0 < n < |I|

Apart from the bells b, these are evidently the basis functions for the so-
called DCT-IV transform. The particular bells chosen allow cosines on adjacent
intervals to overlap while remaining orthogonal. A similar basis may be con-
structed over equally spaced points on the circle T.

3.3 Implementation by folding

Rather than calculate inner products with the sequences ,,,, We can preprocess
data so that standard fast DCT-IV algorithms may be used. This may be



visualized as “folding” the overlapping parts of the bells back into the interval.
This folding can be transposed onto the data, and the result will be disjoint
intervals of samples which can be “unfolded” to produce smooth overlapping
segments.

Suppose we wish to fold a function across 0, onto the intervals [—1/2,0)
and (0,1/2], using the bell b defined above. Then folding replaces the function
f = f(x) with the left and right parts f_ and f,:

fo(z) = b(-a)f(z) —bla)f(-2),  ifxe[-3,0)
fr(@) = bla)f(z) +b(—2)f(-2), ifze(0 3]
The symmetry of b allows us to use b(—z) instead of introducing the bell attached

to the left interval.
Unfolding reconstructs f from f_ and f; by the following formulas:

b(x)f+(~) + b(—a) f_(x), it € [-1,0);

b() f () — b(—a) f_(=a), it € (0,4].

Composing these relations yields f(z) = (b(z)? + b(—x)?) f(z), which is
verified by the bell b defined above, for which the sum of the squares is 1. We
can translate and dilate these relations to all adjacent pairs of intervals, and
of course it works for sequences as well. These details are best understood by
reading the comments in the computer program in Section 7

flz) =

3.4 Block discrete local cosine transform coding

We propose a modification of the JPEG picture compression algorithm. We will
replace the block discrete cosine transform (DCT) on 8x8 blocks with the block
discrete local cosine transform (LCT). By the results of the previous section we
expect to de-correlate adjacent samples about as well as with DCT, without
introducing discontinuities at block boundaries. We can perform experiments
of two types in order to evaluate this modification. First we calculate the rate
distortion curves of some example pictures with this method and compare it to
JPEG output. Results of one such calculation are attached to Figure 7. Second,
we compare reconstructions from encodings at equal bit rates, but different
methods, and judge them subjectively. This will verify the correlation between
calculated and perceived distortion. One such comparison is available in Figures
8 through 24.

3.5 Adaptive block discrete local cosine transform coding

A further modification of the JPEG algorithm involves allowing the block size
to grow if sections of the picture are regular on scales spanning many blocks.
The main idea is that of the “best-basis” search algorithm, which compares the



information cost of describing several adjacent blocks with that of describing
their joint parent. In this case, the information cost is the entropy of the
transformed coefficients, which can be computed for blocks of size 8x8, 16x16,
32x32, and so on up to the dimensions of the picture itself.

The cost of adding adaptivity to the transform coding scheme is a header
describing the decomposition of the picture into blocks. Suppose for definiteness
that we will consider only dyadic blocks of sizes 8x8 or bigger in a picture of
size 256x256. Then each block needs no more than 2.585 bits to describe which
of the 6 levels it comes from, and there are 1024 blocks, so the overhead of
the adaptive scheme is 2647 bits for 65536 pixels, or about 0.04 bits per pixel.
It remains to be seen whether this will be regained by the improved fit of the
adapted basis.

4 Wavelet and Wavelet Packet Methods

We introduce a generalization of subband coding which may be used to compress
digitized pictures or sequences of pictures. The new method uses 2-dimensional
perfect reconstruction quadrature mirror filters (QMFS) to recursively decom-
pose an image into finer and finer subbands. This produces an overabundant
set of transform coefficients. The complete set of coefficients may be found in
O(N log N) operations.

4.1 Wavelets and scaling or sampling functions

Let ¢ be a scaling function for a multiresolution decomposition of L?(R). Such
a function may be constructed with an arbitrary finite number of vanishing
moments by iteration of a sufficiently long finite impulse response quadrature
mirror filter. Let h = {hj}f;fR be such a filter. Then ¢ satisfies

R—1
dx) = Y hio(2w — j).

j=—R
As in an earlier chapter, we construct a mother wavelet ¢ from ¢ by taking

R—-1

Pla)= > gid(2z—j),
j=—R
where g = {g; f;jR is determined from h by the formula g; = (=1)7h_(;1)-
The wavelet expansion f = Zu’ i (s Vv k)b is calculated by the pyramid
scheme of Mallat. Write s, , = (f, ¢u.k), and dy = (f, ¢» ). Denote by H and



G the convolution-decimations with filters A and g, respectively. We calculate:

I H H H
f(k) = (f,dox) —— sop —— S1p —— Sap —

G| G| G|
dy da j; ds 1

Each arrow costs 2R multiplications per coefficient.

If f is supported in [1, N], then a sequence at scale v has N2~ nonzero
coefficients. We may assume for technical simplicity that N is a positive power
of 2. Hence the pyramid reaches its top after log, N scales, requiring 4R(N —1)
multiplications. Since R is independent of N (and is typically much smaller),
this algorithm’s complexity is linear. It yields N coefficients {d, : 1 < v <
log, N,1 <k < N27"}U {8(10g2 N),l}-

By the orthogonality of quadrature mirror filters, we have

N log, N N2~
D F b0k ® = 1500z, Ml + D Y lduil®
k=1 v=1 k=1

Denote by s, , and d, ; the coefficients obtained from the pyramid scheme
using f(k) rather than (f, dor). If [sp, — sok|> < € for 1 < k < N, then
\df,’k —dy|> <eN for 1 <v<log, N and 1 <k < N27. If f has more than
one derivative and we use wavelets with more than one vanishing moment, we
can arrange that eN — 0 as f is rescaled and N — oc.

Suppose that f is a signal with d continuous derivatives, and v is a mother
wavelet with at least d vanishing moments. Then f is in the Sobolev space L2,
and its Littlewood-Paley characterization yields the formula:

o0

> (z—wzm m?) <1713
k

V=—00

Since f has compact support, there is some sufficiently large v above which
Sk (fhuk)|* < C2¥. This part of the series sums to a constant if 2d > 1.

The sum converges, so that [(f,¢ue)|* < 22¢||f[|3 4 as v — —oo. On the
other hand, there are at most C'27 translates 1, for which (f, 1,) is nonzero.
We deduce that a decreasing rearrangement of the wavelet coefficients of f,
written {c;}52, with corresponding wavelet 1);, will satisfy lcj|?> < Cj=24. This
gives an estimate

2

f- Z Cj’(/)j = Z |Cj|2 < Z j_2d < Cl€1_ﬁ.

lejl?>e lej|? <e i>(&)=1/2
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Figure 1: Haar and Coiflet wavelets and scaling functions.

Such an estimate is also valid for the finite sequences which arise when
sampling a function supported on [1, N]. The N samples {f(j)}j-\’:1 may be
compressed into a smaller number by replacing them with the largest few coef-
ficients ¢;. For a given error ¢, we take the top N’ = (C/€)'/2? coefficients. For
very smooth signals where C' is small and d large, we will obtain N’ < N.

To compress a signal with d continuous derivatives, it is optimal to use
an analyzing wavelet with d vanishing moments. With too few, the wavelet
coefficients will not decrease as fast as possible. With too many, calculating the
coefficients by filter convolution-decimation will become too expensive.

Figure 1 shows two wavelets and their scaling functions. The Haar wavelet
has one vanishing moment, and has been used for a long time to represent
nonsmooth (digital) signals. The “Coiflet” of 6 vanishing moments is a recent
discovery, and is part of a family of almost symmetric smooth wavelets well
suited to certain smooth signals.

4.2 Subband coding

A signal may be divided into frequency subbands by repeated application of
convolution and decimation operators. For a 2-dimensional signal or “picture,”
these are usually tensor products of one-dimensional QMF's (separable filters),
as defined below. There has also been considerable recent interest in nonsepa-
rable filters [CD92], for which the following discussion is equally valid, but for
simplicity we used only separable filters in our fingerprint compression experi-
ments.

Let {h}, {gx} belong to I', and define two decimating convolution operators

10



h —>2v-{>28—> h* }
g 2 gr

Figure 2: Block diagram of convolution-decimation and reconstruction

H:12-=1% G:1%2— 2 as follows:

oo

Hf, = Z b fivak, Gfr = Z 95 [j+2k-

j:—oo J:—OO

H and G are called quadrature mirror filters (or QMFs) if they satisty an or-
thogonality condition:
HG*=GH* =0,

where H* denotes the adjoint of H, and G* the adjoint of G. They are further
called perfect reconstruction filters if they satisfy the condition

H*H+ GG =1,

where [ is the identity operator. These conditions translate to restrictions on
the sequences {hx}, {gx}- Let mg, m1 be the bounded periodic functions defined
by

mo(§) = Z hre™,  my(¢) = Z gre'™e.

k=—oc k=—oc0

Then H, G are quadrature mirror filters if and only if the matrix below is unitary

for all &:
mo(§) mo(§ + )
( mi(€) mi(§+m) )

This fact is proved in [Dau88].

Figure 2 shows the traditional block diagram describing the action of a pair
of quadrature mirror filters. On the left is convolution and down-sampling (by
2); on the right is up-sampling (by 2) and adjoint convolution, followed by
summing of the components. The broken lines in the middle represent either
transmission or storage.

Now we can define four two-dimensional convolution-decimation operators
in terms of H and G, namely the tensor products of the pair of quadrature
mirror filters:

Fo © HoH,  Fol(ry) = Y 0(i,j)harihays
0,

11



def ..
= HR®AG, Fio(z,y) = Zv(laj)h21+i92y+j
4,5
def o
F, € G®H, Fyu(r,y) = Z’U(laj)gZerithJrj
4,J
def ..
F3 - G®Ga F3U(‘Tay) = ZU(Za])h2x+ih2y+j
4,

These convolution-decimations have the following adjoints:

Fjo(z,y) = Zv(iaj)h2i+wh2j+y
2]

Fo(z,y) = Zv(iaj)h%ﬂcgzjﬂ/
2]

Fio(z,y) = > (i j)gaitchajsy
]

Fiv(z,y) = Zv(iaj)h2i+zh2j+y
2]

The orthogonality relations for this collection are as follows:
F Fr =0pml; FiFo O FyF @ FyFa @ FsF3=1

The space 1%(Z?) of pictures may be decomposed into a partially ordered set
W of subspaces W (n, m), where m > 0, and 0 < n < 4™. These are the images
of orthogonal projections composed of products of convolution-decimations. Put
W(0,0) = I, and define recursively

W(dn +i,m +1) = F5;  Foi ;W (n,m) fori=0,1,2,3.

These subspaces may be partially ordered by a relation which we define recur-
sively as well. We say W is a precursor of W' (write W < W) if they are equal
or if W/ = F*FW for a convolution-decimation F in the set {Fy, F}, F3, F3}.
We also say that W < W’ if there is a finite sequence Vi, ..., V), of subspaces
in W such that W < V; < ... <V, < W’. This is well defined, since each
application of F*F increases the index m.

Subspaces of a single precursor W € W will be called its descendents, while
the first generation of descendents will naturally be called children. By the
orthogonality condition,

W = Ff oW @ Ff W @ Fs F,W & Fy FsW

The right hand side contains all the children of W.

As in [Wic93], the coordinates with respect to the standard basis of W (n, m)
are in Fy)... F,,)W(0,0), where the particular filters F{y ... F{,,) are deter-
mined uniquely by n. Therefore we can express in standard coordinates the

12



FoW | FiW

FoW | Faw

Figure 3: Four child subbands of a picture.

0 1 0
2
0 8|9 |12]13
2 3
10|11|14 |15
level 0 level 1 level 2

Figure 4: Ancestor subband and two generations of descendents.

orthogonal projections of W(0,0) onto the complete tree of subspaces W by
recursively convolving and decimating with the filters.

We may think of the quadrature mirror filters H and G as low-pass and
high-pass filters, respectively. Their tensor products form a partition of unity in
the Fourier transform space. They can be described as nominally dividing the
support set of the Fourier transform S of the picture into dyadic squares. If the
filters were perfectly sharp, then this would be literally true, and the children of
W would correspond to the 4 dyadic subsquares one scale smaller. We illustrate
this in Figure 3.

Figure 4 shows 2 generations of descendents, labeled as the complete de-
composition of R* x R*. Within the dyadic squares are the n-indices of the
corresponding subspaces at that level. If we had started with a picture of N x V
pixels, then we could repeat this decomposition process logy N times.

4.3 Two-dimensional wavelet packets

An earlier paper [CMQW90] presented a method for generating a library of or-
thonormal basis by recursive QMF convolution-decimation. From an algorith-
mic standpoint, this is equivalent to recursive subband coding while retaining all
intermediate subband decompositions. The coefficients produced at each stage
are correlations of the signal with compactly-supported oscillatory functions
called “wavelet packets.” The analytic properties of these functions have been

13



Figure 5: Octave and custom subbands.

extensively studied [CMW92b], [CMW92a]. If perfect reconstruction QMFs are
used, then the wavelet packets satisfy some remarkable orthogonality properties.

From the tree W of subspaces we may choose a basis subset, defined as a col-
lection of mutually orthogonal subspaces W € W, or lists of pairs (n, m), which
together span the root. Basis subsets are in one-to-one correspondence with
dyadic decomposition of the unit square. Classical subband coding takes coeffi-
cients from a fixed set of subbands, usually from a single level of the quadtree in
Figure 6. Wavelet transform coding also extracts coefficients from a fixed collec-
tion of blocks, the octave subbands, which are schematically represented in the
left part of Figure 5. The right hand part shows a typical dyadic decomposition
down to level 4; its basis subset consists of the 16 pairs (0,1), (3,1), (4,2), (5,2),
(6,2), (7,2), (8,2), (9, 2), (10,2), (45,3), (46,3), (47,3), (176,4), (177,4), (178,4),
and (179,4). We may call such a basis subset B.

Proposition 1 The number of basis subsets grows exponentially with the size
of the tree W, which grows like O(N log N) with the number of pizels N.

Proof: Let A, be the number of bases in the library corresponding to a tree of
1 + n levels, namely levels 0...n. A decomposition to level n is only possible
for a picture of size at least N = 4™ pixels. Then Ay = 1, and we can calculate
Apy1 = 14+ A} namely the root and combinations of the 4 independent children
subtrees with A, bases each. Simplifying this by discarding the 1 gives the
estimate A,11 > 24" — 9N, O

To each subspace W € W we may assign an information cost Hyy. The
quantity Hy (S) measures the expense of including W in the decomposition
used to represent the picture S. Define the best basis for representing S (with

14



respect to Hyy) to be the basis subset By which minimizes

Z Hy (S)

weB

over all basis subsets B C W.

Some examples of information cost functions are listed in [CW92]. The
simplest is the number of elements above a predetermined threshold e, namely
Hy (S) = #{x € Sw : |z| > €}, where Sy is the sequence of components of S in
the direction of the standard basis vectors of W. This sequence is F;, ... F;, S,
where W = F; F; ... F} F;,W(0,0). The following algorithm finds the basis
subset with the fewest coefficients above the threshold.

Set a predetermined deepest level L. Label each subspace at level L as
“kept,” i.e., the subspaces indexed by (n, L) for 0 < n < 4. Next, set the level
index m to L — 1. Compare the information cost of the subspace W (n, m) with
the sum of the information costs of its children W (4n, m+1), W(4dn+1,m+1),
W(4dn 4+ 2,m + 1), and W(4n + 3,m + 1). If the parent is less than or equal
to the sum of the children, then mark the parent as “kept.” This means that
by choosing the parent rather than the children, we will have fewer coefficients
above the threshold in the representation of S. On the other hand, if the sum
of the children is less than the parent, leave the parent unmarked but attribute
to her the sum of the children’s information costs. By passing this along, prior
generations will always have their information costs compared to the least costly
collection of descendents.

After all the subspaces at level m = L — 1 have been compared to their chil-
dren, decrement the level index and continue the comparison. We can proceed
in this way until we have compared the root W (0, 0) to its 4 children. We claim
that the topmost “kept” nodes in depth-first order constitute a best basis. I.e.,
the collection of “kept” nodes W with no “kept” precursors is a basis subset
which minimizes information cost. But this is easily proved by induction on the
level index.

If we think of the coefficients below € as negligible, we now have a basis in
which the fewest coefficients are non-negligible. This cost function requires that
we decide in advance what negligible means, which in some applications may
not be feasible. This decision may be postponed by using a different measure
of the concentration of energy into the coefficients. For example, there is an
additive analog of Shannon entropy, namely,

Hy (S) =— Z 2% log 22,

rESw

with Sy as above. This is related to the classical measure of the concentration
of a probability distribution function.
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4.4 Wavelet packets and the best basis

The “best-basis” method is to select a most efficient orthogonal representa-
tion of the picture from among these coefficients, using an efficiency functional
chosen according to the application. Compression occurs when the coefficients
are quantized and coded to remove redundancy, then stored together with an
efficient representation of the chosen basis.

The overabundant set of coefficients is naturally organized into a quadtree
of subspaces by frequency. Every connected subtree containing the root corre-
sponds to a different orthonormal basis, and the totality of such bases forms
a “library” of fast transforms. The most efficient of all the transforms in the
library may be found by recursive comparison. The efficiency functionals are
characterized by additivity across orthogonal decompositions. For such func-
tionals, the choice algorithm will find the global minimum in O(N) operations,
where N is the number of pixels in the image.

The advantages of this method over traditional subband coding or fixed
wavelet transform methods is that the basis is chosen automatically to best
represent the particular image. Hence the name “best-basis.” In this sense the
transform is highly nonlinear. However, the transform is well-conditioned in the
following sense: the basis choice has an exact representation and contributes no
error, while the coefficient transform is orthonormal, i.e., has condition number
1. Best-basis differs from statistical compression methods in that no statistical
model of the ensemble of images is used. Compression can occur because pixel
values are correlated by the smoothness of the sampled band-limited image.
The exact nature of the correlation need not be known a priori, and deviant
images will be automatically represented by deviant best bases.

Some related adaptive methods are adaptive quantization subband cod-
ing of images [RV91], and adaptive vector quantization of wavelet coefficients
[MBA90].

We present some results of using the method to compress high-resolution
fingerprint images, using various notions of entropy as the efficiency functional
and using mean-square deviation as the error criterion.

4.5 Compressing a best-basis representation

Suppose that B is a best-basis subset of W, chosen by counting coefficients above
a predetermined threshold. We may then extract just these non-negligible coeffi-
cients and transmit them, together with their locations in the tree. This number
of coefficients is no greater than the number of pixels, since it is chosen after
comparison with the original basis, among others. Define the compression ratio
to be the ratio of retained coefficients to the original pixels. With thresholding
and counting, the compression ratio measures how well a library represents a
picture S at a fixed precision e.

In practice it is sometimes necessary to fix the compression ratio, for exam-
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ple due to bandwidth limitations. In that case we may use the entropy cost
function to obtain the most concentrated representation, and then take only as
many of the largest coefficients as we can afford. This may be accomplished by
first sorting into decreasing order by absolute value, then reading off the desired
number of coefficients. Alternatively, since we know in advance how many coef-
ficients we can use, it may be more efficient to bubble up the top few coefficients
and discard the rest of the array. The second method is better if the number of
retained coefficients is less than log N, where N is the number of pixels.

For 2-dimensional signals (i.e., pictures), we may use 3 analyzing wavelets
and one scaling function formed from tensor products of 1-dimensional functions.
Define

st = [ 1@ )0 @00, () dady,
s = [ @00 @, () dady.
dsyr, = jﬁ{zf(x:y)wfuj@<x)¢7uiw(y)dxdy:
d = [ F@O o (0, () dody

The 2-dimensional pyramid scheme is then:

I H®QH H®QH
f(k) =(f, dor,@¢ok,) —  SSop ——  SS1p -

H®G H®GGERG: 1 L
Sdlk,... Sdgk,...

Each arrow costs (2R)? multiplications per coefficient. The total complexity
is (2R)?(2N —2)?2, which is linear in the number of samples. The algorithm may
be readily applied to million-sample signals, or pictures of 1024 x 1024 pixels,
using a contemporary desk top computer.

4.6 Relationships among the methods

The wavelet basis is one particular basis subset of W, namely all elements
in the standard bases of the subspaces W(1,m), W(2,m), and W(3,m) for
m = 1,2,..., together with W (0, L) if we fix a deepest level L. Numerous
other authors have investigated representing signals in the wavelet basis; a small
sampling of this work is the papers [CMQW90, BBH93, DrJL92, Don93, MF91,
MBA90, Wic92, ZSW91]. While this will obviously yield no better choice of
basis than the “best-basis,” the savings in computation and the absence of side
information may warrant its consideration when the signals are of a particular
class.
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One may also consider the correlation of a picture with the complete set of
tensor products of wavelet packets. These form a larger nonhomogeneous tree of
subspaces which must be labeled with an x-scale and y-scale, rather than with
a single scale as above. There is a more general notion of admissible subset, and
a best-basis search algorithm to find extrema. This basis will produce higher
compression ratios at a given threshold, at a cost of greater computational com-
plexity and increased overhead describing the basis. The practical disadvantages
rule out this generalization for image compression; further details may be found
in [Wic94].

4.7 Efficient coding of best-basis coefficients

The transformation from a 2-dimensional signal to its best-basis representation
is nonlinear since the choice of basis depends upon the signal itself. Together
with the coefficients we must include the extra information describing which
basis was used, and we must somehow indicate which coefficient each quantized
value represents.

There are at least 2 ways to include this latter information. Best-basis
coefficients may be individually tagged with their coordinates in the best-basis
tree. Suppose this tree begins with an N x NN signal and decomposes it down to
level L, where L < log, N. Then there are LN? wavelet packet coefficients, and
it takes log, LN? bits to encode each individual one. This method is used and
documented in the wavelet packet software programs available by anonymous
ftp from the Yale Mathematics Department [pasnt].

Alternatively, we may agree upon an ordering of the coefficients, write out
the coefficients in this order after quantization, and then entropy code the entire
list. If we were to use a single basis like wavelets or DCT, then we need never
explicitly tag any coefficients. We obtain compression because the quantized
stream of coefficients has a lower entropy that the original stream of bytes.

We shall use a variation of the second method to code best basis elements.
Namely, we will include some side information which describes the chosen basis,
and we shall then write all the (quantized) coefficients from that basis out into
a stream for entropy coding. This method is substantially more efficient, and is
essential for a competitive picture compression algorithm.

4.7.1 Describing the basis, quantizing all the coefficients

Imagine L 4 1 arrays of N x N numbers. The first array represents the orig-
inal signal, which we may call Z. The second is a concatenation of the 4
subspaces obtained via separable filter convolution-decimation, i.e., the spaces
Fy(X)Fo(Y)Z, Fi(X)Fo(Y)Z, Fo(X)F1(Y)Z, and Fy(X)F1(Y)Z. Array m
represents the concatenations of the 4™ subspaces that make up level m of the
wavelet packet decomposition. Of course, we must have 0 < m < L < log, N.
Picture these arrays stacked one atop the other, as in Figure 6 below:
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Figure 6: Quadtree of two-dimensional wavelet packet subbands.

Suppose that from this collection of arrays we have chosen a best basis. This
will be a subset of the coefficients having the property that if one element of a
subspaces is in the basis, then that whole subspace is in the basis. Also, if a
subspace is in the basis, then none of its descendent or ancestor subspaces are
in the basis. Such a subset can be identified with a cover by dyadic subarrays.
Looking down through the stack of arrays, this cover gives a tiling of the original
N x N array by square subarrays of size 27N x 27™N, where m is the level
from which that particular subspace was chosen.

4.7.2 Levels map

In this scheme, we use 2 arrays to describe the transformation, a “levels map”
and a “coefficients list.” The first has 220 integers of length log,(1 + L) bits
each, and describes the level from which a corresponding N2~ x N2~% block
of coefficients in the next list was chosen. The second array contains the N x N
coefficients from the best basis, scanned row-by-row or in some other agreed-
upon pattern. We illustrate with 3 examples:

If the original signal turns out to be the best-basis representation, then every
coefficient will be chosen from level 0, the levels map will consist of 2 x 2%
0’s, and the coefficients list will contain the original signal in the order it was
scanned.

If the complete bottom level L turns out to give the best basis, then the
levels map will contain 2% x 2L L’s and the coefficients list will contain all the
coefficients from the bottom level L, scanned in some canonical order.

If the wavelet basis turns out to be the best, then the levels map will contain a
description of the wavelet basis, and the coefficients list will contain the wavelet
coefficients of the signal. To illustrate, suppose that N = 16, L = 3, and
the signal is in fact the scaling function of amplitude 1, level 3 and position
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(0,0). Then the levels map and the coefficients list will look respectively like
the following:

e i
e e el
e
e e e
NNMNNNRL P2 P2
NNNNRFE PR P
W WNNRFP P -
W WNNRFE PP

O OO OO0 OO OOOOOoOOoOo
O O O OO OO OO OOOOOoOOoOOo
[elNelNelNeolNeolNelNelNeoNeoNeoNoNeoNoNeo oo
O O O O OO0 OO OOOOOoO oo
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O OO O OO0 OO OOOOOoOOoOOo
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O O O OO OO OO OOOOOoOOoOOo
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The number of coefficients and side data is large, but the information content
is low, and entropy coding of this list will greatly shorten it.

We can obtain an estimate of the overhead cost of this method prior to
entropy coding. There are 4% additional integers each of length log, (1 + L) bits.
This gives a total of 4% log,(1 + L)/N? bits per pixel, which we can control by
making L < logy N.

4.7.3 Subspace lists

A basis may also be described by listing the subspaces it contains. One method
is to list subspaces by level. We use 3 arrays:

1. an array num[L] of integers giving the number of subspaces chosen at each
level,

2. an array of arrays subspace[] [] listing the subspaces chosen from each
level, and

3. an array containing the complete set of chosen coefficients.

The array num[] in item 1 contains L entries of varying length: 1 bit for
entry 0, which describes whether level 0 is chosen; 2m bits for entry m which
tells how many of the 4™ subspaces on level m are in the best-basis; and so on
up to 2L bits for level L. Together the subspaces must account for all of the
coefficients, so we have the relation:

num[0] * N2 4 num[1] * N?/4 4+ num[2] * N?/4> 4+ ... +nun[L] « N?/4F = N2,
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which implies that num[L] = 4%(1 —num[0] — ... —num[L — 11 /4571), so it is
not necessary to transmit this value to describe the basis. The total number of
bits in the array num[] is thus 1+ Qan;ll m=1+(L—-1)L=L*-L+1.

The array subspace[] of arrays in item 2 contains L entries of length num[0],
num[1], ..., num[L-1], respectively. Array subspace[m] [] contains integers of
length 2m bits; array subspace [0] need not be allocated, since there is a unique
subspace at level 0. Also, array subspace [L] [] need not be allocated. Suppose
that the subspace numbering scheme assigns the indices 4k, 4k 4 1, 4k + 2, and
4k + 3 to the subspaces descended from k. The subspaces in level L will be
labeled by the integers 0,...,4% and the ones which are actually present are
the survivors after the indices 42=™k, ..., 4L=™(k + 1) — 1 are deleted for each
subspace k at level 0 < m < L.

With this numbering scheme for the subspaces, the wavelet basis of the exam-
ple above would be represented by num[1={0, 3, 3}, and the following subspaces
list:

{0,1, 2}
{12, 13, 14 }

subspace[1] []
subspace[2] []

The coefficients list will look the same as the above.
Hence the total number of bits in subspace[][] is

L—1
> 2mxnumm] < 2(L - 1)451,

m=1

This coding method requires an extra (L? — L+ 14 2(L — 1)4E~1)/N? bits per
pixel, which we again control by limiting L.

4.7.4 Coding the tree

The subspaces in the best basis are encountered in depth-first order as they are
selected, and this order can be used to code the quadtree. The side information
consists of an array next[] of integers which describe at which level the next
node in the best basis resides. The nodes themselves are traversed in depth-first
order, and the level of the next node is determined by a very short integer of
only logs L bits.

Some extra economy is possible, since the presence in the best basis of a
node at level m sometimes implies that the following nodes can only be in
levels m,..., L. In an extreme case of this phenomenon, the first subspace at
the deepest level L implies that all of its siblings are also in the best basis.
Hence whenever the deepest level appears, it is not necessary to follow it with
3 “L” symbols. Further, since level 0 (the root of the tree, or original signal)
is essentially meaningless we can use that value instead of L to represent the
deepest level, thus using only the range 0,..., L — 1 in the coding of the tree.
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In the wavelet basis case above, the depth-first-search encounter order list
would be {1,1,1,2,1,1,0}. We can either write the coefficients list in the same
manner as before, or we can dump the coefficients from each subspace as it is
encountered in depth-first order. In the example case, that would produce a
stream of small square arrays:

000000O0O 000000O0O 000000O0O
000000O0O 000000O0O 000000O0O
000000O0O 000000O0O 000000O0O
000000O0O 000000O0O 000000O0O
000000O0O 000000O0O 000000O0O
000000O0O 000000O0O 000000O0O
000000O0O 000000O0O 000000O0O
000000O00O0 000000O0O0 000000O0O0
0000 0000 0000 00 00 0O

0000 0000 0000 00 00 0O

0000 0000 0000 10
0000 0000 0000 0

This side information costs at most 4X~!log, L bits, or 4“~!log, L/N? bits
per pixel. The worst cases occur when every subspace in the bottom row is
chosen and the description is next[] = {0,0,...,0} (4£=1 0’s), or when the
next-to-bottom row is chosen and we have next[1={L — 1,...,L — 1} (4¢~!
L — 1’s). The side information will also be compressed losslessly as part of the
compression algorithm, and because of the redundancy in both of these cases
the lossless compression will be extremely efficient.

4.8 Reconstruction

A picture represented as coefficients may be reconstructed by calculating the
value at each point of the appropriate linear combination of wavelet packets.
We cascade this computation for efficiency, as follows. First we allocate enough
memory for the deepest level of the tree of subspaces that contains retained
coefficients, and insert the coefficients into their appropriate locations. Then we
reconstruct the parent subspaces by applying the adjoints of the convolution and
decimation operators, which produces part of the next deepest level. Into this
we add the retained coefficients which belong in that level, at their respective
locations, and reconstruct the parents of this level. We continue in this manner
until we have reconstructed the root, which now contains the picture.
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4.9 Operation counts

Suppose that S is an N-element picture. Applying convolution-decimations to
generate the tree of coefficient sequences requires O(N log N) operations. Calcu-
lating information costs has complexity O(N log N). Labeling “kept” subspaces
is equivalent to a breadth-first search through the tree, which has complexity
O(N). Locating topmost “kept” subspaces is equivalent to a depth-first search,
with complexity O(N), and filling an output register with coefficients from the
best basis takes an additional O(N) operations.

We can perform a radix sort to determine the largest coefficients in the
output register: this has complexity O(Nlog N). The alternative, extracting
the top t coefficients, requires O(tN) operations. We choose the more efficient
method: in either case the total complexity of the compression algorithm is
O(NlogN).

Reconstruction from the retained coefficients has the same complexity as
generating all the coefficients, since we must in general reproduce the entire tree,
and the convolution-decimations have the same complexity as their adjoints.
The constant in O(NlogN) is smaller because no additional steps (such as
searching for a best basis) are needed during reconstruction.

4.10 Tricks and optimizations

There are several enhancements commonly used in practice. Prior to sorting,
wavelet packet coefficients can be weighted by their visibility, a psychophysio-
logical observable measuring the human eye’s spatial frequency response. They
must then be unweighted prior to the reconstruction of the signal. This permutes
the decreasing rearrangement so as to minimize the weighted error. Note that
such bounded weighting amounts to conjugating the compression projection by
a Calderén—Zygmund operator.

It is also possible to optimize the storage of the selected wavelet packet
coefficients. For example, not all coefficients need to be quantized at the same
precision. The relative quantizations are determined by experiment. Finally,
the resulting bit stream can be entropy-coded to minimize the number of bits
per picture.

5 How to Compare Coding Methods

All “lossy” transform coding methods introduce errors and distortion, but dif-
ferent methods produced radically different kinds and quantities of artifacts.
Even when the errors can be quantified, their magnitude may not adequately
describe the “visibility” of the artifacts they represent, so it is always neces-
sary to judge the quality of a lossy compression through experiments involving
its ultimate consumer. In the case of images to be examined by humans, this
might be done with subjective evaluations by a large number of observers. In
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the case of machine analyzed images, a coding method may be judged by its
transparency: how little it distorts subsequent computations.

5.1 Transform coding gain

One way to judge a compression method is by its effectiveness at concentrating
pixel energy into a small number of codewords. This concentration is called
“coding gain” and it can be quantified using yet another notion of entropy.
Suppose {f,}1_; is a finite time series with autocovariance matrix m;; =
pli=7l where p is close to 1. This corresponds to a first-order Gauss-Markov
process with adjacent correlation coefficient p; such time series have been used
to model pictures and speech signals for purposes of comparing transform cod-
ing schemes. An ideal scheme would de-correlate the samples, or equivalently
diagonalize m; this is done by the Karhunen-Loéve transformation, which is
impractically slow for our purposes. Instead, we shall use fast orthogonal trans-
formations and measure the quality of approximate diagonalization by the so-
called energy compaction or maximum transform coding gain, which is defined

as
R

(T )N
If m is diagonal, then the time series coefficients are independent random vari-
ables with variances m;;. The entropy of the source of the time series is then
H(m) =, logm;;, and in this case F(m) is seen to be a decreasing function
of H(m).

Now let U and V be orthogonal matrices, whose columns may be consid-
ered an orthonormal basis. We call U a better basis than V if E(UmU*) >
E(VmV™), or equivalently if H({UmU*) < H(VmV™*). For p = 0.95 and a ma-
trix of order 32, the energy compaction for the local cosine transform is 9.47,
while that for the Karhunen-Loéve basis is 9.54. By contrast, the discrete cosine
transform gives 9.43.

5.2 Rate-distortion curves

Since the coefficients produced by the transform coding method will ultimately
be quantized or approximated by a small number of chosen values, methods can
be compared by the signal to noise ratio (distortion) produced by quantization
and entropy coding giving a particular compression ratio (rate). Each coding
method thereby yields a rate-distortion curve for each image, and one method is
better than another if its rate-distortion curves consistently or on average have
lower distortion at the desired rates.

Below are the sample picture and rate-distortion curves for various coding
methods applied to a typical picture intended for human consumption:
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5.3 Reduction in entropy

Write S for the original picture sequence and S’ for the sequence written in the
best-basis. We may ask what is the expected reduction in entropy obtained by
going from S to S’. This is equivalent to evaluating

[ e ) aste)

where 2’ is & written in best-basis coordinates, and w(x) is normalized surface
measure on the (N — 1)-sphere.

The simplest example is a 2-point signal s = (s, 1), periodized, so that the
only available filters are the Haar filters v2p = {1,1}, v2¢ = {1, —-1}. If we

suppose that ||s|| = 1, then the original entropy is just H(s) = —|sg|?log|so|? —
|s1|21og |s1]2. The only other basis gives the coefficients s{ = (sg + s1)/2, s} =
(so — s1)/2, with corresponding entropy H(s') = —|sj|? log|sh|?> — |s}]? log |s] |-

We parameterize sg = cosz, s; = sinz and evaluate the integral numerically to
get

1 27 2 37‘(’/8
— [H(s) — H(s")] dz = —/ [H(s) — H(s")] dx = —0.210393231149915
2 J, T Jr/8

Now the expected entropy of a 2-point distribution is

1 2m

o H(s)dx = 0.3862942192715892
™ Jo

so that the expected entropy in the best basis is 0.1759009881216742.

Roughly speaking, entropy measures the logarithm of the number of mean-
ingful coefficients in the signal. The above entropies correspond to 1.47 and
1.19 coefficients by this analogy, a reduction of 19%.

We have computed the entropy of the picture, and its entropy in the best
basis obtainable with filters of 1, 2, 3, 5, and 10 vanishing moments. Hence we
have also computed the exponential function of the entropy. These results are
listed in Table 2 below.

5.4  Subjective evaluation

For the subjective evaluation, Figure 8 compare the perceived distortion for two
methods which have the same distortion energy.

Figure 9 is a 256 x 256-pixel computer-rendered picture, created by Craig
Kolb with a ray-tracing program. Pixels are stored as 8-bit integers.

The remaining pictures in Figures 10 to 24 are reconstructed from compres-
sions performed with the author’s implementation of the 2-dimensional pyramid
algorithm. Coeflicients are sorted then selected in decreasing order of absolute
value. The definition of compression ratio as it is used in the captions is the
number of pixels divided by the number of coefficients used to represent the
picture.
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| Filter Moments | Compression Ratio | MSE (%) | MSE (dB) |

10 100 6.58048 11
10 50 3.85890 14
10 20 1.54101 18
10 10 0.61173 22
10 5 0.16766 27
10 2 0.00755 41
) 100 5.87643 12
) 50 3.39416 14
) 20 1.34303 18
5) 10 0.50403 22
5 5) 0.12961 28
5 2 0.00376 44
3 100 6.18733 12
3 50 3.51632 14
3 20 1.36315 18
3 10 0.50358 22
3 ) 0.12848 28
3 2 0.00332 44
2 100 6.32141 11
2 50 3.70738 14
2 20 1.46627 18
2 10 0.54608 22
2 5 0.14227 28
2 2 0.00370 44
1 100 7.36173 11
1 50 4.38014 13
1 20 1.83089 17
1 10 0.73331 21
1 5 0.18761 27
1 2 0.00317 44

Table 1: Rate versus distortion for compressions with Daubechies filters.

| Filter Moments | Entropy | Reduction | Theoretical Dimension) |

(original) 9.449 - 12700
10 4.371 -5.078 79
5 4.265 -5.184 71
3 4.397 -5.052 81
2 4.313 -5.136 (0]
1 4.345 -5.104 7

Table 2: Entropy reduction by wavelet transformation.
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6 Transforming compressed pictures

As described in [CW93], the wavelet packet coefficients of a picture contain
a mixture of spatial and spectral information. A list of the most energetic
subspaces used in a compressed picture conveys a signature for the picture.
Certain operators are very efficiently represented by their action on the wavelet
packet coefficients. Some examples include spatial filtering and local image
enhancement, edge and texture detection, and local rescaling.

For purposes of explanation we will assume that the picture is a function of 2
real variables supported in the region [0, 1] x [0, 1], with a resolution of 27 . Let
(n,m, k) be the index of a coefficient in the complete wavelet packet expansion
of a picture S. Here m = 0,1,..., L. We may divide 0 < n < 4™ into n, and n,
by taking the odd and even bits in its binary expansion, respectively. These can
be arranged in “sequency” order (by Gray-encoding; see [Wic94]) and then will
approximately correspond to z and y frequencies. Likewise, k£ may be divided
into its # and y components k; and k,. Then the transforms described above
may be defined by their action on (ng,n,,m, ks, ky) as follows:

Spatial filtering: to remove (or attenuate) high frequency components in a
particular direction a@ = tan %, simply discard any coefficient for which
|oe — tan Z—:| < e with n, > C, ny > C, where the cutoff frequency C' and
the directionality e are parameters of the filter.

Local image enhancement: to remove high frequency noise from a particular
region of the picture, employ spatial filtering as described above, but only
on those coefficients for which 2™ is less than the diameter of the region,
and for which 2™(k,, k,) is a point in the region.

Edge detection: suppose we wish to find an edge of scale mg in a picture
of resolution L, i.e., a white region which darkens to black in a dis-
tance 2™0~L. Such an edge will contribute large coefficients to scales
1,2,...,mg at high frequencies. We may graph it by selecting only coeffi-
cients ¢(ng, ny, m, ky, ky) (above a (large) threshold, with m < mg and n
greater than an appropriate monotone function of m, and then plot points
at 2™ (ky, ky).

Texture detection: textures may be characterized by constant ratios between
wavelet packet coefficients at nearby translations. Suppose for example
that we wish to detect a texture in which ¢(ng, mg, k+1) = —c(ng, mo, k+
1) for all k in some region. An operator which added a coefficient at k to
its neighbor at k£ 4+ 1 would have 0’s in its range at k, indicating where
that texture was located.

Local rescaling: we simply replace ¢(n, m, k) with ¢(n’,m’, k') for a restricted
range of k’s. The map n — n/, etc., is determined by the rescaling. For
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example, if n’ = 2n and m’ = m+1, then we will increase the magnification
of the picture locally with little change in the frequency content.

The survey article [Wic92] describes these and other operations and their
fast implementations in greater detail.

7 Source programs

Below is a printout of three C programs which perform block discrete LCT on a
256x256 pixel grey scale image. The first is a header file “fold.h” which contains
most of the subroutines. A standard library package “interface.o” (not listed
here) contains standard procedures for reading file names from the command line
and so on. Its procedures are declared in “interface.h”, but only open file()
and open_different file() are used in these programs, and their purpose is
self-evident:

Jxxx fold.h Header file for 2-D LCT and iLCT programs. sxx/
#include "interface.h"

char xinputname, *xoutputname;

FILE xinputfile, xoutputfile;

Jxxx Trivial functions to read and write single floats: x/
void getv( float xvalue ) { fscanf(inputfile, "%£", value); }
void putv( float value ) { fprintf(outputfile, "%f\n", value); }

Jxxx Take a sequence X[| and put B[]-determined combinations into it: x/
void fold_in_place(float *X, float *B, int bellReach) {
int i, j; float temp;
for(i=0, j= —1; i<bellReach; i++, j——) {
temp = BIi[+X[i] + B[j]+X[j];
X[j] = B[ilX[j] — B[j}*X[i};
X]i] = temp;
}
}

Jxxx Inverse of fold_in_place(): x/
void unfold_in_place( float *X, float *B, int bellReach ) {
int i, j; float temp;
for(i=0, j=—1; i<bellReach; i++, j——) {
temp = Bi]+X[i] — BIj]«X[j];
X{[j] = B[ilX[j] + Bj]*X[il;
X[i] = temp;
}
}
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[ Fill an array of arrays with cosines: %/
float **make_cos_tab( int n ) {
float #*pcosine; int i, j; double freq, norm;
pcosine = (float *x) malloc(nxsizeof(float *));
norm = sqrt(2.0/(double)n); /A ...to get unit vector %/
for (i=0; i<n; i++) {
pcosine[i] = (float x)calloc(n, sizeof(float));
freq = (1.570796326794897)*(double)(2xi + 1)/(double)n;
for(j= 0; j<n; j++)
peosine[i][j] = (float)(normxcos(freqx(0.54+(double)j)));

return(pcosine);

}

J#xx Find DCT-IV in place by inner products: %/
void dctiv( float *x, float *y, int n, float *xpcosine ) {
int k, j; float sum;
for(k=0; k<n; k++) { / Loop over the frequency parameter x/
sum = 0.0;
for(j= 0; j<n; j++) sum 4= pcosine[k][j]*x[j];
y[k] = sum;
}
for(k=0; k<n; k++) x[k] = y[k];
}

Jxxx Allocate and assign an array with the left edge of a bell /
float *make_bell( int bellReach, int zeroContact ) {
double x; int i, j; float xbell;
bell = (float *)calloc((unsigned)(2+bellReach),sizeof(float));
bell = &bell[bellReach]; /« Fill bell[] with cutoff function */
for(j= —bellReach; j<bellReach; j++) { / iterate sin() %/
x = ((double)j+0.5)/(double)bellReach; /« real no. in [-1, 1] %/
for(i=0; i<zeroContact; i++) x = sin( HALFPIxx );
bellj] = (float)sin( (1.570796326794897)%(0.5 + 0.5+x) );

return(bell);

}

The program “fold.c” performs the transform to BDLCT coefficients, listing
them in order in the output file specified on the command line or interactively:

Jexx fold.c
Perform a 2-D local cosine transform on an 256x256 picture divided into
square blocks of dimension 8x8 which overlap (orthogonally) by 4 samples.
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Read samples, row by row, from specified ‘inputfile’ via the function getv(),
which is defined in fold.h. Output the coefficients column by column into
‘outputfile’. x/

#include "fold.h"

main( int arge, char s*argv ) {
float sxrow, xcol[256], xbell, y[8], x*pcosine; int i, j;
open_file("input","rb",&inputname,&inputfile,arge,argv);
open_different_file(inputname, "output","wb",
&outputname,&outputfile,arge,argv);
row = (float x)calloc((unsigned)(256+42x4), sizeof(float));
row = &row[4];  /«x Set array range to [-4, 256+4) */
for(j=0; j<256; j++) {
col[j] = (float *)calloc((unsigned)(256+2+4), sizeof(float));
col[j] = &col[j][4]; /x Set array range to [-4, 256+4-4) %/

bell = make_bell(4, 1); 4 Make and store the bell[] «/
pcosine = make_cos_tab(8); / Make the table of cosines %/
for(i=0; i<256; i++) {  /«x Loop over rows %/

for(j=0; j<256; j++) getv(&rowlj]); /x Read a row x/

for(j= —4; j<0; j++) row[j] = row[256+]];  /« Periodize %/
for(j= 0; j< 4; j++) row[256+]] = row[j];

for(j=0; j<256; j+= 8) fold_in_place(&row|j], bell, 4);
for(j=0; j<256; j+= 8) dctiv(&row][j], y, 8, pcosine);
for(j=0; j<256; j++) col[j][i] = row][j]; j Transpose x/

}

for(j=0; j<256; j++) { /* Loop over columns */
for(i= —4; i<0; i++) col[j][i] = col[j][256+i]; /* Periodize %/
for(i= 0; i< 4; i++) col[j][2566-+i] = col[j][i];
for(i=0; 1<256; i+= 8) fold_in_place(&col[j][i], bell, 4);
for(i=0; 1< 256; i+= 8) dctiv(&col[j][i], y, 8, pcosine);
}
for(j=0; j<256; j++) for(i=0; i<256; i++) putv(colj][i]);
exit(0);

}

1=
1=

The program “unfold.c” inverts the BDLCT and dumps the reconstructed
picture into a specified output file:

Jx#x unfold.c

Invert the 2-D local cosine transform on the encoding of a picture of size
256x256 pixels divided into square blocks of dimension 8x8 which overlap
(orthogonally) by 4 samples. Assume that the coefficients are presented
column-by-column in ‘inputfile’. Output the recontructed samples row-by-row
to ‘outputfile’. %/

30



#include "fold.h"

main(int arge, char sxargv) {
float xrow[256], xcol, *bell, y[8], **pcosine; int i, j;
open file("input","rb" &inputname,&inputfile,arge,argv);
open _different_file(inputname, "output","wb",
&outputname,&outputfile,arge,argv);
col = (float x)calloc((unsigned)(256+2x4), sizeof(float));
col = &col[4];  /« Set array range to [-4, 256+4) */
for(j=0; j<256; j++) {
row[j] = (float *)calloc((unsigned)(256+2+4), sizeof(float));
row[j] = &rowlj][4]; /« Set array range to [-4, 256+4) */

bell = make_bell(4, 1); / Make and store the bell[] x/
pcosine = make_cos_tab(8); /x Make the table of cosines %/
for(i=0; i<256; i++) {  /* Loop over colums */
for(]_O j<256; j++) getv(&col[j]); /x Read column %/
for(j=0; j<256; j+= 8) dctiv(&colj], y, 8, pcosine);
for(j= —4; j<0; j++) colfj] = col[256+j];  /« Periodize */
for(j= 0; j< 4; j++) col[256+]] = colj];
(
(

for(j=0; j<256; j+= 8) unfold_in_place(&col[j], bell, 4);
0; j<256; j++) rowl[j][i] = col[j]; /x Transposex/

for(j
}
for(j=0; j<256; j++) { /* Loop over rows x/

for(i=0; 1<256; i+= 8) dctiv(&rowl[j][i], y, 8, pcosine);

for(i= —4; i<0; i++) row[j][i] = row][j][256+i]; /j* Periodize %/

for(i= 0; i< 4; i+4) row][j][2564+i] = row|j][i];

for(i=0; 1<256; i+= 8) unfold_in_place(&rowl[j][i], bell, 4);
}
for(j=0; j<256; j++) for(i=0; i<256; i++) putv(row[j][i]);
exit(0);

}
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RATE-DISTORTION CURVES FOR ‘trevor’
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Figure 7: Original picture and rate-distortion curves for 5 compression methods

Figure 8: DCT versus LCT, 8 bits per coefficient.
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Figure 9: Original ray-traced picture.

Figure 10: D 2 filter, compression ratios 2 and 5.
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Figure 11: D 2 filter, compression ratios 10 and 20.

Figure 12: D 2 filter, compression ratios 50 and 100.
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Figure 13: D 4 filter, compression ratios 2 and 5.

Figure 14: D 4 filter, compression ratios 10 and 20.
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Figure 15: D 4 filter, compression ratios 50 and 100.

Figure 16: D 6 filter, compression ratios 2 and 5.
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Figure 17: D 6 filter, compression ratios 10 and 20.

Figure 18: D 6 filter, compression ratios 50 and 100.
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Figure 19: D 10 filter, compression ratios 2 and 5.

Figure 20: D 10 filter, compression ratios 10 and 20.
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Figure 21: D 10 filter, compression ratios 50 and 100.

Figure 22: D 20 filter, compression ratios 2 and 5.
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Figure 23: D 20 filter, compression ratios 10 and 20.

Figure 24: D 20 filter, compression ratios 50 and 100.
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