Theoretical Dimension and the Complexity of Simulated Turbulence

Mladen Victor Wickerhauser!, Marie Farge?, and Eric Goirand?

Abstract. A global quantity called “theoretical dimension” is roughly proportional to the number of
coherent structures that expert observers count in simulated two-dimensional turbulent viscous flows.
This paper reviews some previously published computations of this quantity for a few academic examples
and for a small number of flows computed from random initial vorticity fields.

§1 Introduction

Evolution equations describing complicated phenomena like turbulence and nonlinear wave propagation
sometimes produce coherent features such as shock fronts and traveling vortices. These coherencies permit
an approximate description of the evolving state by relatively few parameters, regardless of how many free
parameters were initially used in the numerical resolution of the equation. The goal of this paper is to discuss
automatic methods for extracting such low-rank approximations to complicated phenomena, and to present
results of one such method applied to two simple examples: Burgers’ equation with dissipation, as previously
computed in one spatial dimension [8], and the incompressible Navier—Stokes equation, previously analyzed
in two spatial dimensions [7]. New data is contained in Figures 4 and 5, and Tables 2 and 3.

The rank reduction method will be a kind of lossy compression; the solution at any instant in time will
be written as a superposition of orthogonal phase atoms, defined below, and then only those component
atoms whose amplitudes exceed some threshold will be retained. Coherence will be detected by counting the
number of retained components; when this count is low, the instantaneous state will be considered coherent.

To count the relative importance of the retained components in such phase atom expansions, their
amplitudes will be weighted using the entropy functional defined as follows. For any nonzero sequence
a={a(n):n=0,1,2,...} with |[a||* =3, |a(n)|* < oo, put

s = laP (e
1) = =2 ap lg( Tal? ) 1)

As usual, 0log0 is evaluated by continuous extension as 0. This is called the “entropy functional” because
it is the entropy of the discrete probability distribution given by p(n) = |a(n)|?/||al|?>. In [19], p.278, and
many other places it is shown that if M > 0 is the count of nonzero elements a(n), then 0 < H(a) < log M,
and the maximum value is achieved when all nonzero a(n) have the same magnitude. Thus H(a) measures
the flatness of the component amplitudes; it will be low when the amplitudes are not flat, i.e., when they
are concentrated into fewer than M large components.

Now define the theoretical dimension T'D(a) of the sequence a by

TD(a) % exp H(a). (1.2)
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This quantity is used to boost intuition about the sequence a, since it can be said to measure the number
of significant amplitudes rather than their logarithm, which measures the number of bits required to encode
them.

Both H(a) and T'D(a) are computable for both finite and infinite sequences, so long as the sequences
have slightly faster decrease as n — oo than required for square-summability. In the experiments below, all
sequences a are finitely supported with at most some large number M of nonzero coefficients; in that case,
coherence will mean simply that 7'D(a) < M.

Phase atoms are smooth functions which are well localized in both position and momentum in the sense
of quantum mechanics. Namely, a phase atom ¥ = 1(z) must have the following properties:

e Finite energy:
2 def 2
ol [ 1o i < . (1)
Without loss, it can be assumed that |[¢|| = 1.
e Smoothness and decay: both 1 and 1[3 are smooth, where 12} is the Fourier integral transform of v;

e Position and momentum:

def

o def /m|w(x)|2dm < o0; & = /f\?ﬁ(f)ﬁdf < 00; (1.4)

these are respectively called the position and momentum of 1;

e Localization in position and momentum:

Az € ( / <mxo>2|w<m>|2dx)l/2<oo; N ( / (€§o)2|1/3(£)|2d€)1/2<oo; (1.5)

these are respectively called the position uncertainty and momentum uncertainty of 1,

e Concentration: 1) must be approximately as well localized in position and momentum as the Heisenberg
uncertainty principle allows, that is,
Ar A¢ =~ 1. (1.6)

The theoretical dimension of a function f is the minimum value of T'D(a) achievable for any sequence a

for which
f@) = 3 a(n)n(a) (1.7)
n
and {1, } is a collection of phase atoms. Call that quantity TD(f). It is obviously difficult to compute, since
there is no simple parameterization of phase atoms over which to optimize, so it must be estimated using
some particular, easily computed subset of the phase atom decompositions.

The matching pursuit algorithm [12] is one effective way to search over a large library of phase atom
decompositions, the Gabor bases. Adapted waveform analysis [10, 18] is a fast approximation of matching
pursuit which uses wavelet packets [4] rather than modulated Gaussians as phase atoms. Both are examples
of meta-algorithms [16] which fit a decomposition with good analytical properties to a function.

The best-basis expansion [5] of a function is a further simplification and speed-up of adapted waveform
analysis; it is the phase atom decomposition used here to obtain an approximation for T'D(f).

To estimate the evolving complexity of a numerical simulation using the notion of theoretical dimension,
suppose that f = f(z,to) is the solution at a fixed time to. Then T'D(f) is estimated using a reasonable
library of phase atoms and the result plotted as a function of #;. Progress through states of instantaneous
coherence will be seen as local minima, and incoherence will be seen as local increases of T'D.

The remainder of this paper is divided into three parts. In the first, the techniques used to compute
solutions to two evolution equations are described, as well as the algorithm for approximating TD(f) for
each instant in time using wavelet packet best-basis expansions. In the second, numerical results from two
simultations are presented. In the third, there is a brief discussion of the interpretation of the results and
comments on how the technique might be improved.
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§2 Techniques
2.1 Wavelet packet best basis expansions

Wavelet packets are generalizations of the compactly-supported wavelets introduced by Daubechies, Mallat,
and Meyer [6, 11, 15]. They constitute an over-abundant set of basis functions with remarkable orthogonality
properties, namely, that very many subsets form orthonormal bases. The one-dimensional functions were first
described in Reference [4]. Each basis element 1 is characterized by three attributes: scale s, wavenumber
k, and position p, so they may be labeled vs,. By the Heisenberg uncertainty principle, it is not possible to
localize a function to arbitrary precision in both p and k. In other words, Ap - Ak > 1 in normalized units,
where Ap is the uncertainty in position and Ak is the uncertainty in momentum. In the wavelet packet
construction, Ap ~ 2% and Ak =~ 2~° in the same normalization, so that the product of the uncertainties is
roughly as small as possible. Such functions, which cannot be significantly better localized in phase space,
are evidently phase atoms.

Fourier analysis with such waveforms or atoms consists of calculating the wavelet packet transform
Wskp(f) = (Yskp, f). Certain subsets of the indices (s, k,p) give orthonormal bases B, and for these subsets
there is an inversion formula:

f = Z <,¢skp-,f>2/}skp- (211)

(s,k;p)€B

Wavelet packets are rarely constructed explicitly. More usually, one simply applies the fast discrete
algorithm described in Reference [4] to the sampled values of f, and thereby produce the coefficients wgp(f)-
The underlying functions v can, however, be developed as follows. Introduce two (short) finite sequences
{hn} and {g,}, called conjugate quadrature filters, which satisfy the relations:

1
Z hop = Z hapi1 = e gn = —(—1)"h1_p, for all n; (2.1.2)

1, ifm =0,
Z hnhn+2m = ZgngnJer = { 07 otherwise; (213)
> hngniam =0,  forallm e Z. (2.1.4)
n

Next, define a family of functions recursively for integers k > 0 by:

Wor(x) = \/52 haWi (22 —n);  Wopga(z) = ﬁZgan@x —n) (2.1.5)

Note that Wy satisfies a fixed-point equation. Conditions 2.1.2 through 2.1.4 ensure that a unique solution
to this fixed-point problem exists, and that {W}, : k € Z} forms an orthonormal basis for L?(R). The
quadrature filter pair h, g can be chosen (see Reference [6]) so that the solution has any prescribed degree
of smoothness.

Equations 2.1.2 through 2.1.5 all have periodic analogs as well, which can be used in the case of periodic
boundary conditions. The experiments in this article used periodic algorithm with the so-called “C 6”
coefficients, given as h,, and g,, in Table 1.

One-dimensional wavelet packets are defined from these Wy by the formula:

Yspp(T) = 275/2Wk(27sm — D).

As described in Reference [4], taking those functions {95, : (s,k,p) € Z} for which the half-open dyadic
intervals {[£, ££L) : (s, k, p) € T} form a disjoint cover of the unit interval gives an orthonormal basis subset
7.

The library of basis functions in two dimensions consists of all possible tensor products of the 1 functions
with both factors sharing the same scale s. The definitions and formulas for this two-dimensional case
may be found in Reference [20]. Certain basis subsets can be described by disjoint tilings of the unit

X ky ky+1
%a kIle) X [Tz 1/2_: ) and put wla(lﬂw’l"y)(x’y) -

square, as follows. Let I be a half-open dyadic square |
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Table 1. “Coiflet 6” coefficients for orthogonal wavelet packets.
| n | Low-pass filter coefficient h,, | High-pass filter coefficient g, |

<0 0 0

0 3.85807777478867490 x 102 | —2.26584265197068560 x 10!
1 | —1.26969125396205200 x 102 7.45687558934434280 x 10!
2 | —7.71615554957734980 x 1072 | —6.07491641385684120 x 10~*
3 6.07491641385684120 x 101 | —7.71615554957734980 x 102
4 7.45687558934434280 x 10! 1.26969125396205200 x 102
5
5)

2.26584265197068560 x 101 | —3.85807777478867490 x 102
0 0

275sWi, (27 %z — ps )Wk, (27 %y — py). Then every basis in the library, for functions on the 2° x 29 grid,
corresponds to a set of the form:

{1, (popy) : I € T2 € Z,py € Z,0 < p, < 2°7°,0 < p, < 2577},

where 7 is a disjoint cover of the unit square by such dyadic squares I, for 0 < s < S and 0 < ky, k, < 257%

A graph basis is a collection of wavelet packets corresponding to some disjoint cover Z with squares
no smaller than a fixed minimum. Computation of inner products with all such functions is performed
recursively, with recursion depth controlled by the minimum square size. The best basis for a function
f, chosen from among graph bases, is the one minimizing the entropy functional H(a) of the expansion
coefficients of f. The implementation of graph basis expansions and the best basis search algorithm is
described in detail in Reference [19], sections 7.2 and 8.2. The entire procedure has complexity O(N log N)
where N is the rank of the problem, and N = 22° for the original grid-point formulation.

The function f can be approximated by f€, a superposition of just the largest components of its best-basis
expansion. Call the best basis Z,. The projection onto the top few coefficients is defined as follows:

ff= arvr

lar|>e

Here I € Z., ar = (f,v1) and € is some predetermined threshold. The summation over all integer translates
(pz, py) is suppressed for compactness.

The approximate value to be used for the theoretical dimension T'D(f) will be T'D(a) = exp H(a). It
makes little difference whether the full sequence for f or the truncated sequence for f€ is used; truncation is
mainly useful when analyzing infinite sequences.

2.2 Burgers’ evolution equation with viscosity on the circle

Burgers’ equation is the first part of the following initial value problem:

oF 10 ., '
F(z,0) = Fy(x) for all x; (2.2.9)
F(z+1,t) = F(z,t) for all ¢ > 0. o

The constant v is the viscosity of the fluid and the function Fy = Fy(z) is the initial state at time ¢ = 0.

Consider one classical example: Fy(z) = sin(27x). The graph in Figure 1 shows the evolution from this
initial function at times 0, 0.08, 0.16, 0.32, 0.5, 0.75, and 1.00. The two arcs of the sine, one positive the
other negative, are propagating in opposite directions to produce a steep slope at x = 32/64.

The dissipation term AF produces the vanishing effect: the total energy in the solution tends to 0
as time increases. Without dissipation the slope at = 32/64 would become infinite and a discontinuity
would appear; the viscosity term controls how close the solution gets to singularity before dissipating. The
apparition of a near-discontinuity means that the amplitudes of small-scale components in the solution are
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Figure 1. Burgers’ evolution from sin(27z) at ¢ =0 to ¢t = 1 in increments of 0.05.

increasing, since they contribute the large derivatives. This phenomenon is better seen in Figure 2 below,
which depicts the amplitudes of wavelet components of the signal arranged by scale.

The evolution was computed with a Godunov scheme applied to the 1-periodic signal, using a space-step
of 1/64 and a time step of 1/100. In Reference [8], it was shown that the energy is decreasing in the biggest-
scale wavelet components of the evolving function, while the energy in the smallest-scale ones is increasing.
It was observed that one of the big-scale amplitudes already begins to decrease at time zero. The maxima
of the smaller-scale amplitudes are reached later and later with decreasing scale. This last aspect can be
better seen on Figure 2 which shows the absolute value of the wavelet coefficients in gray scale: white is
zero, black is the maximum. The graduations between 0 and 100 represent time; the others show the index
of the wavelet coefficients. The first wavelet coefficient is the mean of the signal (actually 0), the second is
the biggest-scale difference coefficient, the third and fourth are next-largest difference coefficients, and so on.
The last 32 are the smallest scale difference coefficients, since there are a total of 64 samples of the signal.
The analysis was done with “Coiflet 30” wavelets [6] because they have a large number of vanishing moments
and are nearly symmetric.

Ultimately, through dissipation, the function and thus all its wavelet coefficients decrease to 0.

2.3 Two-dimensional incompressible Navier—Stokes simulations on the torus

The classical simulation of two-dimensional decaying turbulent flows uses the incompressible Navier—Stokes
equation with small viscosity. The Kraichnan—Batchelor theory in this situation [1, 9] postulates homoge-
neous mixing within the flow and supposes that the whole vorticity field is involved in the “cascade process”
that transports enstrophy from large eddies to small ones, while energy is transferred from small to large
scales.

In contrast to this explanation, we believe that two-dimensional turbulent flows are generically inhomo-
geneous and propose to model them as a superposition of coherent rotational vortices embedded in a random
quasi-irrotational flow. We have observed, in numerical simulations of two-dimensional Navier—Stokes equa-
tions with random initial conditions, that isolated vortices result from the condensation of enstrophy into
localized, well-separated structures. These structures are stable as long as they do not interact with one
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Figure 2. Amplitudes of the wavelet coefficients of Burgers’ evolution from the initial function sin(27z), shown in
gray scale.

another, but during close encounters they experience strong deformations, which then excite some internal
degrees of freedom. This gives rise to a local cascade or transfer of enstrophy toward small scales and to
its concomitant dissipation. Consequently, only a limited active portion of the vorticity field, correlated to
the coherent vortices, is responsible for the turbulent cascade. The remainder, or background portion of the
field, is passively advected and plays a negligible dynamical role.

The atomic view may be compared with the vortex methods of Winckelmans and Leonard [22], Marchioro
and Pulvirenti [14], and Saffman [17]. It generalizes the simplest model used to approximate two-dimensional
flows, that of superposed point vortices, by considering the flow to be a superposition of atoms that are chosen
from among a library of smooth localized functions such as wavelet packets [4] or localized cosine functions
[3, 13]. The additional parameters available to these atoms enable us to take into account the internal degrees
of freedom of each vortex, which can be considered as a molecule.

The goal will be to compute the number of “significant” atoms in a turbulent flow, i.e., those components
whose amplitudes exceed a preset threshold. Those that correspond to the same locale can be interpreted as
the principal components of a coherent structure. Their number evolves in time, with a generally decreasing
trend due to the decay in enstrophy caused by dissipation, and gives a quantitative estimate of the number
of coherent structures and the complexity of the turbulent flow.

The analysis begins with a direct numerical solution of the Navier-Stokes equation describing the dy-
namics of a two-dimensional incompressible viscous flow. In the periodic plane S = (0,27) x (0,27) C R?
and in the absence of external forcing, these take the following form:

Ju 2 . n
W—i—(u-V)u—kVP—qu:O, inSxRT,
V-u=0, inSxRT,

u(x, 0) = up(x), in S.

Here u is the velocity field, P is the pressure field, and v is the kinematic viscosity. Periodic boundary
conditions are also imposed. The equations are rewritten in terms of wvorticity w and stream function 1,
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_9% o b
o Uy _ ox . — 112_ — _111
u= ( " > = ( ) ) Tt (2.3.1)

defined by

811

The Navier—Stokes equations then become

(Z)_C: + J(Y,w) — vV3w = 0, (x,t) € S x RT;
w=V%, (xt)€SxR";

w(x,0) = wp(x), xes.

Again, periodic boundary conditions are imposed. The Jacobian operator in terms of these new variables is:

oY Ow 0y Ow
=a—— . 2.3.2
J(’L/),w) 8LE1 (9562 61‘2 83:1 ( 3 )

The functions w and ¥ can be expanded in their Fourier series over the periodic domain S:

=) G ik- A _ b —ikx .
w(x,t) = zk:w(k,t)e X alkt) = 5 /X e KX
bxt) = Sk, R, k) = % b, KX dx.

k Xes

A turbulent vorticity field such as the one depicted in Figure 3 develops from a random initial vorticity
field wp(x) which is integrated for many time steps in the presence of time-periodic external forcing (at
very low wavenumbers), until the vorticity field reaches a statistically steady state. Forcing is subsequently
turned off and the same integration is continued in the decaying regime.

A pseudo-spectral Galerkin method was used to integrate the Navier—Stokes equations; at each time
step, all differentiation was performed in @, @ZA) coordinates and all multiplication in w, coordinates. Both
w and v are represented as finite Fourier series, or superpositions of the Fourier modes at wavenumbers
0 < |k| < k;, where k, is the cutoff wavenumber which gives some fixed resolution. The time integration
was done using an Adams-Bashforth scheme. The periodic plane S was sampled on 1282 grid points in the
simulation. This is not terribly fine, so the commonly-used mechanism of modeling subgrid dissipation was
employed to incease the apparent resolution.

The subgrid scale model was a hyperdissipation operator —(—V?2)*, which replaced the Laplacian operator
in the Navier Stokes equations. This caused the vorticity field produced by the direct numerical simulation to
decay more rapidly in regions of high local variation than it would in a simulation using Laplacian dissipation.
The disproportionately fast decay produced a flow that acts “as if” energy losses from subgrid scales were
included in each time step through aliasing.

The program ran for 6000 time steps At = 10~ in units of 7!, which corresponds to about 30 initial
eddy-turnover times, starting from the statistically steady state. The vorticity fields analyzed here are time
slices spaced 20 time steps apart. These may be considered to be typical snapshots of a fully-developed
turbulent flow whose enstrophy is slowly decaying.

83 Results
3.1 One-dimensional results: Burgers’ equation

The periodic solution to the 1-periodic Burgers’ equation from an initial state Fy(z) = sin(27z) was computed
using a viscosity of v = 0.01/x, from t = 0 to t = 1. The results are plotted at time intervals of 0.05 in
Figure 1, and the amplitudes of the associated wavelet coefficients are depicted as gray levels in Figure 2.
The number of dark streaks in the latter figure give a crude estimate for the theoretical dimension of the
solution.
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Figure 3. Vorticity field at an instant of time, scaled to fill an 8-bit dynamic range.
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Figure 5. Theoretical dimension of a solution of Burgers’ equation from an initial state sin(27z) at t =0 to t = 5.
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The theoretical dimension was approximated somewhat better with the best-basis expansion using Coiflet
6 wavelet packets as phase atoms. This was done at every time step, with At = 0.01. The result is plotted
in Figure 4. A longer-term plot of theoretical dimension is seen in Figure 5.

It is readily noticed that the estimated theoretical dimension jumps from about 2 to about 3.5 at first,
as the shock begins to form at spatial position 32, then decreases back to 2 as dissipation smooths out the
function and removes the large derivatives. Extra phase atoms of small position variance and large frequency
variance seem to be needed to represent large derivatives near the shock, whereas the phase atoms which
represent, the two smooth lobes of the initial sine curve remain as a kind of background, persisting even to
long times when the solution has dissipated nearly to 0.

The peculiar feature at time ¢t = 0.08 may be the result of a sudden change of the basis in which the
atomic decomposition is performed. The best orthogonal basis changes at that instant from a 21-subband
decomposition to a 10-subband decomposition.

Even crude approximations of theoretical dimension provide some clue to the number of degrees of freedom
required to approximate a solution to a complicated evolution equation. In the one-dimensional Burgers’
equation with dissipation, even the wavelet decomposition provides a reasonable estimate of the number of
phase atoms in the minimal decomposition. As the shock begins to form, extra wavelet components appear
at the small scales indexed by ordinate values near 50 in Figure 2. These decay as the energy dissipates and
the sharp slope near abscissa 32 in Figure 1 becomes smoother.

3.2 Two-dimensional results: Navier—Stokes equation

Now consider a vorticity field, similar to that depicted in Figure 3, representing what we believe is a generic
time slice of a homogenous, isotropic, fully developed two-dimensional turbulent flow. The experiment
segmented it into high-enstrophy and low-enstrophy components in the wavelet packet best basis.

All experiments began with an initial condition consisting of a fully-developed two-dimensional turbulent
flow sampled on 1282 grid points. This gave a “reference initial flow field” which was then evolved for an
additional 6000 time steps between ¢ = 0.0 and ¢ = 0.6, using the Navier-Stokes model described in the
previous section. In the chosen normalization, this interval is approximately 30 eddy turnover times, or
the time it takes for an average vortex to make 30 rotations. The resulting evolution may be called the
“reference flow field evolution”. Vorticity fields were computed at 300 equally-spaced future times and then
their theoretical dimension was estimated in the wavelet packet best basis defined by the “Coiflet 6”7 filters
listed in Table 1. In Figure 6 may be seen the evolution of theoretical dimension for this reference evolution.

There are fluctuations in the estimated theoretical dimension which cause the graph to depart from its
course of smooth decay. These are caused both by sudden changes in the basis choice and by the lack of
shift-invariance of the orthogonal wavelet packet expansion.

The theoretical dimension estimate starts at approximately 400 for a field with 26 distinguishable vortices
and decays to 150 at the 301st time slice when there are 15. The count of vortices is necessarily subjective,
and no attempt was made to include the contribution of vortez filaments which also evolve and decay in the
simulation.

The evolution of theoretical dimension measures the quality of an approximate evolution from a pro-
jected initial state [7]. Figure 7 shows the evolution of estimated theoretical dimension from initial states
approximated by 50%, 5%, and 0.5% of the original components. These represent 8192, 819, and 82 degrees
of freedom, respectively. Table 2 shows how initial and final estimates of theoretical dimension compare with
the subjective count of significant vortices in the original and the three approximations.

By contrast, the portion of the initial vorticity field which was discarded by the projection onto strong
wavelet packet components contains a very large number of local vorticity extrema. The theoretical dimension
estimate for those weak remainder fields are plotted in Figure 8, which shows the 50%, 95%, and 99.5%
leftovers from Figure 7. Notice that the remainder theoretical dimensions are much larger than those for
the approximations. Table 3 compares the estimate of those theoretical dimensions with a crude subjective
count of significant vortices.

Small fluctuations of the theoretical dimension estimate are due to the lack of shift-invariance of wavelet
and wavelet packet decompositions. This problem can be alleviated by computing T'D(f) as the minimum
of the information costs of the best basis wavelet packet expansions of f(z — xg), where zg ranges over
several small spatial shifts. That algorithm seems to have O(N?) complexity, though there is a well-known
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Figure 7. Evolution of estimated theoretical dimension for the vorticity field reconstructed from: (left) the top 50%,
or 8192; (middle) the top 5%, or 819; (right) the top 0.5%, or 82 of the original’s wavelet packet components.

Table 2. Subjective count of vortices (VCy) compared with theoretical dimension (1'D;) at time ¢ for 2-D decaying
evolutions from increasingly simplified initial turbulent vorticity fields. Times ¢ = 0.020 and ¢t = 0.598 were chosen
slightly inside the simulation interval [0.0,0.6] to avoid artifacts.

| Components | Fraction

| VCio20 | TD.g20 | VCisos | TD.50s |

16384
8192
819
82

100%
50%
5%
0.5%

26
26
21
20

381
381
340
135

15
15
17
19

151
143
127

95
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Figure 8. Evolution of estimated theoretical dimension for the vorticity field reconstructed from: (left) the bottom
50%, or 8192; (middle) the bottom 95%, or 15564; (right) the bottom 99.5%, or 16302 of the original’s wavelet packet
components.
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Table 3. Subjective count of vortices (V' C') compared with theoretical dimension (7'D) for 2-D decaying evolutions
from the increasingly energetic remainders of simplified initial turbulent vorticity fields.

| Components | Fraction | VCo | TD.o20 | VCis0s | TD.s0s |

16384 100% 26 381 15 151

8192 50% 600 1160 100 534
15564 95% 350 1583 150 915
16302 99.5% 200 927 60 477

shift-invariant wavelet expansion [2, 19] with complexity O(N log N) which may be used when wavelet phase
atoms suffice.

84 Discussion

This paper describes very crude approximations to the theoretical dimension of a complicated evolution, yet
even these provide some clue to the complexity of the flow. Still, many improvements of the computation
are possible.

The most basic improvement would be to compute theoretical dimension with a larger library of phase
atoms. For example, Gabor functions could be used as in the matching pursuit algorithm. However, this
would raise the complexity of estimating T'D on an N-point grid to O(N?). A faster improvement would
be to use best-basis with multiple wavelet packet libraries, possibly combined with adapted local cosine
libraries or other modern basis sets. This would result in an algorithm of complexity O(N[log N]?), with a
constant that grew with the number of distinct libraries searched. Moving still closer to matching pursuit,
the requirement of using a best orthogonal basis could be relaxed and a best atomic decomposition could be
sought instead, using the adapted waveform meta-algorithm.

Since wavelet and more generally wavelet packet algorithms are not shift-invariant, their estimates of T'D
will always contain small fluctuations depending upon details of grid spacing and the motions of coherent
parts of the analyzed function. There are several ways to avoid this, all of which increase the complexity of
the computation by finding the minimal estimate of T'D over a family of shifts. When wavelet phase atoms
are used, the added complexity is minimal.

Phase atom decompositions provide a tool for locating and measuring coherent parts of a flow. A coherent
structure is said to be present at a point when a small number of large phase atoms are supported near that
point; the number of these atoms gives an estimate for the number of degrees of freedom in the coherent
structure. This definition, together with techniques from wavelet packet analysis, provides an algorithm to
extract portions of flows that human observers see as “coherent.”

Theoretical dimension is useful in deciding both how many degrees of freedom are actually present in
the coherent part of a function, and to determine the minimal rank of a projection onto a good approximate
solution. Furthermore, the theoretical dimension of components discarded by such a projection are an
indicator of the quality of the approximation. When the theoretical dimension of the discarded components
is too low, it means that the discarded portion contains some coherent part.
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Since the computation of theoretical dimension is relatively cheap, it may be done alongside simulations
and computed evolutions simply as a guide to some global properties of complicated phenomena.
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