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Abstract

Suppose that an infinite sequence is produced by independent trials of a random variable with a fixed
distribution. The Shannon—Weaver entropy of the sequence determines the minimum bit rate needed to
transmit the values of the sequence. We show that if the source distribution is highly concentrated, as is
commonly observed in practice, then its entropy is equal to the logarithm of the theoretical dimension
of the sequence. We conclude that the best-basis algorithm, which minimizes this theoretical dimension
over a library of transformations, both chooses the transformation that yields best compression and also
gives an estimate of the compression rate.

1 Model

We need to define some basic objects. First, suppose that p = p(t) is a probability density function, i.e., a real

valued, nonnegative, integrable function defined on [0, 1] which satisfies fol p(t) dt = 1. For each measurable
subset F C [0,1] we define the associated probability measure by

Py [ &

For technical reasons, we will assume that the density function p is continuous and strictly positive on (0, 1).
Secondly, fix 1 < N < oo and define (uniform) quantization to N wvalues by the formula

Qn(z) € |Nz|/N. 2)

If 2 € [0,1) then Qn(z) € {0, &, %,%}

Now suppose that {z,, : m = 1,2,...} is a sequence of independent trials of a random variable z € [0, 1)
whose density function is p. If the sequence is replaced by a quantized version of itself, namely {Qn(z,) :
m = 1,2,...}, then the root-mean-square error or distortion per sequence element will have the following

expected value:
1/2

1
Dy ¥ (E{jzm — QN(Im)|2})1/2 = (/0 [t = @n(OF0) dt) . o

Since the terms in the sequence are independent and identically distributed random variables, the distortion
is independent of m. The sequence of quantized values thus produced will have the following probability
distribution function:

ndﬁfP{QN(Im)_an}_/"—;p(t)dt; n=12...,N. (4)
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Again, each p, is independent of m. Shannon’s theorem [2] states that the expected number of bits per
element required to encode this quantized sequence cannot be less than the entropy of the distribution,
defined below:

N
def
Hy = = pulogpy (5)

n=1
As before, Hp is independent of m.

We obtain a rate-distortion curve for the sequence by plotting 10log Dy against Hy. We use 10log Dy
so that the distortion units are decibels relative to a unit signal amplitude. The number of quantization
intervals N parameterizes the curve. It remains to estimate Hy and Dy from p.

Since we are assuming that p is continuous, we may use the mean value theorem to estimate p,, = %p(fn),

where &, € (%3, %&). Therefore,

N 1 1 N 1
Hy == plén)log [Np(én)} =logN = > Fp(n)logp(én) ©)

The second term is evidently a Riemann sum approximating — fo t) log p(t) dt, which we may call the
source entropy H(p). The log N term is present because at super fine quantizations the less significant digits
contain most of the information even though they have almost no connection with p.

Likewise, we can estimate

Nk

2 _ E
n—1
n=1 N

o Nii )

Hence 101log Dy < —10log N. Unfortunately, no lower bound exists for Dy, since even a continuous density
p can be arbitratrily concentrated at the values 0, + Ao 1%[, ey % However, if p is continuous then we can

compute the asymptotic behavior of Dy as N — oo:

n—oo

1/N 1 1
lim N2D% = N3 tPdt=- = D,~——. (8)

Combining Equations 6 and 8 shows that
10log D,, ~ —10log N — 5log3 ~ —10Hy + 10H(p) — 5log 3, as N — oo. (9)

Thus the rate-distortion curve is asymptotic to a line of slope —10 with an intercept at 10H(p) — 5log 3.
Shifting the curve to the left improves the rate-distortion relationship in the sense that the same transmission
quality is obtained at a lower bit rate. Such a shift is accomplished by reducing H(p), or equivalently by
transforming the sequence {z,} so that it appears to come from a lower-entropy source.

2 Relations

Fix 1 < M < oo and suppose that {z1,...,xp} is a sequence of M Bernoulli trials of the random variable
with density p defined in Equation 1 above. Let {z},...,2%,} be the decreasing rearrangement of the

sequence {z,,}. That is,
def def
Ty E 12a2ap > 1y 20 F @

This decreasing rearrangement is uniquely defined, and it determines a decreasing step function z* = 2*(¢)
on the interval [0, 1] as follows:

o () =a),, A <t<m x*(0) = 1. (10)

The same sequence determines another step function as follows:

m . * *
y(s) = i if oy, <s<ap; y(1) = 0. (11)
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Figure 1: Two step functions determined by {z1, z3,... 25}

Examples of these two step functions are plotted in Figure 1.
The step functions y and z* are approximate inverses, in the sense that

y (" (6) = Qur(t); a7 (y(s)) = max{al, : ¢l < s} E Quls). (12)

Thus y inverts z* up to the precision of the M-bin uniform quantization, while x* inverts y up to the
precision of the generally nonuniform quantization defined by the monotonic sequence {x},}.

Now y(s) is just 1/M times the number of values of m € {1,2,..., M} for which z,, > s, so we can
compute its expectation in terms of the density p:

Yk k(M
Ey(s) = E MP{I@ values of {z,,} lie in [s,1]} = E i ( i ) (1— g™ F gk =y, (13)
k=1 k=1

M—-1

S ok MY
where ¢, = [, p(t) dt, and we have used the identity i ( f ) = ( ko1

) to collapse the sum. Note
that the expectation is independent of M.

1
The assumption that p is continuous and positive implies that Fy(s) = / p(t) dt is decreasing and
S

continuously differentiable. Thus
d
L By(s) = —p(s) <0, (14

and Ey has a continuously differentiable inverse function which we may call z = z(¢):

d 1

ABy() =5 Eyl®) =t ZBy(s) = sps

(15)

Combining Equations 14 and 15 allows us to compute the source entropy in terms of 2’

H(p) = /01 p(s)log p(s) ds—/ol L(EZ@))} log [Z(bfyl(s))} ds—/ollog [—2(t)] dt. (16)

In the last step, we substituted s < z(¢) and then simplified.
It remains to relate z with z*. The idea is that y is the “inverse” of x*, while z is the inverse of Ey. We
claim that z ~ z* and

/ log [~2'()] di = 3 log [~ Aa7] (17)

0



def

where Az}, = z} —a) _ form=1,2,..., M is the difference between successive values in the decreasing
rearrangement.
Finally, suppose that the values in the sequence {z1,...,2,,} are concentrated near 0 in such a way that

the decreasing rearrangement decreases exponentially or by some power law. Namely, suppose we choose
constants 0 < A < B and 0 < a < b such that for all m =1,2,..., M, we have

Al(a})" < —Ax;, < B(a;,)". (18)
Then we can estimate
M
MlogA—I—aZlog ) < H(p )<MlogB+bZlog[m,*n]. (19)
m=1 m=1

But since the two sums are independent of the order of summation, we can dispense with the decreasing
rearrangement and write the estimate as follows:

M M
MlogA+a Z log [zm] < H(p) < Mlog B +b Z log [Tm] - (20)

m=1 m=1

3 Theoretical Dimension

Although I(z) = e 2%21 log 2, is not an additive information cost function in the sense of [1], it can be
replaced by any of the expressions below:

. Z log (1 + zp,/€):  Regard € > 0 as a roundof error.

1/e
. (Z |xm€> : With 0 < € < 1 this approximates the LY or counting norm, which in turn is an

approximation for I(z).

° — Z |2 |?log |2, |*: This is the entropy functional discussed in [1]. It is the linear approximation

to the L? norm of a sequence {z,,} with unit L? norm, using the derivative of LP? norm with respect
to p to obtain the differential.

The last of these is monotonic with the theoretical dimension d(z), which is defined in Reference [1] as

follows:
d(z) & exp{ Z ||9|6”|L||2 |x”|L||2}. (21)

The idea is that I(z) is minimized, whenever any one of these expressions is minimized. Now suppose
that we have a particular sequence and a library of transforms containing some in which the transformed
sequence has the “rapid decrease” property of Equation 18. Then choosing that transform which minimizes
any one of these information cost functions produces a coefficient sequence which appears to come from the
lowest-entropy source. In particular, if {z,,} are samples of a smooth oscillatory function, and B C O(M)
is a family of smooth orthogonal wavelet packet transformations of R, and Bz denotes the coefficient
sequence produced by applying B € B to {z,,}, then I(Bx) and d(Bz) will have the same minimum B* € B,
and if each Bz is regarded as Bernoulli trials from an unknown source density, B*x will look like it comes
from the lowest-entropy source.




4 Example

We consider a simple family of source densities which produce sequences with the “rapid decrease” porperty.
Suppose that the source distribution is p(t) = (a+ 1)t®*, where —1 < a < 0 to insure that p is integrable
and concentrated near ¢ = 0. The coefficient is chosen to insure that [ p = 1. Then Ey(s) = fsl p(t)dt =

1 —s2tl 5o
—1

Z(t) = (1 _ t)l/(a-‘rl) = Z/(t) - (1 _ t)fa/(owkl) _ — 12

The relation between 2z’ and z implies that
1
H(p) = —a/ log [2(t)] dt —log(a + 1).
0
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