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Wavelet Analysis consists of a versatile collection of tools for the analysis and manipu-
lation of signals such as sound and images,as well as more general digital data sets. The
user is provided with a collection of standard libraries of waveforms , which can be chosen
to fit specific classes of signals . These libraries come equipped with fast numerical algo-
rithms enabling realtime implementation of a variety of signal processing tasks, such as
data compression, extraction of parameters for recognition and diagnostics, transformation
and manipulation of data. The process of analysis of data is usually started by comparing

acquired segments of data with stored waveforms.

As can be seen at the top portion Figure 1, representing a segment of a recording of
the word armadillo, voice signals consist of modulated oscillations of small duration and
varying frequencies and intensity. Figures (3-16) represent a variety of waveforms selected
from different libraries, as well as illustrations of analysis tasks performed on them as

described in the figure captions.

A general signal (Figure 1 or Figure 2 for example) is a superposition of different struc-
tures occurring on different time scales at different times (or spacial scales at different
locations). One purpose of analysis is to separate and sort these structures. The example
of music (or voice) can be used to illustrate some of these ideas. A musical note can be de-
scribed by four basic parameters, intensity (or amplitude), frequency, time duration, time
position. Wavelet packets or trigonometric wave forms are indexed by the same parame-
ters, plus others corresponding to choice of library ( we can think of a library as a musical

instrument, i.e. the recipe used to generate all the waveforms, notes, in the library).



Figure 1
The first 1024 samples (% second) of the word armadillo, are plotted on the top part.
The library of local sine waveforms is then used to select the combination of windows of
highest efficiency (lowest entropy). Expansion coefficients are then ordered by window

in decreasing order. The top 5% are plotted in the center and used to reconstruct a
compressed form of the signal which is plotted below.
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Figure 2
Automatic segmentation of a voice recording (armadillo) by using least entropy win-
dowing in the local sine library. The windows are selected to obtain optimal efficiency in
representing the signal. We see different patterns fall into distinct windows.

The process of analysis compares a sound (or other signals) with all elements of a given
library, picks up large correlations (or notes which are closest to segments of the signal)
and uses these to rebuild the signal with a minimal number of waveforms. The result
provides an economical transcription, which if ordered by decreasing intensity sorts the
main features in order of importance. (In Figure 1 the signal has been segmented in
windows, the top 5% of the expansion kept, and used to rebuild the signal in the bottom
half).!

This realization of the signal in terms of the “best basis” providing efficient superpositon
in terms of oscillatory modes on different time scales, can be used to compress signals for
digital transmission and storage.

Of more importance for applications is the ability to compute and manipulate data in
compressed parameters. This feature is particularly important for recognition and diag-
nostic purposes.

As an illustration consider a hypothetical diagnostic device for heartbeats, in which fifty

ISee Figures 8-15 for examples of analysis of various typical examples.
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consecutive beats are recorded. We would like to use this data as a statistical foundation for
detection of significant changes in the next batch of beats. Theoretically this can be done
by factor analysis (or Karhunen-Loéve bases), unfortunately the computation involving
raw data is too large to be useful. The ability to efficiently compress the recorded data
in terms of a single statistical best basis (or the representation of the data in terms of an
adapted efficient coordinate system) enables us to perform a factor analysis (if needed)
and to compute the deviation of the next few heartbeats from their predecessors, thereby
detecting significant changes on the fly.

This procedure, in which we first compress a large data set of measurements, in order
to compute with the compressed parameters, can reduce dramatically the time needed to
compute and manipulate data, it generalizes the usual transform methods (like FFT) by
building an adapted fast transform for various classes of data or of operations on that data
(as an example the data could consist of a three dimensional atmospheric pressure map,
and the computation would involve the evolution of the pressure. In this case it is natural
to break the computation as a sum of interactions on different scales, and some limited
interaction between adjacent scales, such breakup is automatic if the pressure map is
expressed in the wavelet basis, which in this case is also the natural choice for compression

of the data.) Demo software is available on anonymous ftp from Yale [6].

Definitions of Modulated Waveform Libraries. We now introduce the concept of a
“Library of orthonormal bases”. For the sake of exposition we restrict our attention to
two classes of numerically useful waveforms, introduced recently [2][3].
We start with trigonometric waveform libraries. These are localized sine transforms LST
associated to covering by intervals of R (more generally, of a manifold).
o0

We consider a cover R = |J I; I = [oyoyy1) o < g1, write £; = a1 — a; = |I;] and
— o

let p;(z) be a window function supported in [o; — €;—1/2, ;41 + £i41/2] such that

> pi)=1
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and

pi(x) =1—p?(20;11 —x) for x mnear oy
then the functions

2

Slk(l‘) = \/?&

pi(2) sin[(2k + 1)2%(@« — )]

form an orghonormal basis of L?(R) subordinate to the partition p;. The collection of

such bases forms a library of orthonormal bases. See Figure 3.
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It is easy to check that if Hy, denotes the space of functions spanned by S; . £ = 0,1, 2, ...

then Hy, + Hy, , is spanned by the functions

P(a)——— in[(2k + 1)

20 + Girr) 20 + ) " )

where
P? = pi(x) + piy (2)
is a “window” function covering the interval I; U I; 1.
Another new library of orthonormal bases called the Wavelet packet library can be

constructed. This collection of modulated wave forms, corresponds roughly to a covering
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of “frequency” space. This library contains the wavelet basis, Walsh functions, and smooth

versions of Walsh functions called wavelet packets. See Figure 5.

Figure 5
A few wavelet packets, Wy(x)--- Wr(x) from C-18 by using the relations (1.2). These
waveforms are mutually orthogonal, moreover, each of them is orthogonal to all of its
integer translates and dyadic rescaled versions. The full collection of these wavelet packets
(including translates and rescaled versions) provides us with a library of “templates” or
“notes” which are matched “efficiently” to signals for analysis and synthesis.




We’ll use the notation and terminology of [4], whose results we shall assume.
We are given an exact quadrature mirror filter h(n) satisfying the conditions of Theorem

(3.6) in [4], p. 964, i.e.
> h(n = 2k)h(n —20) = Sk, > h(n) = V2.
We let gi, = h; x(—1)* and define the operations F; on (?(Z) into “¢?(2Z)”
(1.0) Fo{si}(i) =2 sihio
Fi{se}(i) =2 Z Sk9k—2i-

The map F(si) = Fo(sk) @ Fi(s) € £2(2Z) @ (*(27Z) is orthogonal and
(1.1) FyFo+FiFy =1

We now define the following sequence of functions.

(1.2) { Wan(2) = V232 i Wi (22 — k)

Wonai1(z) = V23 g1 Wa (22 — k).
Clearly the function Wy(z) can be identified with the scaling function ¢ in [4] and W}
with the basic wavelet .

Let us define mg(&) = % 3" hre~ € and

mi(€) = (€ +7) = 2= 3 g™

Remark. The quadrature mirror condition on the operation F = (Fp, F}) is equivalent

to the unitarity of the matrix

_ mo(§) mq(§)
M= | imo(e 1) m1<s+w>}

Taking the Fourier transform of (1.2) when n = 0 we get

Wo(€) = mo(¢/2)Wo(€/2)
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Wo(€) = _H mo(£/27)

and

Wi (&) = mi(§/2)Wo(£/2) = mi(€/2)mo(£/4)mo(£/2°) - --

More generally, the relations (1.2) are equivalent to

(1.3) Wa(6) = H me, (§/27)

and n= Y ¢;27"1(g; =0 or 1).
j=1
The functions W, (x — k) form an orthonormal basis of L%(R").

We define a library of wavelet packets to be the collection of functions of the form

W, (2%z — k) where ¢,k € Z,n € N. Here, each element of the library is determined by

a scaling parameter ¢, a localization parameter k and an oscillation parameter n. (The

function W, (2¢x — k) is roughly centered at 2k, has support of size ~ 2~ ¢ and oscillates

~ n times).

We have the following simple characterization of subsets forming orthonormal bases.

PROPOSITION. Any collection of indices (¢,n) such that the intervals [2°n,2'n + 1) form

a disjoint cover of [0, 00) gives rise to an orthonormal basis of L?2.

Motivated by ideas from signal processing and communication theory we were led to

measure the “distance” between a basis and a function in terms of the Shannon entropy

of the expansion. More generally, let H be a Hilbert space.

Let v € H, ||v|| =1 and assume

H:EBZHi

an orthogonal direct sum. We define

(v, {Hi}) = =) lwillPlnllvi?

2We can think of this cover as an even covering of frequency space by windows roughly localized over the

corresponding intervals.



as a measure of distance between v and the orthogonal decomposition.
g2 is characterized by the Shannon equation which is a version of Pythagoras’ theorem.

Let

H=o( H)o()_H)
—H, ®H_

H'® and H; give orthogonal decompositions H; = > H', H_ =Y H;. Then

(0 (Y H) = 200, (o H) o Dol (25 Y ) o P2 (2 0 )

This is Shannon’s equation for entropy (if we interpret as in quantum mechanics || Py, v||?
as the “probability” of v to be in the subspace H ).

This equation enables us to search for a smallest entropy space decomposition of a given
vector.

In fact, for the example of the first library restricted to covering by dyadic intervals we
can start by calculating the entropy of an expansion relative to a local trigonometric basis
for intervals of length one, then compare the entropy of an adjacent pair of intervals to
the entropy of an expansion on their union. Pick the expansion of minimal entropy and
continue until a minimum entropy expansion is achieved (see Figures 1 and 2).

In practice, discrete versions of this scheme can be implemented in CN log N compu-
tations (where N is the number of discrete samples N = 2%.)

For voice signals and images this procedure leads to remarkable compression algorithms
see below.

Of course, while entropy is a good measure of concentration or efficiency of an expansion,
various other information cost functions are possible, permitting discrimination and choice
between various special function expansion.

Other possible libraries can be constructed. The space of frequencies can be decomposed

into pairs of symmetric windows around the origin ,on which a smooth partition of unity is
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constructed. This and other constructions were obtained by one of our students E. Laeng
[L].

Higher dimensional libraries can also be easily constructed,(as well as libraries on man-
ifolds) leading to new and direct analysis methods for linear transformations.

We will describe an algorithm to produce a rectangle in which coefficients are grouped by
frequency, since this is simpler and since the transformation to the other form is evident.
For definiteness, consider a function defined at 8 points {x1,...,xs}, i.e., a vector in R,
We may develop the (periodized) wavelet packet coefficients of this function by filling out

the following rectangle:

T T2 T3 T4 Ts Te T Ty
51 52 53 54 dy do ds3 dy
551 559 d81 d82 Sd1 Sd2 ddl dd2
8881 ‘ dssy sdsq | ddsq ssd1 ’ dsd; sdd, ‘ ddd,

A rectangle of wavelet packet coefficients.
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Figure 6
Wavelet packets are generated by the same algorithm in which different QMF are se-
lected, generating the shapes in Figure 5. Wavelet packets from the deepest level have the
largest scale. Coefficients computed in the shaded box represent a correlation between the

initial signal x1,...,xs and the waveform described on the left. Here we take the Haar
QMF, i.e. s; = %(ml +x9) dy = %(ml — Z3),... etc. The waveforms produced are the

classical Walsh functions.
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Figure 7
Wavelet packets from intermediate levels have a shorter time duration than the Walsh
functions.
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Figure 8
Wavelet packets from the first level have the smallest time duration.
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Each row is computed from the row above it by one application of either Fy or Fy, which
we think of as “summing” (s) or “differencing” (d) operations, respectively. Thus, for
example the subblock {ss1,ss2} is obtained by convolution-decimation of {sy, sa, s3,s4}
with Fy, while {dsj,dsy} comes from similar convolution-decimation with Fj. In the
simplest case, where we use the Haar filters h = {%, %} and g = {%, —%}, we have
in particular ss; = %(31 + 89), SS9 = %(33 + 84), ds; = %(31 — 89), and dsg =
%(33 — 84). The two daughter s and d subblocks on the n + 1st row are determined by
their mutual parent on the nth row, which conversely is determined by them through the

adjoint anticonvolution.

Reconstructing the nth row from the n + 1st row consists of applying F{j to the left
daughter and F7 to the right daughter, then summing the images into the parent. In this
manner, we generated the graphs of the functions which are included in fig 3. We used a
rectangle of size 1024 x 10 to obtain 1024-point approximations. We filled the rectangle
with 0’s except for a single 1, then applied the deconvolutions F{j and F}* up to 10 times
in various orders, so as to generate a vector of length 1024. This vector approximates one
of the 10240 wavelet packets in R'9?4. The details of this reconstruction determine the

frequency, scale, and location parameters.

From this rectangle, we may choose subsets of N coefficients which correspond to or-
thonormal bases for R". For example, the subset corresponding to the labelled boxes in

the figure below is the wavelet basis.

dy da ds dy

5851 ‘ dssy ‘ ‘ ‘

The wavelet basis.

The two figures below give other orthonormal basis subsets.
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551 559 d81 dSQ Sd1 Sdg dd1 ddg

A subband basis.

51 52 53 54

ddy dds
’ ssd ‘ dsd ‘

An orthonormal basis subset.

The boxes of coefficients in the rectangle have a natural binary tree structure. Each box
is a direct sum of its two children. Call a subset of the rectangle a graph if it contains
only whole boxes and each column of the rectangle has exactly one element. We have the

following relation between dyadic coverings and o.n bases.
PROPOSITION. Every graph is an orthonormal basis subset.

The number of graphs may be counted by induction. If N = 2% let Ay be the number
of graphs in the coefficient rectangle of N columns and L rows. Then Ay = 1 and we have
the relation A7 = 1+ A2, which implies that A7, > 22" — oN,

This last algorithm is beautifully suited for a best basis selection algorithm. By com-
paring the information cost of two “children” with their parent box we can, starting from
the bottom of the rectangle, replace each node of the tree by the least costly combination.

If entropy is taken as information cost, the Shannon equation quarantees that we will
end up with a basis with minimum entropy.

A simple variant on this selection algorithm permits the construction of a statistical
best basis. Here we start with a collection of vectors X,, n =1,..., N in R? (for example,

_ N
recording of successive distinct heartbeats). We construct the average vector X = % > X
n=1
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and would like to select in our library a basis which is most efficient, on the average, in
compressing all vectors Xn =X, - X.

This is easily achieved by repeating the preceding search where, in each node of the tree,
we compare the total cost (or entropy) of the node to the cost of its children. (Where by
total cost we mean the sum of entropies of all vectors contributing to the node, or some
other measure of information).

Of course this procedure is related to the Karhunen-Loeve expansion, in which we find

in R? the most efficient basis by diagonalizing the autocovariance matrix

N
M’Lj: ZX,”(Z)X”(]) 'l.:]_7...,dj:1,...,d.
n=1

Intuitively we think of the various sample vectors as forming an ellipsoidal cloud centered
at X, with the principal axis of this ellipsoid being the eigenvectors of M, pointing in the
direction of maximum variance. This Karhunen-Loeve basis is the most efficient basis for
capturing on the average most of the energy of a random sample. Ideally, to analyze the
fluctuations of X,, we should compute this basis and expand each sample in it. Numerically
this task is too expensive when dealing with raw data. It is advisable to first find the
statistical best basis within a library thereby compressing the data. In this new coordinate
system one can compute the Karhunen-Loeve basis and compare its entropy to that of the
best basis. If the two entropies are close, we have an indication that we selected the correct
library for compression of the collection X,.

The reduction in complexity achieved by finding a best basis provides a significant
speedup in computation time, not only for finding the K — L basis, but also for obtaining
a fast algorithm to compute correlations with the K — L basis. Normally to compute an
expansion in K — L will take d? computations (if N ~ d) by proceeding through the best
basis. This can be reduced to C'd log d.

Returning to the specific example of heartbeats, we could design a diagnostic tool as

follows. We compress fifty consecutive heartbeats (to a desired accuracy) in their statistical

17



best basis. Next, we compute a K — L basis which we use to analyze the variance of the
next batch (of course, it may be simpler and also sufficient to skip the K — L construction).

We should also mention, that the K — L basis, while optimal in the L? sense, may be
quite lacking in efficiency in other norms. This fact for the case of trigonometric expansions
has led us to pick wavelets for more local questions. We are therefore proposing the best
basis selection with different norm criteria as a tool for obtaining more flexible coding and
compressions.

Best basis for numerical computations:

As seen in the preceding paragraph, expressing the raw data in a statistical best basis
provides a transform permitting faster manipulation and computation with the data. The
paper on wavelets and numerical algorithms [B.C.R] in this volume provides illustrations
of this fact where, rather than diagonalize a matrix (generally, a numerically expensive
procedure), one chooses to express it in an appropriate wavelet basis obtaining a banded
version and fast computation. In that case two procedures arise. The first is a mere coor-
dinate change to a well chosen basis. The second, or so-called nonstandard form, consists
in compressing a matrix [a;;] as if it were an image by finding a best 2-dimensional basis
to compress it. Since the two dimensional bases of wavelet-packets or trigonometric wave-
forms can be obtained as a product of one-dimensional versions, this procedure amounts
to a separation of variables and translates efficient compression into fast computation of

linear transformations.
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Figure 9
Wavelet packet analysis of a segment of “armadillo.” The shaded rectangles measure
the correlation with selected elements of the best basis, they are located above the portion
of the signal with which they correlate. They have a base corresponding to duration and

a height centered at the main frequency. See Appendix I for a description of the screen
display

armadillo.asc
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Figure 10
Best basis analysis, using the library V24 of a whistle. There are essentially two basic
frequencies along the whole signal.

whistle.asc
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Figure 11
This is a plot of sin(250 7z?), a chirp up to the Nyquist frequency.

sin250xx.asc
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Figure 12
This is a plot of sin(750 wz?), showing aliasing between 1 and 3 times the Nyquist
frequency.

sin750xx.asc
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Figure 13
This is a plot of sin(250 7z3), a chirp whose frequency increases like a parabola.

sin190xxx.asc
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Figure 14
This plot shows sin(250 m2?) + sin(80 7z?), two chirps whose frequencies increase at
different rates.

sin250p80xx.asc
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Figure 15
Let y = 2 — 0.5 and 2 = x — 0.8. This plot shows the superposition sin(250 wx?) +
sin(250 my?) +sin(250 722), three chirps of parallel increasing frequency which are 0.5 and
0.8 intervals out of phase.

sin250s0.5s0.8xx.asc
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Figure 16
Let y = £—0.5, and let 2 = —0.8. This plot of sin(250 72?)+sin(190 7y?)+sin(120 722),
showing three chirps increasing at different rates and 0.5 and 0.8 intervals out of phase,
respectively.

sin3f3sxx.asc
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APPENDIX 1
USING THE WAVELET PACKET LABORATORY
Reading a Signal From a File

4

WPLab can read text files which have the extension “.asc” appended to their names,

and which contain just ASCII floating-point numbers.

Selecting the “Open” item from the application’s main menu brings up a browser panel
which allows the user to select any single file with the proper extension. The entire file is
read into a double-precision floating-point array in memory, and the array is padded with
zeroes up to an integer multiple of the longest available segment length.

The number of samples in the signal is displayed in the “Signal Length” text field. The
signal file name becomes the title for the main window, and also for the miniwindow upon
miniaturization.

Displaying a Signal Segment

Segments of the signal file are plotted in the rectangular view near the bottom of the
window.

WPLab can display segments whose lengths are a power of 2, and starting at arbitrary
offsets. Use the “Segment Length” radio buttons to select this length, and any combination
of the offset form, slider, and buttons to set the index of the first displayed sample.

The buttons “Prev”, “Next”, “++”, and “—” adjust the offset. Their actions, respec-
tively, are to subtract a segment length, add a segment length, add 1, and subtract 1. The
program does the best it can given the signal length.

If a newly selected segment length is too long for the current offset, the offset is decreased
to accommodate it.

Choosing a Quadrature Mirror Filter

There are 17 quadrature mirror filters (QMFs) available for wavelet packet analysis.

They are identified by a letter (“B”, “C”, “D”, or “V”), followed by (finite) impulse

response length. For example, the Haar filters (v/2), (v/2), (v'2), —(v/2) are designated D2.
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Preview a filter by clicking on its radio button. In the small “Wavelet” window will
appear a plot of the mother wavelet associated to that QMF'. This action enables the “Set
QMF” and “Revert” buttons.

Roughly speaking, longer filters produce smoother wavelets and wavelet packets with
better frequency resolution.

Click on the “Set QMF” button to register your choice and update the Phase Plane.
This disables the “Set QMF” and “Revert” buttons.

Click on the “Revert” button to cancel previewing filters and return to the last registered
QMFs. This will disable the “Set QMF” and “Revert” buttons.

The Phase Plane Representation of a Signal

The large square view contains that portion of the phase plane affected by the plotted
segment. WPLab draws a rectangle in the phase plane for every modulated waveform in
the basis chosen to represent the signal.

Each modulated waveform can be assigned 4 attributes: amplitude a, timescale s, fre-
quency f, and position p. In a musical note, these correspond to loudness, duration, pitch,
and the instant it is played.

Suppose that the signal segment has length N = 2". Coefficient (a, s, f,p) is displayed
as the rectangle [p2°, (p + 1)2°] x [f2(n — 5), (f + 1)2{n — s)], shaded in proportion to a?.

Because of the Heisenberg uncertainty principle, position and frequency cannot both be
specified to arbitrary precision. The uncertainty of the frequency is 2°, and the uncertainty
in position is Q(n—s). Thus each rectangle or “Heisenberg box” has area 2" = N. Since the
total area of the displayed section of the phase plane is N2, there are exactly N Heisenberg
boxes in a disjoint cover of the section.

A library consists of all possible Heisenberg boxes, and bases from the library consist of
certain disjoint covers of the phase plane by such rectangles.

Choosing a Basis

Wavelet Basis: this forces a display of the wavelet basis constructed with the given
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mother wavelet.

Best Level: this forces all of the Heisenberg boxes to have the same time scale. In
particular, they must be congruent. There are (log V) such bases for a segment of length
N, and the one displayed has minimum entropy.

Best Basis: this minimizes entropy over all bases corresponding to disjoint dyadic covers
of the segment. There are more than 2% such bases for a segment of length N.

Printing the Window
The entire contents of the key window may be printed at full scale with the “Print”

menu item.
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