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Abstract

We present a selective overview of time-frequency analysis and some of its key
problems. In particular we motivate the introduction of wavelet and wavelet packet
analysis. Different types of decompositions of an idealized time-frequency plane provide
the basis for understanding the performance of the numerical algorithms and their
corresponding interpretations within the continuous models.

As examples we show how to control the frequency spreading of wavelet packets
at high frequencies using nonstationary filtering and study some properties of periodic
wavelet packets. Furthermore we derive a formula to compute the time localization of
a wavelet packet from its indices which is exact for linear phase filters, and show how
this estimate deteriorates with deviation from linear phase.

0 Introduction

We can decompose one-dimensional signals so as to illuminate two important properties:
localization in time of transient phenomena, and presence of specific frequencies. The de-
composition technique is expansion in wavelet orthonormal bases, i.e., into independent
components which have good time-frequency localization. Features in this context are just
the basis elements which contribute large amplitudes to the expansion; they are detectable
from their size. Alternatively, we can look for combinations of large components, or of not-
so-large components that share similar time or frequency location. The localization of the
basis elements does most of our work for us; when we find a large component, we can mark
the time-frequency location of its basis element to build a time-frequency picture of the
analyzed signal.

The basic technical problems are: assigning positions to component functions which are
nonzero over large, possibly unbounded regions; assigning frequencies to component functions
other than sines and cosines; fixing a decomposition when many alternatives are available;
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and coping with the defects of rapidly-computable families of basic time-frequency functions.
The last problem will occupy most of this paper, since the applicability of time-frequency
analysis techniques depends on their computational efficiency. Thus it is more reasonable to
correct the deficiencies in fast transforms that work almost perfectly than to wait for slow
mathematically perfect transforms to catch up.

The time-frequency plane is a two-dimensional space useful for idealizing these two prop-
erties of transient signals. We decompose a signal into pieces called time-frequency atoms,
then draw idealized representations of these atoms in the plane. The time and frequency
measurements contain uncertaintainty, and Heisenberg’s inequality prevents us from making
the product of the uncertainties smaller than a fixed constant. To depict a component of a
signal, therefore, we may as well use an abstract plane figures, like a rectangle or an ellipse,
whose position indicates the nominal time and frequency and whose shape suggests the rel-
ative uncertainties of the two quantities. Amplitude may be indicated by shading. Our task
in this article will be to describe two such abstract depictions, and to discuss the technical
problem of determining the location and shape of the component figures.

Suppose that ¢ is a modulated waveform of finite total energy, and suppose that both
the position and momentum uncertainties of v are finite:
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The position uncertainty Az () is the variance of the probability density function on R
defined by |¢(z)|?/||1||*. Likewise, the position xy where the minimum variance is achieved
is the mean of that density. The corresponding momentum and momentum uncertainty are
the mean and variance of the probability density by |¢(z)[2/||¥]|%

Finite Az requires that on average ¥(z) decays faster than |2|=%/2 as |z| — oco. Finite
A& requires that 1 is smooth, in the sense that 1’ must also have finite energy. It is useful
to introduce the Schwartz class S of smooth rapidly-decaying functions (see [13], pp.10—
13). These are nice functions ¢ = () with the property that z"-£=4(z) is bounded and
continuous for any nonnegative integers n,m. This class is preserved by differentiation,
pointwise multiplication, and the Fourier transform. Note that every function i belonging
to S satisfies Equation 1.

If v gives the instantaneous value of a time-varying signal, then it is reasonable to speak
of time and frequency rather than position and momentum, especially since both pairs of
quantities are related by the Fourier transform. We will say then that v is well localized in
both time and frequency if the product of its time and frequency uncertainties is small. A
musical note is an example of a time-frequency atom. It may be assigned two parameters,
duration and pitch, which correspond to time uncertainty and frequency. A third parameter,
location in time, can be computed from the location of the note in the score, since traditional
music is laid out on a grid of discrete times and frequencies. We may name these three
parameters scale, frequency, and position, to abstract them somewhat from the musical
analogy.

Heisenberg’s inequality imposes a lower bound on the Heisenberg product: Ax A& >
1

7 =~ 0.08. We need not be too precise about what we mean by “small” in this context;




it is enough to have a Heisenberg product of about one. We will call such functions time-
frequency atoms. Not every Schwartz function is a time-frequency atom, but each one may
be written as a linear combination of “unit” time-frequency atoms using rapidly decreasing
coefficients:

Theorem 1 For each i) € S, there is a sequence {¢, : n=1,2,...} C S of time-frequency
atoms and a sequence of numbers {c, :n=1,2,...} such that:

1. (L) = 3200 cndn(t), with uniform convergence;

2. ||pnl| =1 for alln > 1;

3. Dx(p,) A&(dn) <1 foralln>1;

4. For each d > 0 there is a constant My such that |cn|nd < My < oo foralln > 1. O

This theorem is proved by constructing the Littlewood-Paley decomposition of the given
function ¢. Let us call a function 1 a time-frequency molecule if it satisfies the four conditions
of Theorem 1. Notice that the last condition implies {c,} is absolutely summable.

The theorem states that all functions in S are time-frequency molecules. It also states
that time-frequency atoms are dense in the Schwartz class. Since the Schwartz class in turn
is dense in many other function spaces, we see that less regular functions can be decomposed
into time-frequency atoms, though in general the coefficients {c, } will not decay rapidly. We
can now place into context the surprising discovery by Yves Meyer [8] that a single sequence
of orthonormal time-frequency atoms works for all Schwartz functions, and thus for many
useful function spaces:

Theorem 2 There is a sequence {¢, :n =1,2,...} C S of time-frequency atoms with the
following properties:

1. ||on]| =1 foralln > 1;

2. If m # n, then (¢m, dn) = 0;

3. ANx(pn) ANE(Pn) < 1 for allm > 1.

4. The set {¢, :n=1,2,...} is dense in S.

Also, for each ¢ € S there is a sequence of numbers {c, : n = 1,2,...} such that ¥(t) =
S0 | Cndn(t) with uniform convergence, and for each d > 0 there is a constant My such that
lennd < My < oo for allm > 1. O

Meyer’s theorem permits characterizing function spaces solely in terms of the rate of decay
of positive sequences [5, 9, 10], and vastly simplifies calculating properties of operators such
as continuity.

In an orthogonal adapted waveform analysis, the user is provided with a collection of stan-
dard libraries of waveforms—called wavelets, wavelet packets, and windowed trigonometric
waveforms—which can be combined to fit specific classes of signals. All these functions are
time-frequency atoms. In addition, it is sometimes useful to consider orthogonal libraries of



Figure 1: Example waveforms: wavelet, wavelet packet, block cosine, and local cosine func-
tions.

functions which have large or unbounded Heisenberg product, such as Haar—Walsh functions,
block sines and block cosines.

Examples of such waveforms are displayed in Figure 1.

Nonorthogonal examples of time-frequency atoms are easy to construct by modifying
smooth bump functions. Suppose ¢ has finite Heisenberg product, e.g., take ¢ to be O(t72)
as |t| — oo and suppose ¢’ is continuous and O(t™!) as |t| — oo. Then ¢ might not be in
the Schwartz class S, but it will be good enough for many practical applications. We define
the dilation, modulation, and translation operators on ¢ by ¢ % o3¢(t) = 275/2¢(25),
prd(t) = e te(t), and T,0(t) = ¢(t — p), respectively. If ¢ has small Heisenberg product,
then the collection of dilated, modulated and translated ¢’s are also time-frequency atoms
since the transformations o, i, 7 conserve the Heisenberg product. They also conserve the
energy of ¢, so we may assume that the waveforms are all unit vectors in L2, i.e., they all
have unit energy. If Az(¢) = 1, {(¢) = 0 and z¢(¢) = 0, then applying o3, puf, 7, moves
these parameters to 2°, f, and p, respectively.

In our analyses, we will say that the component of a function w at s, f,p is the inner
product of u with the modulated waveform whose parameters are s, f,p. If the component
is large, we may conclude that u has considerable energy at scale s near frequency f and
position p.

We need to modify our notion of these parameters when we use real-valued time-frequency
atoms, because the uncertainty results will be misleading. A real-valued function must have
a Hermitean-symmetric Fourier transform: if u(r) = @(x), then a(—¢) = a(£). Such a
function must have &(u) = 0 no matter how much it oscillates, just because & |a(£)|? is



an odd function. Another notion of frequency is needed in that case. For example, since
J a2 = [0 Jul? = ||u||?/2, we could restrict our attention to the “positive” frequencies
and use
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This is equivalent to projecting the function u onto the Hardy space H? prior to calculating
its power spectrum’s center. The orthogonal projection P : L? — H? is defined by I/DE(S )=
1+ (&) u(€), and the function Pu is called the analytic signal associated to the signal w.

If u is real-valued, then the frequency uncertainty A&(Pu), computed with & = & (Pu),
is never larger than A&(u) computed with & = &y(u). Unfortunately, P destroys decay,
so that even a compactly supported u might have Axz(Pu) = oco. The hypothesis that
Az(Pu) < Az(u) < oo implies, by the Cauchy Schwarz inequality, that both u € L' and
Pu € L'. Now if Pu € L', then Pu(§) must be continuous at & = 0, by the Riemann—
Lebesgue lemma. This requires that 4(0) = 0.

1 The Time-Frequency Plane

We now consider an abstract two-dimensional signal representation in which time and fre-
quency are indicated along the the horizontal and vertical axes, respectively. A waveform
is represented by a rectangle in this plane with its sides parallel to the time and frequency
axes, as seen in Figure 2. Let us call such a rectangle an information cell. The time and
frequency of a cell can be read, for example, from the coordinates of its lower left corner.
The uncertainty in time and the uncertainty in frequency are given by the width and height
of the rectangle, respectively. Since the time and frequency positions are uncertain by the
respective dimensions of the cell, it does not matter whether the nominal frequency and
time position is taken from the center or from a corner of the rectangle. The product of the
uncertainties is the area of the cell; it cannot be made smaller than the lower bound 1/47
given by Heisenberg’s inequality.

Three waveforms whose information cells have nearly minimal area are drawn schemati-
cally in the signal plot at the bottom of Figure 2. The two at the left have small time uncer-
tainty but big frequency uncertainty, with low and high modulation, respectively. Since they
are evidently orthogonal, we have chosen to draw their information cells as disjoint rectan-
gles. The wider waveform at the right has smaller frequency uncertainty, so its information
cell is not so tall as the ones for the narrower waveforms. It also contains more energy, so
its cell is darker than the preceding two. Notice that each information cell sits above its
(circled) portion of the signal in this idealization.

The amplitude of a waveform can be encoded by darkening the rectangle in proportion to
its waveform’s energy. The idealized time-frequency plane closely resembles a musical score,
and the information cells play the role of notes. However, musical notation does not indicate
the pitch uncertainty by the shape of a note; for a particular instrument, this is determined
by the duration of the note and the timbre of the instrument. Likewise, musical notation
uses other means besides darkening the notes to indicate amplitude.
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Figure 2: Information cells in the time-frequency plane.



Heisenberg’s uncertainty principle for continuous waveforms implies that the area of an
information cell can never be less than 1/47. Ounly the Gaussian function g(t) = e~t/2,
suitably dilated, modulated, and translated, has the minimal information cell area. The
other atoms are not too far off, though, and we will avoid the many restrictions of the
Gaussian by relaxing the minimality condition. The only price we will have to pay is that a
single atom might in practice require a few of the approximate atoms.

We now discuss in detail how to perform the approximate time-frequency analysis. If
we have a signal of only finitely many points, then we can construct a finite version of the
time-frequency plane. We will treat the signal sequence {an(k) : k=0,1,..., N — 1} to be
the coefficients of the function with respect to a particular N-member synthesis family

of time-frequency atoms:
N—1

fn(t) =) an(k)oni(?). (3)
k=0

For any such finite signal approximation, the information cells will be confined to a finite
region of the time-frequency plane, and their corners will lie on a discrete set of points
determined by the sampling interval. If the signal is uniformly sampled at N points and we
take the unit of length to be one sampling interval, then the width of the visible and relevant
portion of the time-frequency plane is N. If f € L%(]0,1]) and we use an N-dimensional
approximation spanned by N time-frequency atoms which are translates of a single time-
frequency atom ¢ supported in [0, 1], then Equation 3 specializes to the following:

N-1

In(t) =3 an(k)$(Nt — k). (4)

k=0

The signal may then be represented by adjacent information cells lined up at the grid points
{£ :0 < k < N}, with equal areas and with the k™ cell shaded to indicate its amplitude
a(k). The cells will be disjoint if the function ¢ is orthogonal to its translates by integers,
e, if k#j= [¢(Nt—k)p(Nt—j)dt =0.

The Fourier exponential functions 1,e? /N . e?m(N-Dz/N form an orthogonal basis
for all such N-sampled functions. If our basic oscillating function is written as 62”%, this
means that the frequency index f ranges over the values 0,1,..., N — 1, so there are N
discrete values for the frequency index and we may introduce N equally spaced points on
the frequency axis to account for these. Thus the smallest region that contains all possible
cells for a signal of length N must be N time units wide by N frequency units tall, for a
total area of N? time-frequency units.

If N is even, we may use the equivalent numbering —g, oo, —=1,0,1,.. ., % — 1 for the
frequency indices. Notice that, since we cannot distinguish the exponential of frequency f
from the one at N — f just by counting oscillations, there are really only N/2 distinguishable
frequencies in the list. This, suitably rigorized, is called the Nyquist theorem; the maximum
distinguishable or Nyquist frequency for this sampling rate is N/2 oscillations in N units, or

1/2.
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Figure 3: Splitting a signal into two pieces splits the time-frequency plane into two halves.

1.1 Splitting Algorithms

Rapidly computable expansions of a signal into time-frequency components are accomplished
through recursive splitting algorithms. As depicted in Figure 3, the input signal is cut into
two pieces by a pair of operators represented by the left-leading and right-leading branches
departing from each intersection. This has the effect of splitting the time-frequency plane
into two halves. The operators should produce orthogonal or independent parts so that the
two halves do not overlap. They should also be decimating operators, so that the samples
in the two parts add up to the total number of signal samples.

One way to accomplish this is to cut the signal up into windows and then compute a
Fourier transform within wach window. The effect of this on the time-frequency plane is easy
to visualize from Figure 3. Each trapezoidal block in that figure, produced by restricting
to a portion of the signal in time, corresponds to a time-frequency rectangle of that block’s
width and of maximum height. The Fourier transform then cuts that rectangle into equal
frequency-height pieces.

Another way to decompose a signal is to filter it into low and high frequency components
using a conjugate pair of decimating quadrature filters. That operation and its inverse are
depicted in Figure 4. Operation h denotes low-pass filtering and might be viewed as the path
down the left fork; operation g denotes high-pass filtering and might be viewed as the path
down the right fork. The pair of operators splits the time-frequency plane into a bottom half
rectangle and a top half rectangle, each as tall as the corresponding trapezoid of Figure 3
is wide. Each half contains one information cell for each sample in the trapezoid, and since
the filters decimate the information cells get wider as their height decreases.

The splitting algorithms and their interpretations as recursive decompositions of the time-
frequency plane are well known to the engineering community. The windowed or short-time
Fourier transform algorithm is used to compute and plot spectrograms, while the filter bank
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Figure 4: Low pass, high pass decimating filter bank and its inverse.
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algorithm is used both in spectral analysis and in signal coding.

1.2 Bases and Tilings

A family of time-frequency atoms with uniformly bounded Heisenberg product may be rep-
resented by information cells of approximately equal area. A basis of such atoms corresponds
to a cover of the plane by rectangles; an orthonormal basis may be depicted as a cover by
disjoint rectangles. Certain bases have characterizations in terms of the shapes of the infor-
mation cells present in their cover of the time-frequency plane. For example, the standard
basis or Dirac basis consists of the cover by the tallest, thinnest patches allowed by the
sampling interval and the underlying synthesis functions. The Dirac basis has optimal time
localization and no frequency localization, while the Fourier basis has optimal frequency
localization, but no time localization. These two bases are depicted in Figure 5.

The Fourier transform may be regarded as a rotation by 90° of the standard basis, and
as a result the information cells are transposed by interchanging time and frequency. We
may note that it is also possible to apply an element of the Hermite group [4] (also called
the angular Fourier transform) to obtain information cells which make arbitrary angles with
the time and frequency axes. This transform is a pseudodifferential operator with origins
in quantum mechanics; it is formally represented by A, e exp(—itH) where t is the angle
from the horizontal which we wish to make with our rotated atoms, and H is the selfadjoint
Hamiltonian operator obtained by quantization of the harmonic oscillator equation:

1 [ d?

Then A; is the evolution operator which produces the wave function u(z,t) = Au(z,0)
from an initial state u(z,0), assuming that the function u evolves to satisfy the Schrodinger
equation

du
— + Hu=0.
7 +Hu=0 (6)

We bring all this up mainly to apprise the reader that many ideas used in the time-frequency
analysis of signals have their roots in quantum mechanics and have been studied by physicists
and mathematicians for several generations.



Figure 5: Dirac and Fourier bases tile the time-frequency plane.

Windowed Fourier or trigonometric transforms with a fixed window size correspond to
covers with congruent information cells whose width Ax is proportional to the window width.
The ratio of frequency uncertainty to time uncertainty is the aspect ratio of the information
cells, as seen in Figure 6

The wavelet basis is an octave-band decomposition of the time-frequency plane, depicted
by the covering on the left in Figure 7. A wavelet packet basis gives a more general covering;
the one on the right in Figure 7 is appropriate for a signal containing two almost pure tones
near 1/3 and 3/4 of the Nyquist frequencies, respectively. Tilings which come from graph
basis in library trees built through convolution and decimation must always contain complete
rows of cells, since they first partition the vertical (frequency) axis and then fill in all the
horizontal (time) positions.

An adapted local trigonometric transform tiles the plane like the left part of Figure 8.
Such bases are transposes of the wavelet packet bases, since wavelet packets are related to
local trigonometric functions by the Fourier transform. The tilings corresponding to graphs
in a local trigonometric library tree must contain complete columns, since these first segment
the horizontal (time) axis and then represent all the vertical positions (or frequencies) within
each segment.

The right part of Figure 8 shows a more general tiling of the time-frequency plane, one
which does not correspond to a graph in either a wavelet packet or local trigonometric library
tree. Such a decomposition is achievable using the Haar quadrature filters and picking
additional basis subsets besides graphs, or else by combining the local trigonometric and
wavelet packet bases on a segmented signal. The number of such tilings is an order of
magnitude greater than the number of graph wavelet packet bases.
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Figure 6: Windowed Fourier bases tile the time-frequency plane.

Figure 7: Wavelet and wavelet packet bases tile the time-frequency plane.
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Figure 8: Adapted local trigonometric tiling and a general dyadic tiling.

1.3 Time-Frequency Analysis with Wavelet Packets

The scale, frequency, and position indices of wavelet packets can be used to draw an infor-
mation cell in the time-frequency plane. We now derive the formulas for the nominal values
of xg, &, Az, and A for such functions.

Let 1, be the wavelet packet with scale index s, frequency index f, and position index p.
We use conventional indexing for the filters and Paley or natural ordering for the frequency.
Let us further suppose that the signal consists of N = 2% equally spaced samples, and that
the library tree contains a complete wavelet packet analysis down to level L. Then we have
0<s<L 0<f<2% and0<p<2Es,

The scale parameter s gives the number of levels of decomposition below the original
signal. Each application of convolution and decimation doubles the nominal width, so we
set Az = 2°. With the usual assumption that Ax - A§ &~ N, we can thus assign A& = 2573,

The frequency parameter must first be corrected by using the inverse Gray code permu-
tation, so we compute f' = GC~(f). This produces an index which is again in the range 0
to 2° — 1. The lower left-hand corner of the information cell should then be placed at vertical
position A& - f! = 2= f7.

The position parameter p needs to be shifted to correct for the (frequency-dependent)
phase response of quadrature filters. This shift and its causes are discussed in Theorem
15, and Corollary 2 may be used to compute the amount by which to shift the horizontal
location of the information cell:

p'=2p+ (2" = 1c[h] + (c[g] — c[h]) f". (7)

Here c[h| and c[g] are the centers of energy of the low-pass and high-pass QMFs h and ¢,
respectively, and f” is the bit-reverse of f considered as an s-bit binary integer. The result
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will be inaccurate by at most the deviation €, of the filter h from linear phase, as defined in
Theorem 15. If the wavelet packet coefficients were computed using periodized convolution-
decimation, then we should replace the equal sign in Equation 7 with congruence modulo 2%
and take p’ in the range 0 to 21 — 1.

Since the horizontal position p’ of the information cell is uncertain by Ax = 2°, we may
as well slide its lower left-hand corner horizontally left to the nearest multiple of 2° below
p’. To emphasize this uncertainty, we will use a position index p” in the range 0 to 2275 — 1,
with each integer value representing an interval starting at an integer multiple of Ax = 2°:

P’ =1p'/2°] = [p+ (1= 27*)c[h] + 2 *(clg] — c[h]) "] . (8)

These conventions, in the periodic case, produce a disjoint tiling which exactly fills the
N x N = 28 x 2F square time-frequency plane:

Theorem 3 If B = {(s, f,p) € B} is the index subset of a wavelet packet graph basis for a
2L _point signal, then the collection of rectangles

{2°p", 22" + V)[x 25 257 (f + V)[: (s, f.p) € B} (9)
is a disjoint cover of the square [0, 2%[x [0, 2%[. O

These information cells will be located approximately where they should be to describe the
time-frequency content of their wavelet packets.

1.4 Time-Frequency Analysis with Adapted Local Trigonometric
Functions

For this discussion, it makes no difference whether we use local cosines or local sines. The
one is obtained from the other merely by reversing the direction of time, which has no effect
on the geometry of information cells. We again suppose that the signal consists of N = 2%
equally spaced samples, and that the library tree contains all the local trigonometric analyses
to level L, with windows of size 2%, 2L=1 ... 1. The basis functions will be indexed by the
triplet (s, f,p), and we will have 0 < s < L, 0< f <25 and 0 < p < 2°.

The scale parameter s again gives the number of decompositions of the original signal
window into subwindows. Each subdivision halves the nominal window width, so we set
Az = 2575 With the usual assumption that Az - A¢ &~ N, we can thus assign A = 29,

The position index p numbers the adjacent windows starting with zero at the left edge
of the signal. Thus the information cell should be drawn over the horizontal (time) interval
I, & [27p, 2" (p + 1)

One local cosine basis for the subspace over the subinterval I, consists of the functions
cos T (f + %) n/2L=5 = cos w2* (f + %) n/N, where n € I, and 0 < f < 2575 multiplied by
the window function subordinate to I5,. These orthonormal basis functions have nominal
frequencies 2° < f+ %) so we will draw the associated information cell alongside the interval
[2°f,25(f + 1)[ on the vertical (or frequency) axis. Local sine bases can be depicted in a
similar way:.

A graph basis set of triplets produces a disjoint cover of such information cells:
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Theorem 4 If B = {(s, f,p) € B} is the index subset of an adapted local trigonometric
graph basis for a 2L -point signal, then the collection of rectangles

{2"7p. 2" (p + D[x[2°£.2°(f + DL: (s, f,p) € B} (10)
is a disjoint cover of the square [0,2F[x[0, 2L O

These information cells will be located in the time-frequency plane at the appropriate lo-
cations for their position and frequency content. Notice how local trigonometric functions
have indices s, f,p that can be directly interpreted as scale, frequency, and position: no
Gray coding, bit-reversal or phase shifting is needed. In the wavelet packet case, the indices
s, f,p used in the formulas to compute time-frequency components must first be adjusted to
s, [/, p"” in order to correspond to scale, frequency, and position. Otherwise, both types of
decompositions provide complete orthonormal bases of time-frequency atoms.

1.5 Arbitrary Tilings with Haar—Walsh Functions

The Haar-Walsh wavelet packet library has a special property not shared by libraries of
smoother wavelet packets. Namely, we can put all its waveforms into one-to-one correspon-
dence with dyadic information cells which are located where they should be, but in such
a way that every disjoint cover corresponds to an orthonormal basis. The total number of
disjoint covers of 2L x 2% by dyadic rectangles—i.e., those whose coordinates are of the form
n2’ for integers n and j is much greater than the number of graph bases for a 2%-point
signal analyzed to level L.

We define the correspondence as follows: Let 155, be the Haar Walsh wavelet packet on
N = 2% points with scale index 0 < s < L, Paley order frequency index 0 < f < 2%, and
unshifted position index 0 < p < 2675, We associate to it the rectangle

Yepp < Ropp € [2°p,2°(p + 1)[x[2E75f,2575(F + 1)[C [0, N[x[0, N[, (11)

Here f = GC~Y(f) is the inverse Gray code permutation of f, which adjusts the vertical
location of Ry, so it is proportional to the number of oscillations of the wavelet packet
Yspp. Since clh] = 1/2 and c[g] — c[h| = 0 for the Haar Walsh filters, we need not shift or
bit-reverse the position index p to get the actual horizontal location of the information cell.
This puts Ry, where it should be to describe the location and oscillation of 1s,. We remark
that two rectangles will be disjoint in the sequency ordering of their frequency indices if and
only if they are disjoint in the Paley ordering.

Theorem 5 The Haar Walsh wavelet packets {ss, = (s, f,p) € B} form an orthonormal
basis of RN if and only if the dyadic rectangles { Ry, : (s, f,p) € B} form a disjoint cover
of [0, N[x[0, N|.

Proof: Since the area of Ry, is N while the area of [0, N[x[0, N[ is N?, it suffices to show
that two rectangles Rf, and Ry s,y are disjoint if and only if ¢, and 9y 4,y are orthogonal.
Since exactly N rectangles fit into the square, and the space is N-dimensional, we must have
a basis set of wavelet packets.

Let I, = [2°p,2°(p+ 1)[ and I, = [2°p', 25 (' + 1)[ be the supports of s, and 1y 1y,
respectively, and consider the two cases:
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s = st then v,s, and ¥4py will be orthogonal if and only if f # f’ or f = f' but p # p/,
one of which will be true if and only if the congruent rectangles R, and Ry, are
disjoint. In this case, both 1.5, and 1, are members of the same single-level or
subband basis, which is an orthonormal graph basis.

s # s’ then v, and 1y, will be orthogonal if and only if
| vy ®dt=o. (12)
sp ! p!

But two dyadic intervals either are disjoint or one contains the other. If I, N Iy, =0,
then Ry, N Ry = 0 since the rectangles share no horizontal coordinates. If the
overlap is nonempty, then we may suppose without loss that s < s’ and thus I, C

Iy,y. We can define the nominal frequency intervals Jy & [oL=sf oL=s(f 4+ 1)[ and
J gy =285 f1 2875 (f4-1)[ of 1bss, and tby g1y, Tespectively. Since these too are dyadic
intervals, and L — s > L — §', we have that either Jy;y N Jyp = 0, in which case Ry,
and Ry s,y are disjoint, or Jyp C Jgp, in which case Rgyp, and Ry g,y overlap.

It Js5 and Jgp are disjoint, then v,g, and 9y ¢,y come from different branches of the
wavelet packet tree and can be embedded in a graph basis, hence must be orthogonal.
Thus in all cases where Rs, and Ry s,y are disjoint, the functions ¥sfp and vy s,y are
orthogonal.

We now check the last remaining subcase, in which Ry, and Ry, overlap. But then,

the function vy, is supported in one of the 255 adjacent subintervals of length 2°

contained in Iy, and ¢y f, , is a direct descendent of 1,5, in the wavelet pa,cket tree.

But for the filters h = {\[ \[} and g = {ﬁ’ f} we have 1y = 2067/ 2 ¢

on each of those adjacent intervals. Thus the inner product in Equation 12 will be
(s—s')/4 7& 0.

The normalization part of the theorem is free, since all Haar-Walsh wavelet packets have
unit norm. O

Coifman and Meyer have remarked that the proof works with smooth time-frequency
atoms as well, as long as we use Haar—Walsh filters to perform the frequency decompositions:

Corollary 1 If ¢ is any time-frequency atom which is orthogonal to its integer translates,
and X is the vector space spanned by {d(t —n) : 0 < n < 2F}, then every disjoint tiling
of the square [0,2%[x[0,2%[ by dyadic rectangles corresponds to an orthonormal basis for X
made of time-frequency atoms. O

This corollary may be used to build plenty of smooth orthonormal bases in a smooth
approximation space. We iterate longer orthogonal filters to produce smooth sampling func-
tions ¢ of fixed scale, then use the Haar—Walsh filters to do a fixed finite number of frequency
decompositions. We thus avoid using Haar—Walsh wavelet packets, which are not even time-
frequency atoms since discontinuous functions have infinite frequency uncertainty. However,
the Heisenberg product of these hybrid wavelet packets will blow up as the number of levels
L of decomposition increases.
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2 Frequency Spreading and Wavelet Packets

The fundamental idea of wavelet packet analysis is to construct a library of orthonormal
bases for L*(R) which can be searched in real time for the best expansion with respect to a
given application. The standard construction is to start from a multiresolution analysis and
generate the library using the associated quadrature mirror filters. The internal structure
of the MRA and the speed of the decomposition schemes make this an efficient adaptive
method for simultaneous time and frequency analysis of signals. Unfortunately this standard
construction of the library produces an unwanted spreading of the frequency localization of
wavelet packets at high frequencies. We will here show how to control this spreading using
nonstationary wavelet packet.

2.1 Nonstationary Wavelet Packets

Let (¢,1) be the scaling function and wavelet corresponding to a multiresolution analysis
for L2(R) and (H, G) the associated quadrature mirror filters, see [1],[3],[9]. Furthermore let
(Fép), Fl(p)), p € N, be a family of bounded operators on ¢*(Z) of the form

(FPa), = > anh®P(n —2k), e=0,1

neZ
with (" (n) = (—1)"A% (1 — n) real valued sequences in ¢*(Z) such that
FO(P)* FO(P) + Fl(P)* Fl(p) —
FPEP = 0.

The family {w,(- — k) }nen kez of basic nonstationary wavelet packets is defined by letting
wy = @, wy = 1 and then recursively for n € N:

Wonie(t) = V23 WP (k)w, (2t — k) e=0,1
keZ
where 22 < n < 2°*1 Tt has a simple relation to the multiresolution decomposition
L*(R) = Vo @50 W; corresponding to (p,1): {wo(- — k) }rez is an orthonormal basis for V4,
{w, (- — k) }rez 2 <n<2s+1 an orthonormal basis for W; and in particular the family of basic
nonstationary wavelet packets constitute an orthonormal basis for L?(R). The full library
of nonstationary wavelet packet bases for L?(R) is obtained using the following result:

Theorem 6 For every partition P of N into sets of the form I;, = {n27 ... (n+1)2/ —1}
with n,j € N, the collection of functions: {27/%w,, (27 - ~k)}rez 1;,ep form an orthonormal

basis for L*(R).

The input signal to the discrete wavelet packet algorithm is the projection of a signal
f € L*R) onto Vi, Py, f = ez onr, and the idea is to extract the information
corresponding to each of the possible wavelet packet decompositions of Viy:

VN - @j,an,na
Qjn = spankeZ{Q%wn(Zj-—k)}.
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One of the possible decompositions is the wavelet decomposition, but if a better frequency
resolution is needed for high frequencies, other wavelet packet decompositions can be used.
Any wavelet packet decomposition of Vy into a direct orthogonal sum will only involve the
functions:

292, (2 - —k), k€Z,0<j<N,0<n<2V7,

and the algorithm therefore needs to compute the inner product of f with these functions.
Define f;"/ = (f,2//%w, (27 - —k)). The recipe for calculation of the nonstationary wavelet
packet coefficients is given by:

Theorem 7 Assume k € Z,0 < j < N,0<n < 2¥=J. Forn > 1 use the binary expansion.:
[n]y = €162+ €y when n = ijil ;2771 with €; = 0 or 1 and eyr = 1. Then the following
equations hold:

R = (H)N TN,
frl = [FOD L FD GUHN-GEMEN] o >

Except for notational changes the proofs of the results in this section follow rather closely
those of the standard case, see [2]. The discrete wavelet packet algorithm can be represented
by a simple binary tree and the “best-basis algorithm” applied to pick the “best-basis”
according to predetermined criteria; see [12]. Notice that the numerical complexity of this
discrete wavelet packet algorithm will depend on the possible growth of filter length of the
o () () : : : :

perators (Fy ', F1"’) as the level p tends to infinity. If for instance we have polynomial
growth in p, then the numerical complexity of the algorithm will be O(N[log N]") for some

power r.

2.2 Frequency Localization

One way for estimating the frequency localization of the basic wavelet packets w,(x) is to
compute the variance

on = inf [ € = &[] (€)[2dE.

§€ER Jo

This choice was considered in [2]. The result obtained was that for a family of Meyer wavelets
o, would have an average growth as n® for some § > 0. More precisely it was shown that there
exist constants C' > 0 and r > 1 such that 277 Y 9scp,cori1 /I + 0, > C - r/. This growth
turns out to be an inavoidable consequence of the standard wavelet packet construction.

Theorem 8 Let {w,},eN be the basic wavelet packets generated from a wavelet basis using
its associated quadrature mirror filters. Assume that o, is well defined, that [1p(&)| > dp > 0
on an open set T and that 0 < |my(§)| < 1 on a set M of positive Lebesque measure. Then

there exists constants C > 0 and v > 1 such that 277 Yai<ncori V1 + 20, > C - r’ and
consequently o,, has an average growth as n’ for some § > 0.

The conditions of the above theorem are very mild and in particular satisfied by any
wavelet with a continuous Fourier transform. Assuming that d is close to zero we may have
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a slow average growth of o,,. It is then interesting to know whether all ¢,, within each scale
have a comparable behaviour or if some are much worse behaved. Unfortunately this turns
out to be the case:

Theorem 9 Let {w,},eN be the family of basic nonstationary wavelet packets. Assume that
o, s well defined and that [Y(&)| > 69 > 0 on [kn — e;km + €| for some ¢ > 0 and k € Z.
Then within each scale there exists an n such that o, > 16*15358 -n?.

Any reasonably localized wavelet i fulfills the conditions of theorem 9, since all such
functions satisfy the condition 3 ,cz [¢(€ +27k)[* = 1 with uniform convergence on compact
sets, see [9]. In particular they are satisfied by the compactly supported Daubechies wavelets.
For the proofs of the above theorems see [7].

The conditions of the wavelet are not fulfilled by the Shannon wavelet due to its per-
fect frequency localization. Indeed for Shannon wavelet packets o,, does not depend on n.
However, the theorem tells us that even if we use the sharp cutoff quadrature mirror filters
of the Shannon wavelet to generate nonstationary wavelet packets from a wavelet that does
fulfill the conditions, we cannot avoid having very badly behaved basic wavelet packets with
respect to the measure o,. This indicates that the measure o,, might not be the right choice
for estimating frequency localization of wavelet packets.

When using the discrete wavelet packet algorithm the coefficients are always interpreted
in the idealized time-frequency plane as if they correspond to the sharp frequency bands of
Shannon wavelet packets. Once some energy of w, is outside the corresponding frequency
band it will spread away from the central frequency bands in the following iterations of the
operators. The result is that for the frequency localization in the limit, energy close to but
outside the central frequency band is just as unimportant as energy far away. An appropriate
way to estimate the frequency localization of basic wavelet packets is therefore to choose the
following definition:

Definition 1 Let p : N — N be the permutation of the nonnegative integers defined by
pler---€n) = € - -€ns € = 220 € mod 2, where [n|a = € ---€p denotes the binary
expansion of n = ;‘il €;27 with e; = 0 or 1. The frequency localization of a wavelet packet
w, s estimated by calculating

in = /_oo [0 (€) * X oy (o) +1)m (€] E-

The wavelet packet is said to have a good frequency localization if n, is large.

The intervals of integration equal the central frequency bands of Shannon wavelet packets,
and n is the Gray-code permutation of p(n). The notion “large” can be interpreted in
different ways. Ideally we would like to have 7, close to 1, but in order to get a better
frequency localization for high frequencies than the wavelet transform it suffices to have 7,

large compared to n 1.
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2.3 Filter Design

The QMF’s corresponding to high regularity wavelets (p, 1) are constructed by controlling
the decay of the infinite products of the associated trigonometric polynomials. In this section
we will construct a family of quadrature mirror filters directly for the purpose of generating
basic nonstationary wavelet packets with a good frequency localization. Neglecting the al-
ready occured error to level p we optimize the transition w,, — wa, ., 2 < n < 2P e =0, 1,
in the nonstationary wavelet packet construction with respect to the frequency localization
measure 77 by minimizing

1 (B) (1 ikE |2
Ixi—z:m = == D he” (k)™ P [l (- mem)
‘/ﬁkez

under the constraint that (Fép ), Fl(p )) are exact reconstruction quadrature mirror filters of a
given length.

Consider the trigonometric polynomial mg(€) = 2725~ hye*€. The exact reconstruc-
tion condition on the corresponding filters (Fo, Fy) can be written using the filter coefficients
as: Yo hghgior = 0oy, see [3]. In particular N must be odd. Introducing the notation
a; = Y1 hihgioi11 a direct calculation then shows that

N—-1

1

Imo(€)]? = 5t 122: a; cos((20 + 1)¢).

The only constraints on the coefficients a; are that they are real and that the above trigono-
metric polynomial is positive. A corresponding mg(§) with real coefficients can then be
constructed using Riesz factorization, see [11].

Inserting this expression for |mo(€)|> we see that we need to solve the following mini-
mization problem: Minimize

over
a=(ap,as,...,an-1) € R2

under the constraint that for all £ € R,

N—1

1 2

5 + Z a;cos((20 4+ 1)€) > 0.
1=0

This minimization problem is complicated due to the peculiar pointwise constraint. It turns
out, however, that it is possible to give exact formulas for the minimizing trigonometric
polynomials at each filter length, see [6].

To obtain the solutions we use the following result:
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Lemma 1l Let N =2M + P > 0 where M € N and P =0 or —1. Consider the

equations
1 1 cos(&)
-3 - cos(3&)
: =bo(1+ P) +> 4 _
vl 1) - IN +1
N1 cos((2N +1)&)

These systems of equations all have a unique solution (by,t.§) or (t,€) fulfilling

Co <o <&y <.

For each N € N we let £ = (&,.

associated system of equations and introduce

..,&ur) be the values from the solution of the above

system of

5 <& <

1 1 1
cos(&)  cos(3&) cos((4M + 1)&)
AP (g gy) = COS<§M) COS(éfM) COS((4M‘+ 1)éwm)
sin(&;)  3sin(3&) (AM + 1) sin((4M + 1)&)
I sin(‘gM) 3sin<3§M) (4M + 1)Sin<(4M + 1)éumr) |

B
E
b2 1
0
0

Similarly ACM=D(¢, ..., &y is introduced as the same matrix but without the first row and
last column and b®M~Y as the same vector but without the first entry.

The coefficients a of the unique minimizing trigonometric polynomial [m$"(€)|? = 1/2+
SN arcos((21 + 1)€) are then given by the simple expression

a = [AD(Q] 7.

For the filter lengths 2.4,...,10 exact results can be seen in [7]. For the coefficients of the
corresponding operators (Fp, Fy) see Table 1.

2.4 Control of Frequency Spreading

We want to use the nonstationary wavelet packet construction to control the frequency
spreading at high frequencies. More precisely we want to construct a family of nonstationary
wavelet packets such that for all J € N,

277

27 <n<2J+1

77n20>0.
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I Il 2
ho—  W1243V10 | hy—  1/2045/10
hy = 120 -5V10 | hy =  —1y/12-3V10
ho—  0.503552845382 | hy —  0.749282656009
hy = 0358669023827 | hs = —0.146420439018
hy= —0.155115088022 | hs —  0.104244564196
ho— 0451615929782 | hy —  0.739818187277
hy = 0.422992416990 | hs = —0.102215586701
hy = —0.200582571342 | hs —  0.050352473139
he = 0109880116973 | hr = —0.067075413993
ho— 0413126205869 | hy —  0.726992926835
hy = 0.468173223166 | hs — —0.062992868600
hy = —0.223538187273 | hs = 0012777578250
he= 0133546841599 | hy = —0.017519751720
hs = —0.084201392174 | hg =  0.047848896422

Table 1: QMF Coefficients h.

If we use the same pair of FIR exact reconstruction quadrature mirror filters on each scale
the above average value of 7, on scale J tends to 0 as J tends to infinity. The goal can
therefore only be achieved by increasing the filter length from scale to scale. We have the
following;:

Theorem 10 Consider basic wavelet packets generated from a wavelet which fulfills |1E(§)| >
0 >0 ona—cia+e| Cm2n| for some constant € > 0 and point a €|m;2n[. Fiz v > 0
and a constant C., . > %(22—;1)2, and choose the minimizing QMF’s introduced in the previous
section with filter lengths n, > C. .p*™ + 1. Then there exists a constant C' > 0 such that
for all J € N,

2~ Z N > C.

27 <p<2J+1

The proof of this theorem can be seen in [7]. It is valid not only for the minimizing family
of QMF’s but in fact for any family with a frequency localization better than or equal to the
QME’s corresponding to the compactly supported Daubechies wavelets. It shows that the
frequency spreading can be controlled by using different QMF’s on each scale and allowing
the filter lengths to grow. Furthermore it provides an upper bound to the necessary growth
for which the resulting numerical complexity is O(N[log(N)]**7) for any v > 0.

3 Periodic Wavelet Packet Analysis

Wavelet packets have been introduced as a flexible method for time-frequency analysis of
signals combining the advantages of windowed Fourier and wavelet analysis. Similarly pe-
riodic wavelet packets provide an interesting alternative to Fourier series. In this section
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we study the periodic wavelet packet equivalent of Fourier series and show that the basic
periodic wavelet packets fulfill a fundamental translation property similar to that of sines
and cosines. As an example we consider periodic wavelet packets in the optimal frequency
localization limit. This limit corresponds to a family of periodic Meyer wavelet packets and
provides an alternative FFT.

3.1 Periodic Wavelet Packets

By periodizing the basis functions to period 1 an MRA for L*(R) is transformed into an
MRA for L?(0,1); see [9]. This construction extends to the wavelet packet case as well. Let
{wy, }nen be the family of (possibly) nonstationary basic wavelet packets introduced in the
previous section. For n,j € N and 0 < k < 27 define general periodic wavelet packets wh
by
whT(2) =Y 2w, (2 (x + 1) — k).

leZ

Using this notation we have:

Theorem 11 For every partition P of N into sets of the form I;, = {n27,..., (n+1)27 —1}
with n, 7 € N, the collection of functions:

{w }0 K 2‘1. 1 I
n,j,k <k< ) 7'n€

The input signal to the discrete periodic wavelet packet algorithm is the projection of a
signal f € L?(0,1) onto V", Pyrer [ = Yockean e %, and the idea again is to extract the
information corresponding to each of the possible periodic wavelet packet decompositions of
V"

W= Djn Qﬁ’eﬂfa Q?,er = spano<k<2j{w ,j,k}

Define fi"”) = (f,w;7,) and consider it to be a 2/-periodic sequence in k. Furthermore

introduce the notation (FE(’;));C = ez (F®)1i0is, 1, € NJk € Z,e = 0,1 and the corre-

spondent operators
271

(FPa), = " an(FP), o

n=0

which transforms sequences of period 2/ into sequences of period 2/=!. Similarly denote
by (H;.G;) the periodized operators of (H,G). The recipe for calculation of the periodic
wavelet packet coefficients is then given by:

Theorem 12 Assumek € Z,0 < j < N,0<n < 2N79. Forn > 1 use the binary expansion

[n]o = emenr—1 -+~ €1, wheren = S8, €277  with ¢; = 0 or 1 and ey = 1. Then the following
hold:
[ = (HjnHjgo- - HyeV)y
nj F(M 1) F(l) G H: oo HveV > 1
fk ( €1 ]+1 EM— 1]+]\4 1 ]+M J+M+1 NC )k? n - 1.
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Except for notational changes the proofs of these results follow the nonperiodic case and
the same arguments about representation as a binary tree, the best-basis search and the
numerical complexity applies.

3.2 A Translation Property

We start by showing a translation result involving only a particular subset of the basic
periodic wavelet packets. We have:

Lemma 2 Forn € N: wj, 300(z — %) = Wiy 100(T)-

Proof: Consider first the case n > 1. By definition we have

Wing100(T) = 2 Z p+1) Fép))z Z wy (4 — 2k — 1 + 4r),

k,leZ reZ
Whnis00(®) = 2 ) (F pﬂ) Fl(p))z > w,(dx — 2k — 1+ 4r).
k,leZ reZ

The proof consists in rewriting these expressions using the properties of the operators
(F} () , F 1( )) First we split each of the expressions into four parts depending on the value of
(2k + l) mod 4. Let w®) (x) = S,z wn (42 + 47 —5), s =0,...,3, then

waL:LOO ZQZ (pH Z Fé ))s+4r 2kw(s)( )

s=0 keZ reZ

Introducing a, = ﬂZTGZ(Fép))er, s=0,...,3, and using the fact that ZkeZ(Fl(pH))gk =
1/vV2=— ZkeZ(Fl(p +1))2k+1 (see [3]) we can simplify the above expression. By splitting the
sums into two parts, k even and k odd, we obtain:

3

Whn41,0,0(T) = Z(as - as+2mod4w$15) (@).
s=0
Applying the same procedure to wj,, 30, and using (F} (v )) (—1)’“(F0(p ))1_k we similarly
obtain: \
wif;-% 0 0($) = Z(a(s+1)mod4 - a(s+3)mod4)wns) (z).
s=0
Since w( (z — 1) = w{FImedd (1) s =0, ..., 3 the result now follows.

The case n = 0 looks slightly different if FY 1~ has been chosen different from G:

wi(z) = 2> (G)(H)wo(dx — 2k — 1),
kleZ

wy(z) = 23 (F{)(@)wo(da — 2k — 1).
k,leZ
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However, since vV2 Y ez (F)ar = 1 = —vV2 X ez (F)argr is valid for F € {G, Fl(l)} and (H, G)
like (Fop ) F¥ )) fulfill (G), = (—1)¥(H);_; the above calculations extend to this case as well.
This completes the proof. O

The present ordering of the basic wavelet packets {w, },eN is convenient with respect
to the recursive formulas in their definition. However, in many applications it is more
appropriate to have them ordered according to increasing frequency. Let G(n) be the Gray
code permutation of n, then {wW*}, N defined by

~per __ , per
w wG( )0

are the basic periodic wavelet packets ordered according to increasing frequency. The Gray
code permutation also relates Paley order to sequency order for Walsh functions, and it
is therefore natural that it appears in the frequency localization of wavelet packets which
generalize them.

For n € N use the binary expansion 2n = 3272,y €1(n)2', 1 < k(n) < oo with g4,y = 1
and ¢; € {0, 1} otherwise. Define a family of constants 7, by

Mo=1—27¢OF) Lo (n)-(27%™ — 1), neN.
We then have the following fundamental translation property:
Theorem 13 Forn € N: wh, (x) = @b, (x —ny,).
Proof: The binary expansion of 2n is of the form

2y = 21+ 2 Exuya (1) 100,

where each x; denote an unspecified coefficient and where the first coefficient equal to 1
comes after k(n) > 1 zeros. Then

2n —1lp =21 - TpEpm)+1(n) O L--- 1,
and

[G(2n)]2 Y1+ Yp [(Ekmy+1 + 1) mod 2] 10---0,
[G2n—1)]2 = Y1+ Yperm+110---0,

where as before y; are some unspecified coefficients and where the first coefficient equal to 1
now comes after k(n) —1 > 0 zeros. Let a constant M € N be defined by [M]s =y - - .
We can then write

G(2n) = 28MNAM + 1+ 2[(epmy41 + 1) mod 2)),
G@2n—1) = 2 NAM + 1+ 240y 41)-

USing wokm -1 (4nr41)(T) = Wakm—1 (apr45) (T — 27 (k(m)+1)) " which follows from lemma 2 and the
definition of the basic wavelet packets the proof is completed. O
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This theorem shows a strong resemblance between the usual Fourier series

f=co+ D aycos(2mnz) + > b, sin(2rnz)

n=1 n=1

and their periodic wavelet packet equivalent

oo o
f=2cwl" + 3 @by + Y baub ).
n=1 n=1

The even-sequency periodic wavelet packets wh, play the role of cosines and the odd-
sequency periodic wavelet packets wh, ", act like sines, in the sense that for each n these
functions are just translates of one another. With the added twist that the amopunt of the
translate depends on n, this theorem shows how wavelet packets are generalizations of sine
and cosine Walsh functions.

In the optimal frequency localization case, the basic periodic wavelet packets are in fact
cosines and sines. The discrete periodic wavelet packet algorithm therefore provides an
alternative FF'T.

3.3 Optimal Frequency Localization

Let us introduce a family of Meyer wavelets. Choose a constant ¢, 0 < ¢ < Z, and a function
v: R — R in O or C* satisfying

0 ifz<0
V@) =90 e > 2

with the additional property v(z) + v(—x + 2¢/(m — €)) = 1. Define a 27-periodic even
function mg(€) by

2
mo(€) = cos(T( 2
This function satisfies the QMF condition |mg(€)]* + |mo(€ + 7)*> = 1 and furthermore
mo(§) = 1, —n/3 < & < 7/3, which is sufficient for it to generate an MRA, see [1]. The
corresponding scaling function ¢ and wavelet 1 are given by

p N m &1 cos(~v
(70(5) - \/%ZZI 0(21)_\/% (
D(26) = —e Cmo(€+m)p(&).

These functions (¢, 1¥,) constitute the family of Meyer wavelets.
For n € N use the binary expansion 2n = 312, &/(n)2', g;(n) € {0,1} and introduce a
family of constants {k, },en by

_1))7 —7r§§§7r.

I3
2 (7r—6

- 1))7

2n

KEn =1 [(e1(n) +&141(n)) mod 2|(1 + ﬁ)

M8

N
Il
=)

We have the following result:
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Theorem 14 Let (p, ., ,.) belong to the family of Meyer wavelets and assume that ¢ <
2=N . Consider the periodized wavelet packets generated using the associated quadrature mir-
ror filters. They fulfill the equations

W (2) = V2cos(2mna — ky),
W (x) = V2sin(2mnz — k),

for eachm, 0 <n < 2N=1,

This result can be proven by calculating the coefficients of the Fourier series expansion
W () = V27 Y pez Wen) (2K )€™ using the properties of the Meyer wavelets.

4 Phase Uncertainty of Wavelet Packets

We wish to recognize features of the original signal from the coefficients produced by trans-
formations involving QMFs, so it is necessary to keep track of which portion of the sequence
contributes energy to the filtered sequence.

Suppose that F' is a finitely supported filter with filter sequence f(n). For any sequence
u € (%, if Fu(n) is large at some index n € Z, then we can conclude that u(k) is large near
the index k = 2n. Likewise, if [ u(n) is large, then there must be significant energy in u(k)
near k = n/2. We can quantify this assertion of nearness using the support of f, or more
generally by computing the position of f and its uncertainty with Equation 1. When the
support of f is large, the position method gives a more precise notion of where the analyzed
function is concentrated.

Consider what happens when f(n) is concentrated near n = 27"

Fu(n) =3 f(j)u(2n—j)=>_ f(j +2T)u(2n - j - 2T). (13)

jEZ jEZ

Since f(j+2T) is concentrated about j = 0, we can conclude by our previous reasoning that
if Fu(n) is large, then u(k) is large when k ~ 2n — 27 Similarly,

Fru(n) = Y (25 — n)u(j) = 3 F(25 —n + 21)u(j + 7). (14)

JjEZ JjEZ

Since f(2j —n + 27) is concentrated about 2j —n = 0, we conclude that if F*u(n) is big
then u(j 4 7") must be big where j ~ n/2, which implies that u(k) is big when k ~ § +T'.
Decimation by 2 and its adjoint respectively cause the doubling and halving of the indices
n to get the locations where © must be large. The translation by 7" or —27" can be considered
a “shift” induced by the filter convolution. We can precisely quantify the location of portions
of a signal, measure the shift, and correct for it when interpreting the coefficients produced
by applications of F' and F*. We will see that nonsymmetric filters might shift different
signals by different amounts, with a variation that can be estimated by a simple expression
in the filter coefficients. The details of the shift will be called the phase response of the filter.
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4.1 Shifts for Sequences
The notion of position for a sequence may be defined by the following formula:

def
IIUII2

(15)
keZ
This quantity, whenever it is finite, may also be called the center of energy of the sequence
u € £? to distinguish it from the function case.
The center of energy is the first moment of the probability distribution function (or
pdf) defined by |u(n)[?/||u||*>. We will say that the sequence u is well-localized if the second
moment of that pdf also exists, namely if

S R Ju(k)? = [lkull? < oo. (16)
keZ
A finite second moment insures that the first moment is also finite, by the Cauchy—Schwarz
inequality:
keZ
If u € £% is a finitely supported sequence (say in the interval [a,b]) then a < c[u] < b.
Another way of writing c[u] is in Dirac’s bra and ket notation:

lul*elu) = (ulX|u) = (u, Xu) = 3" (i) X (@, j)u(j), (17)
i€Z
where
o def oo )1, if 1 = 7,
X(Za.]) - 25(2 ])_{ 07 lfl#].
—  diag[...,~2,-1,0,1,2,3,...].

To simplify the formulas, we will always suppose that [[u[| = 1. We can also suppose that f
is an orthogonal QMF, so >, f(k)f(k + 2j) = §(j). Then FF* = I, F* is an isometry and
F*F is an orthogonal projection. Since ||F*u|| = |lu|| = 1, we can compute the center of

energy of F™*u as c[F*u] = (F*u|X|F*u) = (u|F X F*|u). We will call the the double sequence
F X F* between the bra and the ket the phase response of the adjoint convolution-decimation
operator " defined by the filter sequence f. Namely,

FXF*(i,j) Zk:f (20 — k) f(27 — k). (18)

Now

FXF*(i,j) = ;qm] + ) f([i—4] — k) F([i—i] — k) & 2X(i,§) — Cs(i. 4).

Here 2X(i,7) = (i + j) Sk f([i—j] — k) f([j—i] — k) = 2i6(i — j) as above, since f is an
orthogonal QMF, while

Crlij) = 3 kf(k—[i=3)f(k = [i—d)). (19)
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Figure 10: 7, 7, and 4° for “Coiflet 18” low-pass QMF.

Thus c[F*u] = 2c[u] — (u|C|u). Cf is evidently a convolution matrix: C¢ (i, j) = y(i — j) so
that C'yu =« * u. The function + is defined by the following formula:

y(n) € S kf(k—n)f(k +n). (20)

2 ~

From this formula it is easy to see that v(n) = 7(—n), thus 4(¢) = y(=¢£) = 3(§) = 5 € R.
This symmetry of 7 makes the matrix Cf selfadjoint. Along its main diagonal, C(i,1) =
7(0) = ¢[f]. Other diagonals of Cy are constant, and if f is supported in the finite interval
la,b], then C(i,5) = (i —j) =0 for |i — j| > |b—al.

We can subtract the diagonal from C'y by writing C'y = CJOC + ¢[f]I, which is the same as
the decomposition y(n) = v°(n)+c[f]d(n). This gives a decomposition of the phase response
matrix:

FXF*=2X —([f|ll - CY.

Thus FXF* is multiplication by the linear function 2z — ¢[f] minus convolution with ~°.
We will say that f has a linear phase response if ¥° = 0.

Proposition 1 Suppose that f = {f(n) : n € Z} satisfies > f(k —n)f(k +n) = §(n) for
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Figure 11: A, 7, and 4° for “Daubechies 18” high-pass QMF.
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Figure 12: 7, 7, and 4° for “Vaidyanathan 24” low-pass QMF.
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n € Z. If f is Hermitean symmetric or antisymmetric about some integer or half integer T,
then the phase response of f is linear.

Proof: We have f(n) = £f(21 — n) for all n € Z, taking + in the symmetric case and —
in the antisymmetric case. Now 7°(0) = 0 for all filters. For n # 0 we have

7(n) = Zkf fk+n) = Zkf(QT—k+n)f(2T—k—n)
= QTZf (k+n)f Zk flk+n)f(k—n)= 0-9"n).
Thus we have 7°(n) = 0 for all n € Z. O

The linear function shifts the center of energy x to 2x —c[f], and the convolution operator
7° perturbs this by a “deviation” (u,7°*u)/|lul[?>. We can denote the maximum value of this
perturbation by d[f]. By Plancherel’s theorem and the convolution theorem, the deviation
is (,4°a)/||ul|* and its maximum value is given by the maximum absolute value of 4°(€):

d[f] = sup{|5"(€)] : € € [0, 1]}. (21)

Now 7°(n) = 4°(—n) is symmetric just like v, so its Fourier transform 4° is purely real and
can be computed using only cosines as follows:

o

A0(&) =23 ~(n) cos2mné. (22)

n=1

The critical points of 4° are found by differentiating Equation 22:

o0

(&) = —4m Y ny(n) sin2mné. (23)

n=1

It is evident that £ = 0 and £ = % are critical points. We will look at a list of 17 example

QMFs of lengths 2 through 30, for which |[§°(£)| achieves its maximum at £ = %, where

40 <;>:2§:(—1)” J=2 3 S (1) RSk — n)f(k 4+ ). (24)

n=1 k=—oon=1

Graphs of 4° for some of the example QMFSs can be seen in Figures 9 through 12.

Values of the quantities c[f] and d[f] for example QMFs are listed in Table 2. Notice
that if g(n) = (—1)"h(2M + 1 — n), so that h and g are a conjugate pair of filters, and
|supp g| = |supp h| = 2M is the length of the filters, then d|g] = d[h] and c|[g]+c[h] = 2M —1.
This also implies that Cy,(4,7) = —C,(i, j), so that the function 4° corresponding to the filter
h is just the negative of the one corresponding to g.

We can put the preceding formulas together into a single theorem:

Theorem 15 (QMF Phase Shifts) Suppose that u € (? and that F : (? — (% is convolu-
tion and decimation by two with an orthogonal QMF f € (*. Suppose that c[u] and c[f] both
exist. Then

[ F*ul = 2efu] — elf] — {u, 7 * u)/[[ul]®,
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| f [lsupp f[ | H or G | c[/] | dlJ] |

B 18 H 2.4439712920 | 2.6048841893
G 14.5560287079 | 2.6048841893

C 6 H 3.6160691415 | 0.4990076823
G 1.3839308584 | 0.4990076823

12 H 4.0342243997 | 0.0868935216

G 6.9657756002 | 0.0868935217

18 H 6.0336041704 | 0.1453284669

G 10.9663958295 | 0.1453284670

24 H 8.0333521640 | 0.1953517707

G 14.9666478359 | 0.1953517692

30 H 10.0333426139 | 0.2400335062

G 18.9666573864 | 0.2400330874

D 2 H 0.5000000000 | 0.0000000000
G 0.5000000000 | 0.0000000000

4 H 0.8504809471 | 0.2165063509

G 2.1495190528 | 0.2165063509

6 H 1.1641377716 | 0.4604317871

G 3.8358622283 | 0.4604317871

8 H 1.4613339067 | 0.7136488576

G 5.5386660932 | 0.7136488576

10 H 1.7491114972 | 0.9711171403

G 7.2508885027 | 0.9711171403

12 H 2.0307505738 | 1.2308332718

G 8.9692494261 | 1.2308332718

14 H 2.3080529576 | 1.4918354676

G 10.6919470423 | 1.4918354676

16 H 2.5821186257 | 1.7536045071

G 12.4178813742 | 1.7536045071

18 H 2.8536703515 | 2.0158368941

G 14.1463296483 | 2.0158368941

20 H 3.1232095535 | 2.2783448731

G 15.8767904464 | 2.2783448731

\Y% 24 H 19.8624838621 | 3.5116226595
G 3.1375161379 | 3.5116226595

Table 2: Center-of-energy shifts and errors for some example QMFs.
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where vV € (2 is the sequence

oy_ ) 0, ) if n =0,
() —{ Sy kf(k—n)f(k+n), i#n#0.

The last term satisfies the sharp inequality

[{u.7" x u)] < d[f] [lul,

where
o2 (0@

S S (=D)"kf(k —n)f(k+n)|.

k=—oon=1

d[f] =2

O

If d[f] is small, then we can safely ignore the deviation of F*u from a pure shift of u by ¢[f].
In that case, we will say that ¢[F*u] & 2c[u] — ¢[f] and ¢[Fu] = Sc[u] + 1c[f]. We note that
the “C” filters have the smallest errors d[f]; these are the filters to use if we wish to extract
reasonably accurate position information.

If we apply a succession of filters F} Fy --- F}, then by induction on L we can compute
the shifts as follows:

LY Fy - Frul = 2%clu] = 287 e[ fo] — -+« = 2l fo] = c[i] = €, (25)
where
€] < 257 d[fy] + -+ 2 fo] + d[fu]- (26)
Similarly, if v = F}Fy -+« Fyu, so that Fp -+ Fo v = u, then the following holds:
c[Fp -+ FyFyw) = 27 c[v] + 27 5[ fu] + 27 Fe[fo] + -+ + 27 [ f1] + ¢, (27)
where
el <27d[fi] + -+ 27 d[ fo] + 27 d[ ). (28)

Now suppose that (h,g) is a conjugate pair of QMFs, so that f; € {h,g} for each
i = 1,2,...,L. Then d[f;] is constantly d|h| and we have the simpler estimates for the
deviation from a pure shift:

"] < (2F —1)d[h] = 2%d[h]  and || < (1 —2 1) d[h] = d[h]. (29)
Suppose that we encode the sequence of filters FyFy--- F} as the integer b = b2~ +
bo2l=2 4 ... + 5,2°, where

by — { 0, if [, = H; (30)

1, if F, =G,

Then we can write c[fi] = brelg] + (1 — by)c[h] = c[h] + bi(c[g] — c[h]). Notice that the bit-
reversal of b, considered as an s-bit binary integer, is the integer b’ = ;20 +b,2! +- - - b 2571,
This simplifies the formula for the phase shift as follows:
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Corollary 2 If h and g are a conjugate pair of QMFs with centers of energy c[h] and c[g],
respectively, then

c[Fy Fy + - Fiu] = 2Fcfu] — (25 — 1) c[A] — (clg] — c[A]) ¥ — €, (31)

where |e*| < (2F —1)d[h] and b = b;2L"1 + 1,282 + - - + by, encodes the sequence of filters
as in Equation 30, and b’ is the bit-reversal of b considered as an L-bit binary integer.

Proof: We observe that

AP ES - Fru] = ch[u]—ZQL—k{c[thLkﬂ(c[g}—c[h})}—e*

k=1

— 9%efu] — c[h] 2:% 2 (clg] — c[h]) z:%) ben2' — ¢
= 2%c[u] — (2" = 1) c[h] = (clg) — c[B])V — €.

The estimate on €* follows from Equation 29. O

4.2 Shifts in the Periodic Case

Defining a center of energy for a periodic signal is problematic. However, if a periodic signal
contains a component with a distinguishable scale much shorter than the period, then it may
be desirable to locate this component within the period. If the component is characterized
by a large amplitude found by filtering, then we can locate it by interpreting the “position”
information of the filter output. We must adjust this position information by the center-
of-energy shift caused by filtering, and allow for the deviation due to phase nonlinearity.
In the periodic case, the shift can be approximated by a cyclic permutation of the output
coefficients.
We can compute the center of energy of a nonzero g-periodic sequence u, as follows:

clu Zk|u
|Uq||2 !

Since c[u,] is a convex combination of 0,1,...,¢ — 1, we have 0 < c[u,] < ¢ — 1. Now
suppose that u, is the g-periodization of u and that all but € of the energy in the sequence u

comes from coefficients in one period interval J, o (704, jog +q — 1], for some integer j, and
some positive € < 1. We must also suppose that u has a finite position uncertainty which is
less than q. These conditions may be succinctly combined into the following:

1
2

(Z i~ G+ ] |u(j>|2) < gellul. 52)
J¢Jo

For sufficiently small €, we can compute the center of energy of u, in terms of the center
of energy of u. We summarize the calculation as follows: if almost all of the energy of w is
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concentrated on an interval of length ¢, then transient features of u have a scale smaller than
¢ and will become transient features of u, upon g-periodization. Assuming that u satisfies
1

Equation 32 with € < gg: We can use the following approximation to locate the center of

energy of a periodized sequence to within one index:

clug] ' lu] mod g. (33)
We interpret the expression “z mod ¢” to mean the unique real number 2’ in the interval
0, g[ such that x = 2’ + ng for some integer n.
We next use the following approximation:

c[Fyu,] = c[(Fu)y,] = c[Fu] mod 2g
= 2fu] — elf] — {7 + )/ [u] mod 2.

This result is proved in [13]. Now (u, vV *u) /||u||* is bounded by d[f] so we plan to ignore it as
before, though we must still verify that the QMF's satisty Equation 32 with sufficiently small
€. Table 3 shows the value of € for a few example QMFs and a few example periodizations.
In all cases € < 1, so the table lists only the digits after the decimal point.
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