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ABSTRACT o the following orthonormal window over I = [a;, a;1]
We show that the Fang’s segmentation algorithm!!] of ( w )
; i t—a; ajp1 —t
nearly constant instantaneous frequency is well adapted w;(t) = 1( P yp( j+1 ) 1)

to some noisy vocal command signals and that the or- Ui n
thonormal trigonometric basis of 1?(Z) [2! defined over
this segmentation offers an optimal, non dyadic time-
frequency tiling. We use this basis in speech processing
to compute a local spectrum nearly phonemes and in
biomedical applications to timing velopharyngeal clo- o bi(t) = r(t—a;)
sure for swallowing sound. K

with ¢; = (aj4+1 —a;), t € Z+1/2,j € Z and
0 <n < ¥£;/2 (n; is the adjacent window overlap).

o A sampled signal {f(j)}o<j<n-
1. INTRODUCTION

Given a time axis segmentation into intervals of arbi- The folding operator defined in a neighbour of a;:

trary length, a smooth local spectrum can be computed

using an orthonormal trigonometric basis of 2(Z)3/[4](5] Uif(t)= {
defined over this segmentation.

On one hand, the Best Basis'? of Coifman and Wicker-
hauser offers a local spectrum defined over dyadic seg-
ments which can be obtained in O(NlogN) operations. w e | b F)—bj(2a;—t)f(2a;—1t) ifaj<t<a;+n
On the other hand, the orthonormal basis defined over Ujf)= { bj(2a;—t)f(t)+b;j(t)f(2a;—t) ifa;j—n<t<a;
a Fang’s segmented signal provides a well adapted spec-

bj () f(t)+b;(2a;—1)f(2a;—t) if a;<t<aj+n
bj(2a;—t) f(£) = b;(t) f(2a;—1) if aj—n<t<ay

and its adjoint, the unfolding operator:

trum defined over non dyadic segments which can be e The folded function over I; = [a;, a;11]
obtained in O(N?) operations.
We use Fang’s segmentation in speech processing to Foj a5 = X1;UjUji f

compute local spectrum nearly phonemes and in biome-

C h (t) i 1 to 1 wh I; 1
dical applications to timing velopharyngeal closure. where xy,(t) is equal to 1 when ¢ € I; and nu

elsewhere.
2. SMOOTH LOCAL TRIGONOMETRIC The given orthogonal window (1) can also be written
TRANSFORM!® as follows

wj(t) = U U 1 x;- (2)

Let us consider . . . o )
Given a time axis segmentation into intervals

e the raising function
0 t €] — 0o, 1] I; = [a, aj41]
r(t) = ¢ sin[F(1+sin§t)] te€[-1,1]

of arbitrary length, the associated orthonormal trigono-
1 t € [1, 00 yieney g

metric basis of 12(Z)PB14
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consists of orthonormal windows wj;(t) modulated by
trigonometric functions

\/|£j| |€j|

The smooth spectrum of f over I = [aj,a;41] is the
following set

(k+3)0-a). ()

Ci={cjk: 0<k < 4} (4)

where
cik =< [, ¥x >=< f,wigjr >

and
cik =< LU U 1 X159,k >=< Faj 0541, 956 > - (5)

Therefore the dct4 transform of the folded signal F,
is the smooth dct4 transform of f over I;.

§r@i+1

3. FANG’S SEGMENTATION
ALGORITHMI!

A segmentation of a sampled signal is a strictly increas-
ing sequence of integers which are the initial indices
of each segment. The Fang’s segmentation is obtained
computing the local maxima of a frequency change func-
tion, which is the average of an instantaneous frequency
change function.

3.1. Instantaneous frequency change function

This function is the difference between the flatness of
the spectrum over [j — £,j + ¢] with (¢ > 0) and the
flatness of the combined spectra over [j—/, j] and [4, j+
£]. This flatness can be measured with the following

cost function of x = (zo,Z1,...,Tn)
n—1
A@) =) |z (6)
k=0
or
n—1
Az) =) |we[*log(|zk]*)- (7)
k=0

Let Aj, B; and C; denote the smooth dct4 transform
over [j — £, j[, [j,7 + 4] and [j — £, + £[, then

TFJ(j) = A(Cj) — (M4;) + A(Bj)) (®)

with j € {n+£,...,N —n — £} is the Instantaneous
Frequency Change function. This function oscillates,
even when the signal is periodic as it is shown in Fig.1.

Figure 1: IFC and AFC frequency change functions

3.2. Segmentation algorithm

This algorithm consists of the following four steps:

1. Compute IFC(j) for j €]l +n,N — £ —n[=1I as
follows:

Let consider IFC(j) = 0 Vj € I and compute

Cj, the dct4 transform of Fj_4 ;4¢ and By, the
dct4 transform of F} ; ., then

IFC(j) = IFC(5) + A(C;) — A(B;)
and

IFC(j +¢€) = IFC(j + £) — \(B;)
because Aj4+, = B;.

2. Filter IFC(j);er to obtain an averaged frequency
change function AFG(j);er as follows:

If H and G denote a biorthogonal lowpass filter
and its dual then

AFC = GHY(IFC)
where H¢ = HHH ... H.

3. Find the local mazima by detecting zero crossings
of the adjacent differences of AFC(j);c;-

4. Squeltch the local maxima above some threshold.

There are three parameters to set:

1) the adjacent window overlap 7

2) the window size £

3) the number d of iterations of the lowpass filter H.

In particular, we use this algorithm with n = 16, £ =
256 and d = 9 to obtain a nearly phoneme segmenta-
tion of noisy vocal signals recorded in fly.
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Figure 3: vocal signal segmentation

Fig2 and Fig3 show the signal at the top, the IFC func-
tion at the bottom, the AFC function at the middle and
the segmentation, with vertical lines at the AFC local
maxima:

O=aqy<a1 <...<ag=N.

This is a non dyadic segmentation nearly phonemes.

4. OPTIMAL SPECTRUM

In a previous paperl”) the speech signal segmentation
was realized using an orthonormal trigonometric Best
Basis followed by a split and mergin!8! algorithm.
Fig.4 and Figb show a local spectrum, in absolute value,
computed using the orthonormal trigonometric bases
defined over the Fang’s segmented signal. The coeffi-
cients of this spectrum are defined in (4) and (5) over
each interval [a;, ajt1]-

Figure 4: well adapted, non dyadic local spectrum

The Fang’s segmentation algorithm was also applied in
biomedicine to timing velopharyngeal closure for swal-
lowing sound. The described algorithm was used with
n = 16, £ = 128 and d = 7, the local spectrum was
computed over each interval [a;,a;41] of this segmen-
tation

O=ag<a1 <...<as=N

using (4) and (5). We searched a time interval [Tp, 7]
with Tp = a5 and T1 = a, such that the absolute value
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Figure 5: well adapted, non dyadic local spectrum

of the local spectrum over [Tp,T;] has their maxima
greater than some preallocated threshold (Fig6).
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Figure 6: timing velopharyngeal closure
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