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Abstract We show that any discrete wavelet transform using finite impulse re-
sponse filters may be factored into lifting steps that use only nearest-neighbor array
elements. We then discuss the advantages and disadvantagesof imposing this addi-
tional requirement.

1 Introduction

Our goal is to implement discrete wavelet transforms (DWT) efficiently. The recur-
sive algorithms of Daubechies [3] and Mallat [5] offer anO(n) algorithm forn-point
time series. Thelifting implementation of Daubechies and Sweldens [4] offers an
alternative which is alsoO(n) complex but which only requires about half as many
arithmetic operations in the most common cases. Additionally, it acts on the input
in such a way that requires justO(1) auxilliary memory.

For DWT on an interval, artifacts may arise at the boundary if the input’s peri-
odization from that interval is discontinuous.Symmetric extensionbefore periodiza-
tion, thoroughly described in [1], reduces these artifactsand is easy to include within
a lifting implementation.

In this paper we consider two further enhancements to the lifting method, with
or without symmetric extension and periodization:

• Nearest neighbor lifting to reduce the number of distant memory accesses.
• Lifting sequence choiceallowing some utility to be maximized.

Nearest neighborsin an input array are elements whose indices differ by one. The
corresponding memory locations are thus close enough to ensure that both are very
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likely to reside in the same physical cache and thus are quickto access. Different
but equivalentlifting sequencesall give the same filter transformation but may have
different arithmetic complexity or propagation-of-errorproperties. In this paper, we
will show how the existence and construction of these enhancements improves the
efficiency of DWT.

2 Review of Discrete Wavelet Transforms

Recall that DWT consists of:

• Signal: u∈ ℓ2, in practice finitely supported or periodic.
• Analysis filters: linear mapsH̃,G̃ : ℓ2→ ℓ2, composed of convolution and down-

sampling.
• Discrete wavelet transform: for integerJ > 0 levels, filter the signal into a

collection of wavelet components

u 7→ {H̃Ju; G̃H̃J−1u, G̃H̃J−2u, . . . , G̃H̃u, G̃u}.

• Synthesis filters: linear mapsH,G : ℓ2 → ℓ2, composed of convolution and
resampling and related tõH,G̃.

• Wavelet reconstruction:

u = GG̃u+HH̃u

= GG̃u+H
(

GG̃H̃u+HH̃2u
)

= · · ·
= GG̃u+H

(

GG̃H̃u+H
(

· · ·+H
(

GG̃H̃J−1u+HH̃Ju
))

· · ·
)

.

An example of DWT to depthJ = 4 is depicted in Figure 1. In it the analysis filters
are determined by sequencesh↔ H̃ andg↔ G̃, while the synthesis filters are ad-
joints H = H̃∗↔ h∗ andG = G̃∗↔ g∗. Reconstruction ofu is depicted as moving
up and adding.

A filter F : ℓ2 → ℓ2 is a linear transformation determined by a absolutely
summable sequencef = { fn : n∈ Z}:

Fxm = ∑
n

f2m−nxn, m∈ Z.

Theadjoint filter F∗ determined by the same sequencef is

F∗xn = ∑
m

f̄2m−nxm, n∈ Z.

Thus〈Fx,y〉= 〈x,F∗y〉 for all x,y∈ ℓ2, using the Hermitean inner product inℓ2.
Theconjugate filterḞ of F has sequencėf = { ḟn : n∈ Z} defined by
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Fig. 1 Four-level discrete wavelet transform with filtersh,g

ḟn = (−1)n f1−n ⇒ fn = (−1)1−n ḟ1−n, ⇒ F̈ =−F

Filter F is calledfinite, equivalentlyfinite impulse response (FIR), if its sequence
f is finitely-supported. Such filters have asupport interval I= [minS,maxS] of
finite length|I |, whereS= {n∈ Z : fn 6= 0}. If F is finite thenḞ is also finite, with
the same support length.

Filter H is calledorthogonalif it and its conjugate filterG = Ḣ satisfy theor-
thogonality conditions:

HH∗ = Id; GG∗ = Id; GH∗ = HG∗ = 0; H∗H +G∗G = Id.

FiltersH,G form aperfect reconstruction pairif they and their conjugates̃H = Ġ
andG̃ = Ḣ satisfy the weakerbiorthogonality conditions:

H̃H∗ = Id; G̃G∗ = Id; G̃H∗+ H̃G∗ = 0; H∗H̃ +G∗G̃ = Id.

These may be satisfied for someG 6= Ḣ. However, sinceḦ =−H andG̈=−G, any
perfect reconstruction pairH,G also satisfies

HH̃∗ = Id; GG̃∗ = Id; GH̃∗+HG̃∗ = 0; H̃∗H + G̃∗G = Id.

Thus (H̃,G̃) = (Ġ, Ḣ) form a perfect reconstruction pair whenever(H,G) are a
perfect reconstruction pair.

Call H a perfect reconstruction filterif there exists acomplementfilter G such
that (H,G) is a perfect reconstruction pair. Any orthogonal filterH is evidently a
perfect reconstruction filter: we get a perfect reconstruction pair usingG = Ḣ as its
complement.

Equivalent perfect reconstruction conditions may be stated for filter sequences.
For example, withH↔ h and its conjugatėH = G↔ g, the orthogonality conditions
become:
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∑
k

h(k)h̄(k+2n) = 1(n) = ∑
k

g(k)ḡ(k+2n);

∑
k

g(k)h̄(k+2n) = 0 = ∑
k

h(k)ḡ(k+2n);

and

∑
k

h(2k+m)h̄(2k+n)+∑
k

g(2k+m)ḡ(2k+n) = 1(n−m),

for all n,m∈ Z. Here

1(n) =

{

1, if n = 0,
0, otherwise.

.

It is a straightforward exercise to rewrite the remaining conditions for biorthogonal
perfect reconstruction pairs in terms of filter sequences.

3 Review of Lifting

Recall the definition of theZ transformof a sequencex = {xn ∈ C : n∈ Z} ∈ ℓ2:

x(z) = ∑
n

xnz−n, with











even part xe(z)
def
= ∑

n
x2nz−n;

odd part xo(z)
def
= ∑

n
x2n+1z−n.

We recover theZ-transform ofx from the even and odd partsxe,xo:

x(z) = xe(z
2)+z−1xo(z

2).

Likewise, we get the even and odd parts from theZ-transform:

xe(z
2) =

x(z)+x(−z)
2

, xo(z
2) =

x(z)−x(−z)
2z−1 .

Any filter F determined by a sequence{ fn : n∈ Z} is likewise determined by the
Z transform f (z) = ∑n fnz−n. We may denote the even and odd parts byfe(z) and
fo(z), respectively, and write the actions ofF and its adjointF∗ on x as pointwise
multiplication ofZ transforms:

Fx(z) = ∑
m

Fxmz−m = ∑
m

∑
n

f2m−nxnz−m

= ∑
m

∑
n

f2m−2nx2nz−m+∑
m

∑
n

f2m−2n−1x2n+1z−m

=

(

∑
m

f2mz−m
)(

∑
n

x2nz−n
)

+

(

∑
m

f2m−1z−m
)(

∑
n

x2n+1z−n
)
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=

(

∑
m

f2mz−m
)(

∑
n

x2nz−n
)

+z−1
(

∑
m

f2m+1z−m
)(

∑
n

x2n+1z−n
)

= fe(z)xe(z)+z−1 fo(z)xo(z);

F∗x(z) = ∑
n

F∗xnz−n = ∑
n

∑
m

f̄2m−nxmz−n

= ∑
m

∑
n

f̄nxmz−n−2m =

(

∑
n

f̄nz−n
)(

∑
m

xmz−2m
)

= f̄ (z)x(z2).

Remark 1.There is also a “correlation and downsampling” definition offilter and
adjoint:

Fxm = ∑
n

f2m+nxn, m∈ Z; F∗xn = ∑
m

f̄2m+nxm, n∈ Z.

Writing this in terms ofZ transforms is straightforward and left to the reader.⊓⊔

There are algebraic relations between theZ transforms of a filterF and its con-
jugateḞ , respectively denoted byf and ḟ . Namely:

ḟ (z) =−z−1 f (−z−1),







ḟe(z) = fo(z−1),

ḟo(z) =− fe(z−1).

Remark 2.It is possible to generalize to theM-conjugatefor fixed M ∈ Z:

ḟn = (−1)n f2M+1−n ⇒ fn = (−1)1−n ḟ2M+1−n, ⇒ F̈ =−F

For theM-conjugate of filterF , compute

ḟ (z) =−z−2M−1 f (−z−1),







ḟe(z) = z−2M fo(z−1),

ḟo(z) =−z−2M fe(z−1). ⊓⊔

Using the relations just stated, perfect reconstruction conditions for filters may
be written in terms ofZ transforms. For filtersH,G, H̃ = Ġ,G̃ = Ḣ, these become:

h(z)h̃(z−1)+g(z)g̃(z−1) = 1; h(z)h̃(−z−1)+g(z)g̃(−z−1) = 0.

In terms of the even and odd parts:

he(z)h̃e(z
−1)+ge(z)g̃e(z

−1) = 1; he(z)h̃o(z
−1)+ge(z)g̃o(z

−1) = 0;

ho(z)h̃o(z
−1)+go(z)g̃o(z

−1) = 1; ho(z)h̃e(z
−1)+go(z)g̃e(z

−1) = 0.
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We now turn our attention to finite filters. Ifp∈ ℓ2 is finitely-supported, then its
Z transformp(z) is aLaurent polynomial:

p(z) =
b

∑
n=a

pnz−n, a≤ b, a,b∈ Z.

If p 6≡ 0, thenS= {n : pn 6= 0} is a finite nonempty set and thedegreemay be defined
by degp = maxS−minS, a nonnegative integer one less than the support length of
the sequencep.

Laurent polynomials form the commutative ringC[z,z−1] with multiplicative
identity 1. Elementp 6≡ 0 is called aunit, if and only if p has a multiplicative
inverse, if and only ifp is a monomial p(z) = Kzn for some constantsK 6= 0 and
n∈ Z, if and only if degp = 0. Thenp−1(z) = K−1z−n.

We may also form matrices over the Laurent Polynomials. The case we will use
is the matrix ringMat

(

2×2,C[z,z−1]
)

, with elements:

M(z) =

[

a(z) b(z)
c(z) d(z)

]

, a,b,c,d ∈ C[z,z−1].

M is invertible if and only if detM = a(z)d(z)−b(z)c(z) is invertible inC[z,z−1],
namely is a nonzero monomialKzn. Then

M−1(z) = K−1z−n
[

d(z) −b(z)
−c(z) a(z)

]

.

Now, any pairH,G of finite filters determines apolyphase matrix:

P(z) =

[

he(z) ge(z)
ho(z) go(z)

]

.

Likewise, their conjugates̃H = Ġ, G̃ = Ḣ determine the related polyphase matrix:

P̃(z) =

[

h̃e(z) g̃e(z)
h̃o(z) g̃o(z)

]

=

[

ġe(z) ḣe(z)
ġo(z) ḣo(z)

]

.

Both P andP̃ belong toMat(2×2,C[z,z−1]). A straightforward calculations now
shows that the perfect reconstruction condition for(H,G) is equivalent to:

P(z)P̃(z−1)t = Id.

Remark 3.In practice,Id may be replaced by any invertible diagonal matrix in
Mat(2×2,C[z,z−1]). The two units ofC[z,z−1] appearing on the diagonal will then
be monomialsKzn, or multiples by nonzeroK of shifts byn indices. The original
sequencex is easily reconstructed from such a shifted and multiplied version. ⊓⊔

Say that a Laurent polynomialh(z) has acomplement g= g(z) if the polyphase
matrix determined byh,g is invertible. It follows immediately that finite filterH is
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part of a perfect reconstruction pair, if and only ifH has a complement, if and only
if its Z-transform has a complement. This reduces part of filter design to algebra.

Now, C[z,z−1] is a Euclidean domain, so the division lemma holds:

Lemma 1. Suppose a,b∈C[z,z−1] with dega≥ degb≥ 0. Then there exists aquo-
tientq and aremainderr with degr < degb so that

a(z) = q(z)b(z)+ r(z).

Note thatdegq = dega−degb. ⊓⊔
Write q= a/b andr = a%b, as in the C programming language, but note that neither
q nor r is unique.

Lemma 2. There are at most21+dega−degb different ways to divide a(z)/b(z), among
which at most2+dega−degb quotients are different.

Proof. First note that division is a generalization of Gaussian elimination. The vec-
tor of b’s coefficients is shifted, scaled, and added to the vector ofa’s coefficients to
eliminate either the highest or lowest power ofz, namely the leftmost or rightmost
term. After at most 1+dega−degb such eliminations, the remainder will have de-
gree less than degb. Each sequence of eliminations is determined by its sequence of
“left” and “right” directives, making at most 21+dega−degb different ways to find the
quotient.

However, left and right eliminations commute as long as dega > degb. Hence,
two quotients will be the same if their elimination sequences contain the same num-
ber of left and right eliminations, regardless of order. Thus, there can be no more
distinct quotients than the number of sequences of length 1+ dega− degb with
distinct numbers of “left” directives, which is 2+dega−degb. ⊓⊔

Example 1.Let a(z) = 2z−1 +4+zandb(z) = 1+z. Then dega = 2 and degb = 1,
so there are three distinct quotients:

a(z) = (2z−1 +2)b(z)+(−z) (left, left)

a(z) = (3z−1 +1)b(z)+(−z−1) (right, right)

a(z) = (2z−1 +1)b(z)+1 (left, right) or (right, left)

We may say “left division” to mean always eliminating the leftmost term, and “right
division” to mean always eliminating the rightmost term. When dega− degb is
even, there will be an even number of terms to eliminate so we may say “symmetric
division” to mean an equal number of left and right eliminations.

A Laurent polynomialp = p(z) is said to besymmetricif it is unchanged by
reversing the order of its coefficients. This is equivalent to the property

(∃M)(∀z) zM p(z−1) = p(z).

For symmetricp not identically zero, thereflection index Mis unique. Monomials
zk are evidently symmetric withM = 2k. We may further distinguish whole or half
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index symmetry, depending upon whetherM is even or odd. The parity ofM will be
the same as that of degp.

Lemma 3. If a,b ∈ C[z,z−1] are symmetric Laurent polynomials, then symmetric
division results in a symmetric quotient a/b and symmetric remainder a%b.

Proof. The result holds if dega < degb, since thena/b = 0 anda%b = a.
For all other cases, use induction onn = dega−degb.
If n = 0, left elimination and right elimination produce identical monomial quo-

tients, which are trivially symmetric. The remainders are evidently identical and
symmetric as well.

If n = 1, the quotient will have degree 1 with two identical coefficients, hence
will be symmetric. The remainder will be the difference between two symmetric
polynomials with the same reflection indexM, hence will itself be symmetric with
that sameM.

The induction step follows from the observation that a symmetric (left, right)
pair of elimination steps reduces the degree of the dividendby 2 while preserv-
ing its symmetry. This reducesn by 2 and contributes to the quotient a symmetric
polynomial of the same reflection indexM asa. ⊓⊔

We now recall some basic notions useful in Euclidean domains:

• Write b|a (b divides a) if a = qb+0 for someq. Thusb|a⇒ degb≤ dega.
• Say thatd is acommon divisorof a andb if d|a andd|b.
• Say that a common divisord is a greatest common divisorof a andb if every

common divisorc of a andb also dividesd.

Lemma 4. If d1 and d2 are greatest common divisors for a and b, then d1 = ud2 for
some unit u∈ C[z,z−1]. ⊓⊔

Theorem 1.Every pair a,b∈ C[z,z−1], not both zero, has a greatest common divi-
sor that is unique up to multiplication by a unit.⊓⊔

Denote this set of greatest common divisors by gcd(a,b). Say thata,b arecoprime
if gcd(a,b) is contained in the set of units.

Assumea,b are Laurent polynomials with dega≥ degb≥ 0. Their greatest com-
mon divisor may be found by the Euclidean Algorithm for Laurent polynomials. Put

a0
def
= a andb0

def
= b, and defineak,bk recursively:

ak+1 = bk; bk+1 = ak−qkbk, k = 0,1,2, . . . ,

whereqk is one of the possible quotientsak/bk. It thus determinesbk+1 as the cor-
responding one of the possible remaindersak%bk.

Lemma 5. Let n be the smallest positive integer for which bn = 0. Then an ∈
gcd(a,b). ⊓⊔

By Lemma 4, finding any representative in gcd(a,b) determines all the others.
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Example 2.Considera(z) = a0(z) = 2z−1 + 4+ z andb(z) = b0(z) = 1+ z. Using
symmetric division, the first step is

a1(z) = 1+z, b1(z) = 1, q1(z) = 2z−1 +1.

The second step is

a2(z) = 1, b2(z) = 0, q2(z) = 1+z.

Therefore
[

2z−1 +4+z
1+z

]

=

[

2z−1 +1 1
1 0

][

1+z 1
1 0

][

1
0

]

,

so gcd(a,b) = 1.

Note thatan is determined only up to a unit, defined by the sequence of quotients
q0, . . . ,qn−1.

Theorem 2.Laurent polynomial h has a complement g if and only if he and ho are
coprime.

Proof. Apply the Euclidean Algorithm to find the polyphase matrix. Write the re-
cursion in matrix form:
[

ak+1(z)
bk+1(z)

]

=

[

0 1
1 −qk(z)

][

ak(z)
bk(z)

]

, ⇒
[

an(z)
0

]

=
n

∏
k=1

[

0 1
1 −qn−k(z)

][

a(z)
b(z)

]

.

Inverting the product of matrices gives

[

a(z)
b(z)

]

= (−1)n
n−1

∏
k=0

[

qk(z) 1
1 0

][

an(z)
0

]

If n is odd, absorb the unit(−1)n term intoan.
Puta = he andb = ho and assume gcd(he,ho) = Kzm, K 6= 0. Definege,go by

P(z)
def
=

[

he(z) ge(z)
ho(z) go(z)

]

=
n−1

∏
k=0

[

qk(z) 1
1 0

][

Kzm 0
0 K−1z−m

]

.

ThenP(z) is evidently invertible. Get̃h, g̃ from P̃(z−1)t = P(z)−1. ⊓⊔

This leads immediately to general implementations of DWT by lifting:

Theorem 3 (Daubechies and Sweldens).For every perfect reconstruction finite fil-
ter pair (H,G) with polyphase matrix P, there exist finitely many Laurent polyno-
mials si(z) and ti(z), 1≤ i ≤m< ∞, and a non-zero constant K such that

P(z) =
m

∏
i=1

[

1 si(z)
0 1

][

1 0
ti(z) 1

][

K 0
0 K−1

]

.
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Remark 4.The matrix factors correspond to the following operations on sequences:

• Prediction: Unit upper triangular factor;ue← ue+Suo.
• Updating: Unit lower triangular factor,uo← uo +Tue.
• Scaling: Last diagonal matrix,ue← Kue, uo← K−1uo.

Sinceue,ue may be stored as disjoint arrays, this transform can be performed in
place, without extra memory for temporary results.⊓⊔

Proof. Observe first:
[

qk(z) 1
1 0

]

=

[

1 qk(z)
0 1

][

0 1
1 0

]

=

[

0 1
1 0

][

1 0
qk(z) 1

]

.

Theflip matrices

[

0 1
1 0

]

cancel if Predict and Update steps alternate.

Second, note that a leftover flip matrix may be factored into lifting steps in a
number of ways:

[

0 1
1 0

]

=

[

1 0
−1 1

][

1 1
0 1

][

1 0
−1 1

][

−1 0
0 1

]

=

[

−1 0
0 1

][

1 −1
0 1

][

1 0
1 1

][

1 −1
0 1

]

=

[

1 0
0 −1

][

1 0
−1 1

][

1 1
0 1

][

1 0
−1 1

]

=

[

1 0
1 1

][

1 −1
0 1

][

1 0
1 1

][

1 0
0 −1

]

.

Third, note that diagonal shift matrices may be factored into lifting steps:
[

z 0
0 z−1

]

=

[

1 −z
0 1

][

1 0
z−1 1

][

1 1−z
0 1

][

1 0
−1 1

][

1 1
0 1

]

=

[

1 0
1 1

][

1 −1
0 1

][

1 0
1−z 1

][

1 z−1

0 1

][

1 0
−z 1

]

[

z−1 0
0 z

]

=

[

1 0
z 1

][

1 −z−1

0 1

][

1 0
−1+z 1

][

1 1
0 1

][

1 0
−1 1

]

.

Other factorizations exist, but at most five lifting steps are needed per shift. Thus,
[

zm 0
0 z−m

]

or

[

z−m 0
0 zm

]

factor into at most 5m lifting steps. Afterwards, only the

constant diagonal matrix

[

K 0
0 K−1

]

remains. ⊓⊔
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4 Nearest Neighbor Factorization

Assume that a smooth sampled signalu∈ ℓ2 is finitely supported in the index inter-
val [0,N−1]. Big endpoint values|u(0)| or |u(N−1)|may result in misleading large
DWT coefficients. Similarly, a big difference|u(N−1)−u(0)| may result in large
periodized DWT coefficients. These undesirable effects are mitigated through the
use ofsymmetric extension, as described in [1]. It requires symmetricH,G, defining

u(n) =

{

u(−n), if −N < n < 0;
u(n) = u(2N−1−n), if N < n < 2N,

and then treatingu as 2N− 2-periodic. Several other extensions are possible, de-
pending on the symmetry type ofH,G.

It is easy to implement symmetric extension for certain special implementations.
The lifting factorization

P(z) =
n

∏
k=1

[

1 sk(z)
0 1

][

1 0
tk(z) 1

][

K 0
0 K−1

]

.

uses onlynearest neighborsif it satisfies the following conditions:

sk(z) = αk +βkz
−1,

tk(z) = γkz+δk,

with αk,βk,γk,δk ∈C. Nearest neighbor action on sequences has the explicit forms:

• Nearest neighbor predict: u2k← u2k +αku2k−1 +βku2k+1.
• Nearest neighbor update: u2k+1← u2k+1 + γku2k +δku2k+2.

For nearest neighbor factorizations, symmetric extensionbecomes:

• Symmetric extension nearest neighbor predict step:

u2k← u2k +

{

α(u2k−1 +u2k+1), if 2k 6= 0;
2α u2k+1, if 2k = 0.

• Symmetric extension nearest neighbor update step:

u2k+1← u2k+1 +

{

γ(u2k +u2k+2), if 2k+1 6= N−1;
2γ uN−2, if 2k+1 = N−1.

Hence the endpoints get almost the same treatment as the interior points.
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5 All Lifting can be Nearest Neighbor Lifting

Unfortunately, not every perfect reconstruction filters factors into nearest neighbor
lifting steps directly, even allowing for any choice of quotients in Euclid’s algorithm.
For example, let

h(z) =
1√
2
(1+z−9) g(z) =

1√
2
(−z8 +z−1).

This is similar to the Haar orthogonal filter pair. Then

he(z) =
1√
2

; ho(z) =
1√
2

z−4; ge(z) =
1√
2

z4; go(z) =
1√
2
.

There are no division steps in Euclid’s algorithm, so the (empty) sequence of quo-
tients is unique. The ordinary lifting factorization gives:

P(z) =
1√
2

[

1 z4

z−4 1

]

=

[

1 0
z−4 1

][

1 −1
2z4

0 1

]

[

1√
2

0

0
√

2

]

This is not a nearest neighbor factorization because the off-diagonal nonconstant
terms have powers other thanz andz−1. However, in common with nearest neigh-
bor lifting steps, the off-diagonal termss(z), t(z) have degs≤ 1 and degt ≤ 1, and
further factorization is possible (see Lemma 7 below) to obtain nearest-neighbor
steps.

We may obtain quotients of constrained degree through a modification of the
division lemma:

Lemma 6 (Partial division). Suppose a,b∈ C[z,z−1] with dega≥ degb≥ 0. Then
there exists apartial quotientq and apartial remainderr with degq≤ 1 anddegr <
dega so that

a(z) = q(z)b(z)+ r(z).

Proof. We limit ourselves to eliminating just one or two terms froma with a partial
quotient of the formq(z) = zm(γ + δz). Then degq≤ 1, but not bothγ = 0 and
δ = 0, so degr = deg(a−qb) < dega. ⊓⊔

It is clear that any common divisor ofa(z) andb(z) also divides the partial re-
mainderr(z) = a(z)− q(z)b(z), so we obtain lifting factors of degree one or less
with Euclid’s algorithm expanded to use partial division:

Theorem 4.Assume a and b are two coprime nonzero Laurent polynomials. Then
there exist Laurent polynomials q1, ...,qn with degqk ≤ 1 for all k = 1, ...,n, such
that

[

a(z)
b(z)

]

=
n

∏
k=1

[

qk(z) 1
1 0

][

K
0

]

,

where n≤ 2(dega+degb+1). ⊓⊔
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We may now slightly strengthen Theorem 3:

Corollary 1. For every perfect reconstruction finite filter pair(H,G) with polyphase
matrix P, there is a lifting factorization

P(z) =
m

∏
i=1

[

1 si(z)
0 1

][

1 0
ti(z) 1

][

K 0
0 K−1

]

,

where the Laurent polynomials si(z) and ti(z), 1≤ i ≤m< ∞, each have degree one
or less, and K is a non-zero constant.⊓⊔

As shown earlier, the degree condition is not enough to guarantee that the factor-
ization gives a nearest neighbor filter transform. To get from degree one or less to
nearest neighbor polynomials requires additional factorization:

Lemma 7.
[

1 z2m(αz−1 +β )
0 1

]

=

[

zm 0
0 z−m

][

1 αz−1 +β
0 1

][

z−m 0
0 zm

]

;

[

1 0
z2m(γ +δz) 1

]

=

[

z−m 0
0 zm

][

1 0
γ +δz 1

][

zm 0
0 z−m

]

,

where m is any integer andα,β ,γ,δ are constants. ⊓⊔

Factoring thezm shifts into at most 5m nearest neighbor lifting steps each yields:

Corollary 2. Any degree-one predict or update matrix factors further into a finite
number of nearest neighbor lifting steps.⊓⊔

Remark 5.The conditions degsk ≤ 1 and degtk ≤ 1 may also be obtained from an
ordinary lifting factorization by further decomposition:

[

1 s1(z)+s2(z)
0 1

]

=

[

1 s1(z)
0 1

][

1 s2(z)
0 1

]

,

[

1 0
t1(z)+ t2(z) 1

]

=

[

1 0
t1(z) 1

][

1 0
t2(z) 1

]

.

However, this may create multiple successive predict factors and multiple successive
update factors and ultimately requires more matrices.⊓⊔

6 Backward Error Analysis for Lifting Factorizations

We now turn consider how various lifting factorizations affect the conditioning of
DWT. In terms of the polyphase matrix, this may be computed as follows:
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Lemma 8. If P(z) is the polyphase matrix of a perfect reconstruction filter pair, then

cond(P)
def
=

sup
{

√

λmax(P(z)∗P(z)) : |z|= 1
}

inf
{

√

λmin(P(z)∗P(z)) : |z|= 1
} .

Furthermore, if P= P1 · · ·Pn, thencond(P)≤ cond(P1) · · ·cond(Pn). ⊓⊔

For a proof of this fact and extensive discussion of polyphase matrices, see [6].
We may use the special form of lifting step matrices to estimate the condition

number of the factorization ofP in another, simpler way. For definiteness, consider
an “update” step in floating-point arithmetic with absolutetruncation errorε. Its
polyphase matrixG may be represented within the computer by something that
differs by as much asδG, where

G(z) =

[

1 0
t(z) 1

]

⇒ δG(z) =

[

ε 0
δ t(z) ε

]

,

and Laurent polynomialt(z) = ∑k tkz−k has errorδ t(z) = ∑k δ tkz−k. Each poly-
nomial coefficientδ tk is computed from the filterh by elimination and therefore
satisfies

|δ tk| ≤ (1+degh)ε +O(ε2).

For suchG, define

|G|(z) def
=

[

1 0
|t|(z) 1

]

, where |t|(z) def
= ∑

k

|tk|z−k.

Then the maximum matrix infinity norm ofG(z) may be computed as follows:

‖G‖∞
def
= sup
|z|=1
‖G(z)‖∞ ≤ sup

|z|=1
‖|G|(z)‖∞ = 1+ sup

|z|=1
|t|(z) = 1+∑

k

|tk|.

The same estimate applies to “predict” steps as well.
Now assume thatP(z) is a polyphase matrix with lifting factorization

P(z) = ∏
i

[

1 si(z)
0 1

][

1 0
ti(z) 1

][

K 0
0 K−1

]

def
= ∏

j
G j(z),

where eachG j is a lifting step. Taking truncation errors into account, the computed
results using floating-point arithmetic therefore satisfy

P(z)+δP(z) = ∏
j
(G j(z)+δG j(z)).

By expanding the product and using the submultiplicativityof the matrix infinity
norm, we get
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‖δP‖∞ ≤ ε (1+degh)∑
j
||G j ||∞ +O(ε2),

indicating that to obtain the smallest condition number, weshould use a factorization
with small lifting coefficients and not too many low-degree lifting steps.

Assuming the worst case, equality, we can estimate the condition number for
three implementations of the filter bank:

1. the original polyphase matrixP,
2. the usual (shortest) lifting factorization ofP, and
3. the nearest neighbor lifting factorization ofP.

The results are displayed in Table 1, for a number of symmetric and nonsymmetric-
orthogonal filters.

Filter Cond of P(z)Cond of Lifting Cond of N-N
9-7 1.32 205 205
D4 1 77 77
D6 1 76 76

Cubic B-spline 4 56 56
CDF-1-1 1 8.59 8.59
CDF-1-3 1.28 8.72 3100
CDF-1-5 1.42 6.25 1200
CDF-2-2 2 8.59 8.59
CDF-2-4 2 99 1900
CDF-3-1 4 643 643
CDF-3-3 4 723 3200
CDF-4-2 8 111 111
CDF-4-4 8 113 2800

Table 1 Condition number bounds for nearest neighbor factorization versus ordinary lifting versus
the polyphase matrix.

7 Applications and Examples

Because of nonuniqueness in the quotients in Euclid’s algorithm for matrices over
Laurent polynomials, we may choose a lifting factorizationoptimized for a minimal
number of nearest neighbors.

In some cases, the original lifting steps yield a nearest neighbor algorithm. The
filter indexing may need to be adjusted to eliminate or at least minimize the number
of zm shift matrices. In addition, the sequence of quotients{qk(z) : k = 0,1, . . . ,n−
1} may be chosen to minimize the condition number bound.

Example 3.To show how re-indexing may result in a nearest-neighbor factorization,
consider Daubechies’D4 filters, defined as follows:
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h(z) = h3z−3 +h2z−2 +h1z−1 +h0,

g(z) = h0z−1−h1 +h2z−h3z2,

with

h0 =
1+
√

3

4
√

2
, h1 =

3+
√

3

4
√

2
, h2 =

3−
√

3

4
√

2
, h3 =

1−
√

3

4
√

2
.

Then the polyphase matrix is

P(z) = P̃(z) =

[

he(z) ge(z)
ho(z) go(z)

]

=

[

h2z−1 +h0 −h1−h3z
h3z−1 +h1 h0 +h2z

]

.

It has the following two factorizations, the first obtained by left division in Euclid’s
algorithm, the second by right division:

P(z) =

[

1 −
√

3
0 1

][

1 0√
3

4 +
√

3−2
4 z−1 1

][

1 z
0 1

]

[

√
3+1√

2
0

0
√

3−1√
2

]

=

[

1
√

3
3

0 1

][

1 0
−
√

3
4 + 3

√
3+6
4 z 1

][

1 −z−1

3
0 1

]

[

3−
√

3
3
√

2
z−1 0

0 3+
√

3√
2

z

]

.

The forward transform corresponding to the first (left-division) factorization is not
nearest neighbor:

x2m+1 ← x2m+1−
√

3x2m;

x2m← x2m+

√
3

4
x(1)

2m+1 +

√
3−2
4

x(1)
2m+3;

x2m+1 ← x2m+x2m−2;

x2m←
√

3+1√
2

x2m;

x2m+1 ←
√

3−1√
2

x2m+1.

The inverse transform for the left division factorization into lifting steps is similarly
not nearest neighbor, as may be seen from its polyphase matrix:

P̃(z−1)t =

[

√
3+1√

2
0

0
√

3−1√
2

]

[

1 0
z−1 1

][

1
√

3
4 +

√
3−2
4 z

0 1

][

1 0
−
√

3 1

]

.

It is left as an exercise to derive the predict and update steps from these matrices.
The second (right-division) factorization can be made nearest neighbor by factor-

ing the leftover diagonal shift matrices into lifting steps. However, if the coefficients
of h are first shifted so thath(z) = ∑1

−2hk+2z−k, then right division in Euclid’s algo-
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rithm yields a nearest neighbor transform directly:

P(z) =

[

1
√

3
3

0 1

][

1 0
−
√

3
4 + 3

√
3+6
4 z 1

][

1 −z−1

3
0 1

]

[

3−
√

3
3
√

2
0

0 3+
√

3√
2

]

.

It is again left as an exercise to find the corresponding predict and update steps.

Example 4.Not all orthogonal filters will give nearest neighbor factorization di-
rectly after a simple index shift. Consider the orthogonal filters defined earlier:

h(z) =

√
2

2
(1+z−9) g(z) =

√
2

2
(−z8 +z−1),

We cannot get a nearest neighbor factorization simply by using an index shift. For
this filter, it is necessary to use Lemma 7 and pay the price of additional lifting steps.

Example 5.Not all filters offer a choice of lifting factorizations. Thebiorthogonal
perfect reconstruction filtersCDF-2-4h andCDF-2g have the following coeffi-
cients:

h(z) =
√

2

(

3
128

z−4− 3
64

z−3− 1
8

z−2 +
19
64

z−1+

+
45
64

+
19
64

z− 1
8

z2− 3
64

z3 +
3

128
z4

)

g(z) =
√

2

(

1
4

z−2− 1
2

z−1 +
1
4

)

.

CDF biorthogonal filters [2] are symmetric, so there is a unique lifting factoriza-
tion using the Euclidean algorithm. But since the degrees ofh(z) andg(z) are very
different, in most cases it does not yield a nearest neighborfactorization directly.

P(z) =

[

−1
2z−1− 1

2 1
1 0

][

− 3
64z−1 + 19

64 + 19
64z− 3

64z2 1
1 0

]

[√
2 0

0 −
√

2
2

]

=

[

−1
2z−1− 1

2 1
1 0

][

− 3
64z−1 + 19

64 1
1 0

][

0 1
1 0

]

[

19
64z− 3

64z2 1
1 0

]

[√
2 0

0 −
√

2
2

]

=

[

1 −1
2z−1− 1

2
0 1

][

0 1
1 0

][

1 − 3
64z−1 + 19

64
0 1

]

[

z 0
0 z−1

][

1 19
64z−1− 3

64
0 1

][

z−1 0
0 z

]

[√
2 0

0 −
√

2
2

]

.

An application of Lemma 7, Corollary 2, and Theorem 3 may be used to convert
this into a nearest neighbor factorization.
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Example 6.If the filter h has a perfect reconstruction complement, then its coeffi-
cients may be re-indexed and the proper quotients chosen in the division algorithm
so that gcd(he,ho) is a constant. However, this is not guaranteed to produce nearest
neighbor lifting.

Consider Daubechies’ orthogonalD6 filter; it may have its indices shifted so that
h(z) = ∑3

k=−2hkz−k. The filter thus indexed, together with its complementg = ḣ,
has the following polyphase matrix:

he(z) = h2z−1 +h0 +h−2z ge(z) =−h−1z−1−h1−h3z

ho(z) = h3z−1 +h1 +h−1z go(z) = h−2z−1 +h0 +h2z.

Then the lifting factorization by symmetric division yields a constant gcd(he,ho)≈
1.918, entirely through nearest-neighbor predict and updatesteps:

P(z) =

[

1 0
−0.412 1

][

1 −1.565z−1 +0.352
0 1

][

1 0
0.028+0.492z 1

]

[

1 −0.390
0 1

][

1.918 0
0 0.521

]

.

Alternatively, with the indexingh(z) = ∑5
k=0hkz−k, we get a different polyphase

matrix:

he(z) = h4z−2 +h2z−1 +h0 ge(z) =−h1z−1−h3z1−h5z2

ho(z) = h5z−2 +h3z−1 +h1 go(z) = h0 +h2z+h4z2.

Using the same division as forD4 now gives nonconstant gcd(he,ho) = 1.918z−1,
but with nearest-neighbor predict and update steps:

P(z) =

[

1 0
−0.412 1

][

1 −1.565z−1 +0.352
0 1

][

1 0
0.028+0.492z 1

]

[

1 −0.390
0 1

][

1.918z−1 0
0 0.521z

]

However, choosing right division so that the gcd comes out constant gives

P(z) =

[

1 0
−0.412 1

][

1 −1.565z−1 +0.355
0 1

][

1 0
0.001645z−1−0.028 1

]

[

1 607.65z−116.5z2

0 1

][

−33.172 0
0 0.03

]

,

which is evidently not a nearest neighbor factorization.
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