Wavelet Transforms by Nearest Neighbor Lifting

Wei ZHU and M. Victor WICKERHAUSER

Abstract We show that any discrete wavelet transform using finite ilsgue-
sponse filters may be factored into lifting steps that usg naharest-neighbor array
elements. We then discuss the advantages and disadvaofaggmsing this addi-
tional requirement.

1 Introduction

Our goal is to implement discrete wavelet transforms (DWTitiehtly. The recur-
sive algorithms of Daubechies [3] and Mallat [5] offer@(m) algorithm forn-point
time series. Thdifting implementation of Daubechies and Sweldens [4] offers an
alternative which is als®(n) complex but which only requires about half as many
arithmetic operations in the most common cases. Additlgnialacts on the input

in such a way that requires jus{1) auxilliary memory.

For DWT on an interval, artifacts may arise at the boundarpéf input’s peri-
odization from that interval is discontinuou®ymmetric extensidrefore periodiza-
tion, thoroughly described in [1], reduces these artifacts is easy to include within
a lifting implementation.

In this paper we consider two further enhancements to ttiadiimethod, with
or without symmetric extension and periodization:

e Nearest neighbor lifting to reduce the number of distant memory accesses.
e Lifting sequence choiceallowing some utility to be maximized.

Nearest neighbors an input array are elements whose indices differ by one. Th
corresponding memory locations are thus close enough toretisat both are very
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likely to reside in the same physical cache and thus are doielccess. Different
but equivalentifting sequenceall give the same filter transformation but may have
different arithmetic complexity or propagation-of-ergmoperties. In this paper, we
will show how the existence and construction of these engraeats improves the
efficiency of DWT.

2 Review of Discrete Wavelet Transforms

Recall that DWT consists of:

e Signal: u e (2, in practice finitely supported or periodic.

e Analysisfilters: linear map#i,G: ¢2 — ¢2, composed of convolution and down-
sampling.

e Discrete wavelet transform: for integerJ > 0 levels, filter the signal into a
collection of wavelet components

u— {Hlu; GAY~tu, GHY 2y, ..., GHu, Gu}.

o Synthesis filters: linear mapsH,G : 0?2 — (2, composed of convolution and
resampling and related to, G.
e Wavelet reconstruction:

u= GGu+HHu
= GGu+H (GGHu+HH?)
= GGu+H (GGHU+H (- +H (GEA  tu+HHA)) ).

An example of DWT to deptld = 4 is depicted in Figure 1. In it the analysis filters
are determined by sequendes- H andg — G, while the synthesis filters are ad-
jointsH = H* — h* andG = G* — g*. Reconstruction ofi is depicted as moving
up and adding.

A filter F : 2 — (2 is a linear transformation determined by a absolutely
summable sequende= {f,:ne Z}:

Fxm="> fom-n¥, meZ.
n

Theadjoint filter F* determined by the same sequerids

F% =Y fannXm,  NEZ
m

Thus(Fx,y) = (x,F*y) forall x,y € (2, using the Hermitean inner productéfu
Theconjugate filtef- of F has sequencé= {f,: ne Z} defined by
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Fig. 1 Four-level discrete wavelet transform with filtdrsy

fn = (_1)nf17n = fn = (—1)1_nf17n, = F = —F

Filter F is calledfinite, equivalentlyfinite impulse response (FIRjits sequence
f is finitely-supported. Such filters havesapport interval I= [minS maxS of
finite length|l|, whereS= {n e Z : f, # 0}. If F is finite thenF is also finite, with
the same support length. _

Filter H is calledorthogonalif it and its conjugate filteiG = H satisfy theor-
thogonality conditions

HH*=1d; GG'=Ild; GH*"=HG"=0; H'H+G'G=Id.

FiltersH, G form aperfect reconstruction paiif they and their conjugateld = G
andG = H satisfy the weakebiorthogonality conditions

HH*=1d; GG =1d; GH"+HG'=0; H'H+G'G=Id.

These may be satisfied for soiGe# H. However, sincél = —H andG = —G, any
perfect reconstruction pail, G also satisfies

HH* =1d: GG*=Id: GH*+HG* =0 H*H+GG=Id.

Thus (H,G) = (G,H) form a perfect reconstruction pair whenevgt,G) are a
perfect reconstruction pair.

Call H a perfect reconstruction filteif there exists acomplementfilter G such
that (H,G) is a perfect reconstruction pair. Any orthogonal filtéris evidently a
perfect reconstruction filter: we get a perfect reconstancpair usingG = H as its
complement.

Equivalent perfect reconstruction conditions may be stée filter sequences.
For example, wittH «- hand its conjugatél = G « g, the orthogonality conditions
become:
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Zh k+2n =1(n Zg g(k+2n);

%g h(k+2n) = Zh a(k+2n);

and
Zh(ZkJr m)h(2k+n) + Zg(zw m)g(2k+n) = 1(n—m),

foralln,me Z. Here
1, ifn=0,
m) = {0, otherwise.

It is a straightforward exercise to rewrite the remainingditions for biorthogonal
perfect reconstruction pairs in terms of filter sequences.

3 Review of Lifting

Recall the definition of th& transformof a sequencg = {x, € C:ne€ Z} € (2

even part ¥(z ZXan n.
= ZXnZ_n, with
m odd part %(z) = Zx2n+1z n

n

We recover th&-transform ofx from the even and odd parts, X,
X(2) = %e(Z) +7Z %o(Z).
Likewise, we get the even and odd parts from Zhgansform:

X(2) +x(=2)

Xe(Z) = PR

2z1

Any filter F determined by a sequen¢é, : n € Z} is likewise determined by the
Z transformf (z) = 3, faz ". We may denote the even and odd partsfgz) and
fo(2), respectively, and write the actions Bfand its adjoint=* on x as pointwise
multiplication of Z transforms:

= ;Fxmzim = ;Z fom-nXnZ ™
= Z z fom—onXonz ™"+ z Z fom-2n-1Xony1Z2 ™
m n m n

“(3me) (o) o (g me ) (3rm)
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(3 (o) s (g ) (o)

= fe(2)%e(2) + 2 fo(2)%(2);

F'x(z) = ZF*an‘” = zz fom_nXmZ "
n n m

=SS iz = (S (Yx ™)~ flox@),

Remark 1 There is also a “correlation and downsampling” definitiorfitkér and
adjoint:

FXn=S faminXs, MEZ; F*xn:Zf_Zanxm, nez.
n m

Writing this in terms ofZ transforms is straightforward and left to the readen

There are algebraic relations between Iheeansforms of a filteF and its con-
jugateF, respectively denoted bfyand f. Namely:

fo(z) = fo(z 1),

fo(z) = —fe(z1).

Remark 21t is possible to generalize to tiM-conjugatefor fixedM € Z:

f@=-z1(-zY), {

fo=(-1)"fams1n = fo=(-1)""famy1n, =F=-F
For theM-conjugate of filtelr, compute

fo(2) =2 Mfo(z 1),

f(z) = -z M1 (—z1), {

fo(z) = -z Mfe(z'1). O

Using the relations just stated, perfect reconstructiamdeens for filters may
be written in terms o transforms. For filter$l,G,H = G, G = H, these become:

h@hz ") +9@8z ) =1  h@h(-z ") +9(§(-z 1) =0.

In terms of the even and odd parts:

he(z)he(zil) + ge(z)ge(zil) =1; he(2) ﬁ0(271) + ge(z)go(zil) 0;

ho(DFa(z %) + Go(2)o(z ) = 1 ho(DFe(z ) + Go(DGelz ) = 0.
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We now turn our attention to finite filters. if € ¢2 is finitely-supported, then its
Z transformp(z) is aLaurent polynomial

b
p@) =3 pz", a<b, abeZ
n=a

If p£0, thenS= {n: p, # 0} is a finite nonempty set and tdegreemay be defined
by degp = maxS— minS, a nonnegative integer one less than the support length of
the sequence.

Laurent polynomials form the commutative rir@fz, z-1] with multiplicative
identity 1. Elementp # 0 is called aunit, if and only if p has a multiplicative
inverse, if and only ifp is amonomial gz) = KZ" for some constantk # 0 and
nec Z, if and only if degp = 0. Thenp=1(z) = K~z ™.

We may also form matrices over the Laurent Polynomials. Tas=ave will use
is the matrix ringMat (2 x 2,C[z z 1]), with elements:

], ab,c,de Clzz 1.

M is invertible if and only if deM = a(z)d(z) — b(z)c(z) is invertible inC|z,z7 1],
namely is a nonzero monomiklz". Then

MYz =K1z " [ d(2) —b(z)] .

Now, any pairH, G of finite filters determines polyphase matrix

~—

he(2) Qe(z
P@) = [h(,(z) go<z>} '

Likewise, their conjugated = G, G = H determine the related polyphase matrix:

5 [he(2) 8e(2)] _ [Ge(2) he(2)
P(z) = [ﬁo(z) go(z)} - [go(Z) Ho(z)} .

Both P andP belong toMat (2 x 2,C[z,z 1]). A straightforward calculations now
shows that the perfect reconstruction condition(tdr G) is equivalent to:

P(z2)P(z 1) =1d.

Remark 3In practice,Id may be replaced by any invertible diagonal matrix in
Mat (2 x 2,C|z,z"Y]). The two units ofC[z,z ] appearing on the diagonal will then
be monomialKZ", or multiples by nonzer& of shifts byn indices. The original
sequence is easily reconstructed from such a shifted and multipliedsion. O

Say that a Laurent polynomi&l(z) has acomplement g- g(z) if the polyphase
matrix determined by, g is invertible. It follows immediately that finite filtad is
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part of a perfect reconstruction pair, if and onlyHfhas a complement, if and only
if its Z-transform has a complement. This reduces part of filtergahetsi algebra.
Now, C[z,z"] is a Euclidean domain, so the division lemma holds:

Lemma 1. Suppose @ € C|z,z 1] with dega > degb > 0. Then there exists quo-
tientq and aremainderr with degr < degb so that

a(2) = q(2)b(z) +r(2).
Note thatdegq = dega— degb. O

Write q=a/bandr = a%b, as in the C programming language, but note that neither
gnorr is unique.

Lemma 2. There are at mos2'+de®-ded djfferent ways to divide@) /b(z), among
which at mosR + dega— degb quotients are different.

Proof. First note that division is a generalization of Gaussiamilation. The vec-
tor of b’s coefficients is shifted, scaled, and added to the vectaisafoefficients to
eliminate either the highest or lowest powerzphamely the leftmost or rightmost
term. After at most % dega— degb such eliminations, the remainder will have de-
gree less than dég Each sequence of eliminations is determined by its segueinc
“left” and “right” directives, making at most’2 9¢®@-ded different ways to find the
quotient.

However, left and right eliminations commute as long asalegdegh. Hence,
two quotients will be the same if their elimination sequencentain the same num-
ber of left and right eliminations, regardless of order. $hthere can be no more
distinct quotients than the number of sequences of lengttdéga — degb with
distinct numbers of “left” directives, which is2dega—degbh. O

Example 1Leta(z) = 2z ' +4+zandb(z) = 1+z Then de@ = 2 and dedp = 1,
so there are three distinct quotients:

az) = 221+ 2)b(2) + (-2 (left, left)
az) = 3z 4+1)b(2+(-z1)  (right, right)
az) = (2z1+1)b(z) +1 (left, right) or (right, left)

We may say “left division” to mean always eliminating thettebst term, and “right
division” to mean always eliminating the rightmost term. Whaega — degb is
even, there will be an even number of terms to eliminate so &g $ay “symmetric
division” to mean an equal number of left and right elimioat.

A Laurent polynomialp = p(z) is said to besymmetricif it is unchanged by
reversing the order of its coefficients. This is equivalenthie property

(3IM)(¥2) 2'p(z 1) = p(2).

For symmetricp not identically zero, theeflection index Ms unique. Monomials
Z are evidently symmetric witM = 2k. We may further distinguish whole or half
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index symmetry, depending upon whethvis even or odd. The parity &fl will be
the same as that of deg

Lemma 3.1f a,b € C[z,z 1] are symmetric Laurent polynomials, then symmetric
division results in a symmetric quotienttaand symmetric remaindef/sb.

Proof. The result holds if deg < degb, since thera/b = 0 anda%b = a.

For all other cases, use induction oa- dega — degb.

If n=0, left elimination and right elimination produce identicaonomial quo-
tients, which are trivially symmetric. The remainders awdently identical and
symmetric as well.

If n=1, the quotient will have degree 1 with two identical coeéfitis, hence
will be symmetric. The remainder will be the difference beem two symmetric
polynomials with the same reflection indik hence will itself be symmetric with
that sameM.

The induction step follows from the observation that a symniméleft, right)
pair of elimination steps reduces the degree of the dividen@ while preserv-
ing its symmetry. This reducesby 2 and contributes to the quotient a symmetric
polynomial of the same reflection indékasa. O

We now recall some basic notions useful in Euclidean domains

e Write bja (b divides 3 if a= gb+ 0 for someqg. Thusb|a=- degb < dega.

e Say thaid is acommon divisoof a andb if d|a andd|b.

e Say that a common divisat is a greatest common divisaf a andb if every
common divisorc of a andb also dividedd.

Lemma 4. If d; and & are greatest common divisors for a and b, then=dud, for
some unit e Clz,z'Y]. O

Theorem 1.Every pair ab € C[z,z 1], not both zero, has a greatest common divi-
sor that is unique up to multiplication by a unit(

Denote this set of greatest common divisors by(gdd). Say thata, b arecoprime
if gcd(a, b) is contained in the set of units.
Assumea, b are Laurent polynomials with deg> degb > 0. Their greatest com-

mon divisor may be found by the Euclidean Algorithm for Lautrpolynomials. Put

a0 2" aandby £ b, and definey, by recursively:

ak‘H-:bk; bk+l:ak_qkbka k:071727"'a

whereg is one of the possible quotierdg/by. It thus determineby 1 as the cor-
responding one of the possible remainda®by.

Lemma 5.Let n be the smallest positive integer for which-b 0. Then g €
gcda,b). O

By Lemma 4, finding any representative in gac) determines all the others.
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Example 2Considera(z) = ag(z) = 2z 1 +4+zandb(z) = by(z) = 1+ z Using
symmetric division, the first step is

a(2=14+4z bi(2=1  q@=2z1+1
The second step is
(2 =1, bo(z) =0, (2 =1+z
Therefore

271 +447) [2z1411][1+z1] 1
1+z N 1 0 1 0||o]|’
sogcda,b) = 1.

Note thata, is determined only up to a unit, defined by the sequence ofejuist
do, - -+, 0n—1.

Theorem 2. Laurent polynomial h has a complement g if and only.ifihd h, are
coprime.

Proof. Apply the Euclidean Algorithm to find the polyphase matrix.ii#&/the re-
cursion in matrix form:

)2 2al 3] -[4)-

Inverting the product of matrices gives

a?)| _, A [w@ 1] [a(2)
[b(z)}_( b kl:!) 1 0 0
If nis odd, absorb the unit-1)" term intoay,.
Puta = he andb = hy and assume g¢be, hy) = KZ™, K # 0. Definege, go by

o [ s L[ )

n

krll {2 Qn}k(z)} [gg] '

ThenP(z) is evidently invertible. Geh,§ from B(z L)' = P(2)~1. O
This leads immediately to general implementations of DWTithing:

Theorem 3 (Daubechies and Sweldendjor every perfect reconstruction finite fil-
ter pair (H,G) with polyphase matrix P, there exist finitely many Laurerypo-
mials $(z) and {(z), 1 <i < m< o, and a non-zero constant K such that

=16 v ] [o.]
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Remark 4The matrix factors correspond to the following operationsequences:

e Prediction Unit upper triangular factonje < Ue + S
e Updating Unit lower triangular factor < Ug + T Ue.
e Scaling Last diagonal matrixye «— Kue, Uy <— K1u.

Sinceug, Ue May be stored as disjoint arrays, this transform can be padd in
place, without extra memory for temporary resultsl

Proof. Observe first:
oy - ]2 (4o

Theflip matrices 01 cancel if Predict and Update steps alternate.

10
Second, note that a leftover flip matrix may be factored ifft;n§ steps in a
number of ways:

01] [ 10][11 10][-10]

10/ |-11,|01)|-11|| 01
_[-10]f[1-1][10][1-1]
| 01][0 1][11]]|0 1]
_[1 0] 10][11][ 10]
- |0-1]|-11][01]|-11]
_[10]f1-1][10][2 O
S [11] |0 1j[11][0-1]"

Third, note that diagonal shift matrices may be factored lifting steps:

o= o 3] L] o] [ o)
-l LA e )

o2 = Lo i [l ][]

Other factorizations exist, but at most five lifting steps aeeded per shift. Thus,

0 zmo . .
07m O | g gm factor into at most B lifting steps. Afterwards, only the

constant diagonal matriEK

0 Kl} remains. O
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4 Nearest Neighbor Factorization

Assume that a smooth sampled signal /2 is finitely supported in the index inter-
val [0, N — 1]. Big endpoint valuefu(0)| or [u(N — 1)| may result in misleading large
DWT coefficients. Similarly, a big difference(N — 1) — u(0)| may result in large
periodized DWT coefficients. These undesirable effects atigaed through the
use ofsymmetric extensigas described in [1]. It requires symmetHcG, defining

u(—n), if =N <n<0;
u(n) = {u(n) =Uu(2N—-1-n), ifN<n<2N,

and then treatingl as N — 2-periodic. Several other extensions are possible, de-
pending on the symmetry type bff, G.

Itis easy to implement symmetric extension for certain g@mplementations.
The lifting factorization

o= 16" [ ][5

uses onlynearest neighborg it satisfies the following conditions:
%(2) = o+ Bzt
t(2) = Kz+

with ay, Bk, ¥k, & € C. Nearest neighbor action on sequences has the explicisform

e Nearest neighbor predict: Ad < Ugy + OkUzk_1 + BrUok 1.
e Nearest neighbor update:oh 1 < Uk 1 + YkUok + OkUok 2.

For nearest neighbor factorizations, symmetric extensanomes:
e Symmetric extension nearest neighbor predict step:

O (Upk—1+Uxs1), IF2k#£0;
Uk u2k+{20{u2k+17 if 2k = 0.
e Symmetric extension nearest neighbor update step:

V(Uz+ Uii2), if 2k+1#N—1;

U2k+1‘—U2k+l+{2yuN_27 if2k+1=N-1.

Hence the endpoints get almost the same treatment as therip@ints.
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5 All Lifting can be Nearest Neighbor Lifting

Unfortunately, not every perfect reconstruction filterstéas into nearest neighbor
lifting steps directly, even allowing for any choice of qgigotts in Euclid’s algorithm.
For example, let

R LA I CEE

This is similar to the Haar orthogonal filter pair. Then

(-B+z7h).

1 1y _ 1 1
i ho(z)_ﬁz 4, ge(Z)—ﬁZ{ 90(2)_\@'

There are no division steps in Euclid’s algorithm, so thegmsequence of quo-
tients is unique. The ordinary lifting factorization gives

O ARHEEN [P 3|3

This is not a nearest neighbor factorization because thédiaffonal nonconstant
terms have powers other tharandz 1. However, in common with nearest neigh-
bor lifting steps, the off-diagonal ternséz),t(z) have deg < 1 and deg < 1, and
further factorization is possible (see Lemma 7 below) tcaobnhearest-neighbor
steps.

We may obtain quotients of constrained degree through afioation of the
division lemma:

Lemma 6 (Partial division). Suppose # € C[z,z 1] with dega > degb > 0. Then
there exists gartial quotieny and apartial remainder with degg < 1 anddegr <
dega so that

a(z) = q(z)b(z) +r(2).

Proof. We limit ourselves to eliminating just one or two terms frarwith a partial
quotient of the formg(z) = zZ"(y+ &z). Then deg < 1, but not bothy = 0 and
0=0,sodeg =dega—qgh) <dega. O

It is clear that any common divisor @f(z) andb(z) also divides the partial re-
mainderr (z) = a(z) — q(z)b(z), so we obtain lifting factors of degree one or less
with Euclid’s algorithm expanded to use partial division:

Theorem 4.Assume a and b are two coprime nonzero Laurent polynomiaksn T
there exist Laurent polynomials g.., 0, with deggx < 1 for all k = 1,...,n, such

that K
) 1175 o]

where n< 2(dega+degb+1). O

]



Wavelet Transforms by Nearest Neighbor Lifting 13

We may now slightly strengthen Theorem 3:

Corollary 1. For every perfect reconstruction finite filter pdid, G) with polyphase
matrix P, there is a lifting factorization

=16 v 1] [o:™s]

where the Laurent polynomialg(s) and {(z), 1 <i < m< o, each have degree one
or less, and K is a non-zero constantd

As shown earlier, the degree condition is not enough to guieesthat the factor-
ization gives a nearest neighbor filter transform. To getfidegree one or less to
nearest neighbor polynomials requires additional faz&dion:

Lemma 7.

{122m(a21+[3)} B {zm 0 _

0 1 “|1o0z™Mm| |0 1 0o 2"|’

e B [ | P [ A

where m is any integer andl, 3, y, d are constants. O

1GT1+B} {z‘m O}

Factoring theg™ shifts into at most B nearest neighbor lifting steps each yields:

Corollary 2. Any degree-one predict or update matrix factors furtheoiatfinite
number of nearest neighbor lifting stepsa

Remark 5The conditions deg < 1 and degx < 1 may also be obtained from an
ordinary lifting factorization by further decomposition:

{351(2)152(2)' '35152)] [35252)]7

o ] = [l 2] a3

However, this may create multiple successive predict facind multiple successive
update factors and ultimately requires more matrices.

6 Backward Error Analysis for Lifting Factorizations

We now turn consider how various lifting factorizationseaff the conditioning of
DWT. In terms of the polyphase matrix, this may be computedksvis:
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Lemma 8. If P(z) is the polyphase matrix of a perfect reconstruction filteir,gaen
st SUP{ VAnaP@P@) : |2 = 1}
cond(P) = - .

int { \/Amn(P2)'P(@)) : 12 = 1}

Furthermore, if P= Py - -- Ry, thencond(P) < cond(Py)---cond(R,). O

For a proof of this fact and extensive discussion of polyphaatrices, see [6].

We may use the special form of lifting step matrices to edntbe condition
number of the factorization d? in another, simpler way. For definiteness, consider
an “update” step in floating-point arithmetic with absoltitencation errore. Its
polyphase matrixG may be represented within the computer by something that
differs by as much a8G, where

10
G(2) = [t(z) 1} 5t(2) €

and Laurent polynomial(z) = ¥tz ¥ has errordt(z) = ¥, 6tz ¥. Each poly-
nomial coefficientdty, is computed from the filteh by elimination and therefore
satisfies

= 5G(z):[ ¢ 0},

5t | < (1+degh)e +O(£?).

For suchG, define

1 = | i 5] where [t)(2) % 3 [tz "

Then the maximum matrix infinity norm @(z) may be computed as follows:

def
1G]l = sup|G(2)] < SUPI||G|(2) || = 1+ sUPJt|(z) = 1+ Z [tl.
|7=1 |z=1 |zl=1

The same estimate applies to “predict” steps as well.
Now assume tha®(z) is a polyphase matrix with lifting factorization

P(2) = ||_| [(1)3(12)} {ti(lz) g] Pé qu} = UGj(Z),

where eacl; is a lifting step. Taking truncation errors into accoung tomputed
results using floating-point arithmetic therefore satisfy

P(2) +dP(2) = [](Gj(2) + 6Gj(2)).
i
By expanding the product and using the submultiplicatiaitythe matrix infinity
norm, we get



Wavelet Transforms by Nearest Neighbor Lifting 15

18Pl < & (1+degh) Y |Gj ||+ O(€?),
J

indicating that to obtain the smallest condition numberstweuld use a factorization
with small lifting coefficients and not too many low-degrégrig steps.

Assuming the worst case, equality, we can estimate the ttondiumber for
three implementations of the filter bank:

1. the original polyphase matrig,
2. the usual (shortest) lifting factorization Bf and
3. the nearest neighbor lifting factorization Rf

The results are displayed in Table 1, for a number of symmatrd nonsymmetric-
orthogonal filters.

Filter Cond of P(z)Cond of Lifting|Cond of N-N
9-7 1.32 205 205
D4 1 7 7
D6 1 76 76

Cubic B-spling 4 56 56
CDF-1-1 1 8.59 8.59
CDF-1-3 1.28 8.72 3100
CDF-1-5 1.42 6.25 1200
CDF-2-2 2 8.59 8.59
CDF-2-4 2 99 1900
CDF-3-1 4 643 643
CDF-3-3 4 723 3200
CDF-4-2 8 111 111
CDF-4-4 8 113 2800

Table 1 Condition number bounds for nearest neighbor factorizateysws ordinary lifting versus
the polyphase matrix.

7 Applications and Examples

Because of nonuniqueness in the quotients in Euclid’s algorfor matrices over
Laurent polynomials, we may choose a lifting factorizatiqatimized for a minimal
number of nearest neighbors.

In some cases, the original lifting steps yield a neareghimr algorithm. The
filter indexing may need to be adjusted to eliminate or attlasimize the number
of Z" shift matrices. In addition, the sequence of quoti€igigz) : k=0,1,...,n—
1} may be chosen to minimize the condition number bound.

Example 3.To show how re-indexing may result in a nearest-neighbdofaation,
consider Daubechie$4 filters, defined as follows:
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h(z) = haz 3+ hyz 2+ hiz 1 + ho,
g(Z) = hoZi1 —hi+hyz— h322,

with

o 1+V3 3+V3
o=—"7, Mm=—r
4\/2 4\/2

Then the polyphase matrix is

5/ | he(2) 9e(2)] _ [hozt+ho —hy —hsz
P =P = {ho(Z) go(Z)] {hzr%hi hol+ h; }

It has the following two factorizations, the first obtaingdléft division in Euclid’s
algorithm, the second by right division:

P(z) = 1-v3 ; 0| [12][*" ©
o 1 | [|¥¥iE2,1q( 01| o %

) 4
@ 1 0 72—1 3*\/§Zfl 0
i g TG v

The forward transform corresponding to the first (left-dien) factorization is not
nearest neighbor:

Xomi1 < Xomi1— vV 3Xom;

V3w | V3-2 q

Xom = Xom+ 1 Xomp1 T 4 Xomyas

Xomt-1 <= Xom + Xom-2;
V3+ 1
2 1

v2 o

« V3-— 1X
— — .
2mH-1 \/i 2m+1

Xom <

The inverse transform for the left division factorizationa lifting steps is similarly
not nearest neighbor, as may be seen from its polyphasexmatri

V3+1 _
Bryi— | ve O [ L O][1R+ | 1 0]
0 % z'1| o 1 -V31

It is left as an exercise to derive the predict and updatesdtem these matrices.
The second (right-division) factorization can be made estareighbor by factor-

ing the leftover diagonal shift matrices into lifting stepkwever, if the coefficients

of hare first shifted so thdt(z) = $%, e, 2z ¥, then right division in Euclid’s algo-
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rithm yields a nearest neighbor transform directly:

17 [3213

13 1 0171=z*1[%2 o
P(Z):[o Binﬁ@ﬁﬁzl 01| 3 |-
2

It is again left as an exercise to find the corresponding ptexdfid update steps.

Example 4Not all orthogonal filters will give nearest neighbor fadtation di-
rectly after a simple index shift. Consider the orthogorigdifs defined earlier:

2 2
CIR R P R L)
We cannot get a nearest neighbor factorization simply bgguan index shift. For

this filter, it is necessary to use Lemma 7 and pay the pricedtianal lifting steps.

Example 5Not all filters offer a choice of lifting factorizations. THaorthogonal
perfect reconstruction filter€DF- 2- 4h and CDF- 2g have the following coeffi-
cients:

B 3 ., 3.5 1, 19,
h(z)_ﬁ<1282 sl gl gl

45 19 1 3 3
e 822_6423+mz4)

B 1, 1, 1
9(z) = V2 <4z 52 +4) .
CDF biorthogonal filters [2] are symmetric, so there is a ueidjfting factoriza-
tion using the Euclidean algorithm. But since the degredg»fandg(z) are very
different, in most cases it does not yield a nearest neigfamborization directly.

r1,— 1 3 - 19 19 3
P(2) — At It BB S21])(vV2 0
1 0 1 0] | 0 -2
. -
_[—3zt-31)[-&zt+mL][oL
1 o 1 o[|10
19
197 821](v2 0
1 0|0 -%
_[1-3zt-3][01)[1-gz+§&
o 1 10/lo 1
[z 0][18z1-27[zt0]|vV2 O
ozt||o 1 0z||o _g '

An application of Lemma 7, Corollary 2, and Theorem 3 may bedu® convert
this into a nearest neighbor factorization.
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Example 61f the filter h has a perfect reconstruction complement, then its coeffi-
cients may be re-indexed and the proper quotients chosém iditision algorithm
so that gcghe, ho) is a constant. However, this is not guaranteed to producesiea
neighbor lifting.

Consider Daubechies’ orthogorias filter; it may have its indices shifted so that
h(z) = 2 ,hz X The filter thus indexed, together with its complemgnt h,
has the following polyphase matrix:

he(z) = hoz t+hp+h 2z @(2)=—-h1z1—h —hsz

ho(z) =hsz +hi+h 1z g2 =h oz 1+ hg+hoz

Then the lifting factorization by symmetric division yial@é constant gdthe, hy) ~
1.918, entirely through nearest-neighbor predict and upsizies:

P(z) — 1 0][1-1565%1+0.352 1 0
| -04121| |0 1 0.028+0.492z 1
1-0.390][1918 O
0 1 0 0521

Alternatively, with the indexindh(z) = S;_ohz ¥, we get a different polyphase
matrix:

he(z) = hyz 24+ ozt +hy  Qe(2) = —z 1 —hgZt —hsZ
ho(z) = hsz 2+hsz t+h;  o(2) = ho+ hpz+ hsZ.

Using the same division as f@4 now gives nonconstant gffa, hy) = 1.918 1,
but with nearest-neighbor predict and update steps:

P(2) — 1 0][1-1565%1+0.352 1 0
~|-04121] |0 1 0.028+0.492z 1
1-0.390] [1918& 1 O
0 1 0 0521z

However, choosing right division so that the gcd comes oustant gives

P(2) 1 0][1-15651+0.355 1 0
~|-04121||0 1 0.00164%1-0.028 1
1607652— 116522 [-33172 0
0 1 0 003

which is evidently not a nearest neighbor factorization.
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