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Introduction

▶ Financial Mathematics theorems may seem buried in jargon
and heuristics.

▶ Financial market models use linear algebra and convex
optimization in Rn.

▶ Today’s goal: prove the “Fundamental Theorem on Asset
Pricing,” for discrete financial models.



Assets and Portfolios

▶ An asset a : T × Ω → R is a stochastic process, a
time-dependent random variable on a probability space Ω.

▶ Let a(t, ω) be the price of the asset at time t in state ω.
▶ T contains time t = 0, the present, and a(0, ω) def= a(0) is

assumed independent of ω ∈ Ω.
▶ A riskless asset is independent of ω at all times t ∈ T . All

other assets are risky.
▶ A portfolio is a weighted sum of assets

∑
i xiai(t, ω), usually

written as the vector x = (xi) of weights.



Long and Short Positions

In portfolio x of assets with price
∑

i xiai(t, ω),
▶ asset ai is held long if xi > 0;
▶ asset ai is sold short if xi < 0.

Assets sold short are borrowed and must be returned. One example
is a bank loan. The cost of returning ai at time t in state ω is a
liability, priced by −ai(t, ω).

Note: Both ai and xi can be any real number.



Arbitrage

Traditionally, an arbitrage is a mispriced asset that offers profit
without risk.

Formal definition using stochastic processes: a deterministic
arbitrage is an asset a(t, ω) that
▶ costs nothing or leaves a surplus at t = 0: a(0) ≤ 0,
▶ never loses value: (∀t > 0) Pr({ω : a(t, ω) < 0}) = 0,
▶ has a positive price in some states at some future time:

(∃t > 0) Pr({ω : a(t, ω) > 0}) > 0.

Remark. A weaker expected arbitrage is an asset a with
a(0) ≤ 0 but E(a(t)) > 0 for some future time t > 0.
Any deterministic arbitrage is an expected arbitrage.



Discrete Financial Models

The simplest choices for T and Ω are the finite sets T = {0, 1}
and Ω = {1, 2, . . . , n}. Then calculations are performed using just
pairs and vectors of prices:
▶ The spot price ai(0), of asset ai , assumed constant in all

states at time t = 0.
▶ The payoff ai(1, j), of asset ai , at future time t = 1, in state

ω = j .
The payoff vector ai = (ai(1, 1), . . . , ai(1, j), . . . , ai(1, n)) lists all
the modeled future prices for the asset.



Market Matrices

Using T = {0, 1} and Ω = {1, 2, . . . , n}, a market with m assets is
modeled by q and A, namely:
▶ Vector q def= (ai(0)) of spot prices, and
▶ Matrix of payoffs

A def=


1
a1
...

am

 , =


1 . . . 1

a1(1, 1) . . . a1(1, n)
... . . . ...

am(1, 1) . . . am(1, n)

 ,

where ai(1, j) is the payoff of asset i in state j .
Note: The top row of A is the riskless numeraire, also called cash,
a unit of which has constant payoff 1 in all states j = 1, . . . , n.



Spot Prices and Payoffs

In the discrete financial model q, A, any portfolio
∑

i xiai(t, ω)
represented by the vector of weights x has
▶ spot price xT q, and
▶ payoff vector xT A.

Note: For definiteness in the linear algebra computations,
▶ payoff vectors ai will be row vectors,
▶ spot price vectors q, portfolio weight vectors x, and

probability mass functions will be column vectors.
Unfortunately, this is only one of several conventions in use.

Next: characterize “arbitrage” using x, q, and A.



Convexity and Cones

Start with some geometric concepts:
▶ A set S ⊂ Rn is convex iff

x, y ∈ S =⇒ (∀λ ∈ [0, 1]) λx + (1 − λ)y ∈ S.

Any subspace is convex.
▶ Set S ⊂ Rn is a cone iff

x ∈ S =⇒ (∀λ > 0)λx ∈ S.

Any subspace is a cone.



Positivity

In Rn, use componentwise positivity or nonnegativity.

For v = (v1, . . . , vn) ∈ Rn, and so on,
▶ write v > 0, and say that v is positive, if (∀j) vj > 0;
▶ write v ≥ 0, and say that v is nonnegative, if (∀j) vj ≥ 0;
▶ write v > w to mean v − w > 0;
▶ write v ≥ w to mean v − w ≥ 0.

Componentwise positivity and nonnegativity defines orthants,
which are special cases of convex cones.



Open, Pointless, and Closed Orthants

Three useful examples of orthants:
▶ The closed orthant of vectors with nonnegative coordinates,

K def= {y ∈ Rn : y ≥ 0},

is a closed convex cone.
▶ Remove the point 0 to get the pointless orthant

K \ 0 = {y ∈ Rn : y ≥ 0, (∃j) yj > 0}.

This is also a convex cone but is neither open nor closed.
▶ The interior of K is an open convex cone:

K o def= {y ∈ Rn : (∀j) yj > 0} = {y ∈ Rn : y > 0}.



Deterministic Arbitrages in the Discrete Model

These are portfolios x, in a market A with spot prices q, that offer
riskless profit for every probability mass function on Ω.
▶ Type one arbitrage, or immediate arbitrage, leaves a surplus

as it is assembled at time 0 but has nonnegative payoff in any
state at future time 1:

IA1: xT q < 0.
IA2: xT A ≥ 0. Equivalently, xT A ∈ K .

▶ Type two arbitrage, or arbitrage opportunity, costs nothing to
assemble and cannot lose value, but has a positive payoff in
some future state:

AO1: xT q ≤ 0.
AO2: xT A ≥ 0, and (∃j) xT A(j) > 0. Equivalently, xT A ∈ K \ 0.



Arbitrage and Martingales in the Discrete Model

▶ An arbitrage expectation, which is not deterministic, costs
nothing to assemble but has positive expected payoff:

AE1: xT q ≤ 0
AE2: xT Ay > 0, where y is the probability mass function on the

states 1, . . . , n in Ω.
▶ A stochastic process a(t, ω) is a martingale if

t > s =⇒ E(a(t)|a(s)) = a(s).

For the discrete financial model, put t > s = 0 to get

xT Ay = E(a(t)|a(0)) = E(a(0)) = a(0) = xT q.

So no arbitrage expectation, and thus no deterministic
arbitrage, can exist if assets are martingales.



No-Arbitrage Axioms

An immediate arbitrage is an arbitrage opportunity is an arbitrage
expectation:

∃ IA =⇒ ∃ AO =⇒ ∃ AE . (1)

The universal desire for profit creates unlimited demand for
arbitrages so it is assumed that if assets are freely traded, then
prices will adjust instantly to consume any supply. This may be
stated as an axiom:

Axiom 1 There are no arbitrages.

The chain of implications for no arbitrages is the reverse of (1):

∄ AE =⇒ ∄ AO =⇒ ∄ IA. (2)



Profitable Portfolios

These are sets of portfolios, in a discrete financial model, that
contain all possible arbitrages for market matrix A.
▶ A profitable portfolio p is one that has nonnegative payoff in

all states: pT A ≥ 0.
▶ Equivalently, pT A ∈ K .
▶ Equivalently, (∀k ∈ K ) pT Ak ≥ 0.
▶ A strictly profitable portfolio s is profitable and also has a

positive payoff in some state: (∃j) sT A(j) > 0.
▶ Equivalently, sT A ∈ K \ 0.
▶ Equivalently, (∀k ∈ K o) sT Ak > 0.



The Usefulness of Cash

▶ A matrix of assets without a numeraire might have no strictly
profitable portfolios. For example, the one-asset market
matrix with two states

A =
(
−1 1

)
satisfies xA = (x , −x) so only x = 0 is profitable, and no
x ∈ R is strictly profitable.

▶ A market with a numeraire, or cash, as its zeroth row, has an
all-cash portfolio x = (1, 0, . . . , 0) that satisfies xT A(j) = 1
for all j . This x is both profitable and strictly profitable.

▶ More generally, if there is any riskless asset such that
(∀ω) a(1, ω) = a(1) ̸= 0, then there will exist nontrivial
profitable and strictly profitable portfolios.

Henceforth, assume that A contains a riskless asset.



No Arbitrages, by Positivity

The absence of arbitrages in a market may now be stated using
componentwise nonnegativity:

Definition (No IA)
Market A with prices q is immediate arbitrage free iff any
profitable portfolio must have a nonnegative price:

xT A ≥ 0 =⇒ xT q ≥ 0.



No Arbitrages, Geometrically

Equivalently, “No IA” may be defined using the nonnegative
orthant:

xT A ∈ K =⇒ xT q ≥ 0.

That generalizes to the stronger condition of “No Arbitrage
Opportunity” by removing one point:

Definition (No AO)
Market A with prices q is arbitrage opportunity free iff any strictly
profitable portfolio must have a positive price:

xT A ∈ K \ 0 =⇒ xT q > 0.



Dual Cones

Arbitrages may be characterized using convex cones and their
duals. To start, define these for any set S ⊂ Rn.
▶ The dual cone of S is

S ′ def= {x ∈ Rn : (∀y ∈ S) xT y ≥ 0}.

▶ If S is a subspace, then S ′ = S⊥ is its orthogonal complement.
▶ The strict dual cone of S is

S∗ def= {x ∈ Rn : (∀y ∈ S) xT y > 0}.

▶ If 0 ∈ S, then S∗ = ∅. Thus if S is a subspace, then S∗ = ∅.

Remark. For any set S ⊂ Rn, both S ′ and S∗ are convex cones.



Self-Duality and Double Duality

Some useful facts:
▶ K ′ = K , that is, the nonnegative orthant is a self-dual cone.
▶ It follows that (K ′)′ = (K )′ = K , that is, the double dual of

the closed nonnegative orthant is itself.
▶ (K o)′ = K and (K o)∗ = K \ 0.
▶ (K \ 0)′ = K and (K \ 0)∗ = K o.
▶ It follows that ((K o)∗)∗ = (K \ 0)∗ = K o, that is, the open

positive orthant is its own strict double dual cone.
We will see that this reflexivity of double duals holds for convex
cones in general.



Profitable Portfolios as Dual Cones

Lemma
For market matrix A,
▶ The set P of profitable portfolios is a dual cone: P = (AK )′.
▶ The set S of strictly profitable portfolios is a strict dual cone:

S = (AK o)∗.

Here AK def= {Ak : k ∈ K} and AK o def= {Ak : k ∈ K o}.

Proof.
By the previous characterizations,

p ∈ P ⇐⇒ (∀k ∈ K )pT Ak ≥ 0 ⇐⇒ p ∈ (AK )′

s ∈ S ⇐⇒ (∀k ∈ K o)sT Ak > 0 ⇐⇒ s ∈ (AK o)∗

using associativity (xT A)k = xT (Ak) and the definitions.



Fundamental Theorem on Asset Pricing

In an arbitrage free market, the price vector q is a weighted
average of the payoffs in the states of Ω:

Theorem (FT from No IA)
Market A with spot prices q is immediate arbitrage free if and only
if there is a vector k ∈ K such that

q = Ak.

Remark: Nonnegative weight vector k is (proportional to) the
risk neutral probabilities of various future states ω.



Proof Via Farkas’s Lemma

This result from 1902 has FT from No IA as a corollary:

Theorem (Farkas’s Lemma)
Suppose that A ∈ Rm×n is a matrix and b ∈ Rm is a vector. Then
exactly one of the following must be true:
X: There exists x ∈ Rm such that xT A ≥ 0 and xT b < 0.
Y: There exists y ∈ Rn such that Ay = b and y ≥ 0.

(To prove FT from No IA:
Let A be the market matrix and b the spot price vector from a
discrete financial model.
If A, b is immediate arbitrage free, then Condition X cannot be
true. By Condition Y, there is a vector y ∈ K such that b = Ay.)



Proof of Farkas’s Lemma
Proof: First observe that X and Y cannot both hold, for then

xT Ay = xT (Ay) = xT b < 0,

while also xT Ay = (xT A)y ≥ 0, since both (xT A) ≥ 0 and y ≥ 0.
Evidently, Condition Y holds if and only if

b ∈ Q def= AK = {Ak : k ∈ K},

so if Y fails to hold it must be that b /∈ Q.
But Q is a nonempty closed convex cone. Thus there exists a
nonzero vector x ∈ Rm and a constant γ ∈ R defining a separating
hyperplane function

f : Rm → R, f (y) def= xT y − γ,

such that f (b) < 0 but f (q) > 0 for every q ∈ Q.



Farkas Proof, Continued

Now 0 ∈ Q, since 0 ∈ K , so f (0) = xT 0 − γ = −γ > 0, and
therefore γ < 0. But then

f (b) = xT b − γ < 0 =⇒ xT b < γ < 0.

On the other hand, f (q) > 0 implies only that xT q > γ. But since
Q is a cone, any q ∈ Q and any λ > 0 result in λq ∈ Q, so

(∀λ > 0) f (λq) = λxT q − γ > 0 =⇒ (∀λ > 0) xT q > γ/λ,

and this can only be true for negative γ if xT q ≥ 0 for all q ∈ Q.
Writing q = Ak gives

(∀k ∈ K ) xT Ak ≥ 0,

so xT A is in the dual cone of K . But K is self-dual, so xT A ≥ 0.
Conclude that Condition X holds.



Proof Via Double Dual Cone Theorem

FT from No IA also follows from this geometric observation:

Theorem (Double Dual Cone)
If Q is a closed convex cone, then (Q′)′ = Q.

(To prove FT from No IA:
( ⇐= ): Suppose that k ∈ K solves q = Ak and let x be a
profitable portfolio. Then

xT q = xT (Ak) = (xT A)k ≥ 0,

since xT A ∈ K . Thus, by definition, market A with prices q is
immediate arbitrage free.



Proof (continued)

( =⇒ ): Suppose that market A with prices q is IA free. Then:
▶ AK , for nonnegative orthant K , is a closed convex cone.
▶ P = (AK )′, namely the set of all profitable portfolios for A is

the dual cone of AK , by the lemma.
▶ q ∈ P ′, since A, q is immediate arbitrage free:

(∀x ∈ P) xT q ≥ 0.

Hence q ∈ ((AK )′)′.
But AK is a closed convex cone, so ((AK )′)′ = AK by the Double
Dual Cone Theorem, so q ∈ ((AK )′)′ = AK , so there is some
k ∈ K such that q = Ak. )



Double Dual of a Closed Convex Cone

It remains to prove the Double Dual Cone Theorem.

Theorem (Double Dual Cone)
If Q is a closed convex cone, then (Q′)′ = Q.
Proof: First note that Q ⊂ (Q′)′:

q ∈ Q =⇒ (∀z ∈ Q′) qT z ≥ 0 =⇒ q ∈ (Q′)′.

Now suppose toward contradiction that b ∈ (Q′)′ but b /∈ Q. Then
there is a nonzero vector x and a constant γ defining a separating
hyperplane by the function f (y) def= xT y − γ where

f (b) < 0, but (∀q ∈ Q) f (q) > 0.

Since Q is a closed cone it contains 0, so f (0) = −γ > 0, so γ < 0.



Double Dual Cone Proof (continued)

Also, fix q ∈ Q and let λ → ∞ while noting that λq ∈ Q, so

xT q = lim
λ→∞

(
xT q − γ

λ

)
= lim

λ→∞

1
λ

f (λq) ≥ 0.

Thus x ∈ Q′. But then b ∈ (Q′)′ gives the contradiction
f (b) = xT b − γ ≥ −γ > 0.

Remark: Perhaps unsurprisingly, this proof is very similar to that
of Farkas’s Lemma. Both follow from a purely geometric fact
about closed convex sets, the Hyperplane Separation Theorem.



Hyperplane Separation

An infinite-dimensional version of this geometric result follows
from the Hahn-Banach Theorem of functional analysis, but the
proof in finite dimensions uses only Calculus methods.

Theorem (Hyperplane Separation)
Suppose that Q ⊂ Rm is a nonempty closed convex set and b ∈ Rm

is a point not in Q. Then there exist a nonzero vector x ∈ Rm and
a constant γ ∈ R defining a hyperplane as the zeros of the function

f (y) def= xT y − γ,

such that f (b) < 0 but f (q) > 0 for every q ∈ Q.



Proof I: Construct a hyperplane

Define s : Rm → R by s(y) def= ∥y − b∥2, continuous and
differentiable with gradient

∇s(y) = 2(y − b) ∈ Rm.

It achieves its minimum at a nearest point q0 ∈ Q to b. Put
f (y) def= xT y − γ for

x = q0 − b, γ = ∥q0∥2 − ∥b∥2

2 .

Hyperplane {y : f (y) = 0} is normal to q0 − b and passes through
the midpoint between b and q0.
It remains to show that f separates b from Q.



Proof II: f (b) < 0

Compute f (b) = qT
0 b − ∥q0∥2+∥b∥2

2 . The Cauchy-Schwartz
inequality and the arithmetic-geometric mean inequality together
imply

qT
0 b ≤ ∥q0∥∥b∥ ≤ ∥q0∥2 + ∥b∥2

2 ,

with equality only if q0 = b. Conclude that f (b) < 0.



Proof III: f (q) > 0

Take any q ∈ Q and suppose toward contradiction that f (q) ≤ 0.
Then

(q0 − b)T q ≤ ∥q0∥2 − ∥b∥2

2 ,

so ∇s(q0)T (q − q0) ≤ −∥q0 − b∥2 < 0. Hence there is some
small λ ∈ (0, 1) for which

s(q0 + λ[q − q0]) < s(q0).

But Q is convex, so q0 + λ[q − q0] = (1 − λ)q0 + λq ∈ Q, and
this contradicts the extremal property of q0.
Conclude that f (q) > 0.



Fundamental Theorem on Asset Pricing II

Under stronger hypotheses, the weight vector is strictly positive:

Theorem (FT from No AO)
Market matrix A with numeraire and spot prices q is arbitrage
opportunity free if and only if there is a vector k ∈ K o such that

q = Ak.

Proof:
( ⇐= ): Suppose that k ∈ K o solves q = Ak and let x be a strictly
profitable portfolio. Then

xT q = xT (Ak) = (xT A)k > 0,

since xT A ∈ K \ 0. Thus, by definition, market A with prices q is
arbitrage opportunity free.



Proof (continued)

( =⇒ ): Suppose that market A with prices q is AO free. Then:
▶ AK o, for open positive orthant K o, is an open convex cone in

the column space of A (by the Open Mapping Theorem).
▶ S = (AK o)∗, namely the set of all strictly profitable portfolios

for A, is the strict dual cone of AK o, by previous lemma.
▶ q ∈ S∗, since A, q is arbitrage opportunity free:

(∀x ∈ S) xT q > 0.

Hence q ∈ ((AK o)∗)∗.
But ((AK o)∗)∗ = AK o, by the Strict Double Dual Cone Theorem.
Conclude that there is some k ∈ K o such that q = Ak.

The proof that ((AK o)∗)∗ = AK o is left as an exercise.



Application to Derivative Pricing

Suppose that payoff matrix A with spot price vector q corresponds
to an arbitrage free market.

Write q = Ak by the Fundamental Theorem.
▶ The vector k, which is nonzero if q ̸= 0, is called a risk neutral

probability mass function, when normalized to have unit sum.
▶ Any derivative asset with future payoff vector d has a risk

neutral spot price dT k.
Derivative assets are often contingent claims.



Contingent Claims

These are contracts to pay or collect some amount depending on
the price of underlying assets. Examples are:
Call Option to buy an asset for a stated or computed strike price

at or before a stated expiry time.
Put Option to sell an asset for a strike price at or before expiry.

Swap Obligation to exchange one sequence of payments for another
with different terms.

Forward Obligation to buy or sell an asset for a stated strike price at a
future date.

Future Forward contract backed by cash in a supervised Margin
Account.



Hedges

Traditionally, in gambling, a hedge for a bet is another bet that
limits potential loss but also limits potential profit.
▶ Financial institutions that sell contingent claims seek to

hedge, or replicate them, with a portfolio of other assets
whose value equals or exceeds the cost of the contingent
claim in all modeled states Ω.

▶ If c is the cost vector of the contingent claim over Ω, namely
the liability of the financial institution that sold it, then a
hedge portfolio h over a market A must satisfy

hT A ≥ c.

▶ At spot prices q, the cost of the hedge portfolio is hT q.



Complete Markets

▶ Market A is complete if any contingent claim can be hedged,
namely if the row space of A is all of Rn.

▶ Since the row space is dependent on the discrete financial
model, this cannot be guaranteed without additional
assumptions.

▶ Binomial models, where n = 2 and m = 1 so that A is a 2 × 2
matrix

A =
(

a0(1, 1) a0(1, 2)
a1(1, 1) a1(1, 2)

)
,

a0(1, 1) = a0(1, 2),
a1(1, 1) ̸= a1(1, 2).

Such A, with a numeraire (or other riskless asset) a0 ̸= 0 and
a single risky asset a1, are always complete, so there is a
unique hedge for any contingent claim on the underlying a1.



Incomplete Markets

In the general case, when the market is incomplete, the seller of a
contingent claim c constructs a hedge portfolio h by solving

Minimize hT q subject to hT A ≥ c.
Conversely, the buyer of the contingent claim c compares its price
to the alternative portfolio k solving

Maximize kT q subject to kT A ≤ c.
These are both convex optimization problems solvable by linear
programming.



Bid-Ask Spread

If market A with prices q is arbitrage free, then any profitable
portfolio x must have a nonnegative price:

xT A ≥ 0 =⇒ xT q ≥ 0.

Let x = h − k be the difference of the portfolios solving the hedge
optimization problems. Then

xT A = hT A − kT A ≥ c − c = 0,

so we may conclude that hT q ≥ kT q. The nonempty interval

[kT q, hT q]

is the no-arbitrage bid-ask spread for the contingent claim c.
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