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I Methods in Chapter 5:
Ignore the Temporal and Spatial correlation
Consequences:

1. Loss of efficiency
2. Bias
3. Misstatement of type I error

I Main Point:
Exploit temporal correlation, spatial correlation or both
Tradeoff:
Higher computational costs

Hao, Guanshengrui Temporal, Spatial, and Spatiotemporal Models



Outline
Temporal Models

Spatial Models
Spatiotemporal Models

Bibliography

Time Domain Analysis
Frequency Domain Analysis
Effect of Ignoring Temporal Correlation

Emphasis

I The time series nature of the voxel observations
I Ways of exploiting this information

1. in the Time Domain
2. in the Frequency Domain
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One Basic Model

Extend linear model from Chapter 5: Yt = Xtβ + Zt ,

I Yt : response at time t

I Xt : desigh matrix
I Difference:

I In linear model, ε is assumed as normal with mean zero and
variance σ2I

I Here, ε is replaced by Zt of mean zero and unknown
covariance structure V
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One Basic Model: Continued

I General procedure: prewhitening
Write V = KKT , then D = K−1 is called prewhitening

I In practice,
V is unknown and must be estimated first
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Worsley and Friston (1995)

I Original work
To estimate the parameter β in a linear model:

Y = Xβ + e

I Y : unsmoothed time series
I e: error vector, containing components that are independently

distributed normal with mean zero and variance σ2

Applied to the time series, it turns to one of allowing for
serial correlation in a regression setting, and solutions exist
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Worsley and Friston (1995): Continued

I Special procedures
Smooth the time series first, then the least squares
estimator of β becomes:

β̂ = (XT
1 X1)−1XT

1 KY ,

whereX1 = KX .
Then usual least square theory produces estimates of the
variance and a test statistic that can be used to assess the
behavior at each voxel

I Conclusions
Because of smoothing, this estimator is not fully optimal, but
it’s unbiased, and in many situations the loss of efficiency is
not great
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Bullmore et al.(1996b)

I Idea
Use Trigonometric Basis functions to capture the frequency
information from the time series of signal intensities

I Model
For signal Yt :

Yt =γ sin(ωt) + δ cos(ωt) + γ
′
sin(2ωt) + δ

′
cos(2ωt)

+ γ
′′

sin(3ωt) + δ
′′

cos(3ωt) + α + βt + ρt

I ω: the fundamental frequency for the data
I α + βt: linear trend
I ρt : error at t, estimated via Pseudogeneralized Least

Squares
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Bullmore et al.(1996b): Continued

I Identify active voxels
Follow a two-stage approach:

I Use temporal information to calculate the Fundamental Power
Quotient (FPQ)at voxel i:

6.1 Temporal Models 103

with X1 = KX . Worsley and Friston note that, because of the smoothing,
this estimator isn’t fully optimal, but it is unbiased, and in many situations
the loss of efficiency is not great. The usual least squares theory then produces
estimates of the variance and a test statistic that can be used to assess the
behavior at each voxel. By contrast, Wicker and Fonlupt (2003) carry out an
analysis of this type of model using generalized least squares (GLS) and an
empirically determined correlation matrix.

There is more than one way to model the time course directly in the time
domain. One such alternative route is taken by Bullmore et al. (1996b),
who use trigonometric basis functions, namely sines and cosines, to capture
the frequency information from the time series of signal intensities. For signal
Yt at time t, the fitted model is

Yt = γ sin(ωt) + δ cos(ωt) + γ′ sin(2ωt) + δ′ cos(2ωt)

+ γ′′ sin(3ωt) + δ′′ cos(3ωt) + α + βt + ρt.

In this expression, ω is the fundamental frequency for the data (collected in a
periodic experimental paradigm); the first three pairs of terms represent sine
waves at the fundamental frequency and the first two harmonics. The term
α + βt is a linear trend, and ρt is the error at the time point t. Since the
residual errors are correlated, Bullmore et al. estimate the parameters via
pseudogeneralized least squares.

To identify active voxels a two-stage approach, using temporal information
only in the first stage and spatial in the second, is used. More specifically, at
the first stage the authors calculate the fundamental power quotient at voxel
i, defined as

FPQi =
γ̂2

i + δ̂2
i√

2(se(γ̂i)4 + se(δ̂i)4)
.

They then find the significantly active voxels by the use of a permutation
test (see Section 10.3). In this way, distributional assumptions are avoided, at
the cost of having a computationally more expensive procedure. For testing
at the second stage, it is assumed that all voxels found in the first stage are
false positives. A measure Nvox is then defined, which counts the number of
voxels in each 8-connected cluster. Truly false positives should, in theory, be
isolated, whereas truly activated voxels should cluster together. Only voxels
that pass a threshold for both FPQ and Nvox jointly are considered active. As
noted by the authors, the two measures are not independent, and so looking
at them jointly serves merely to locate voxels of potential interest.

From the methods proposed by Bullmore et al. (1996b) additional detail
regarding the timing of activation can be extracted. Noting that there is in-
formation also in the signs of γ̂ and δ̂, they split the significant voxels into
four groups according to whether each of the two estimated parameters are
positive or negative. In their interpretation the sign of γ̂ is related to the con-
dition of the experiment to which the voxel is responding (positive for task or

then find the significantly active voxels using Permutation Test
I Assume all voxels found in the first stage are false positives

and let Nvox be the number of those voxels in each
8-connected cluster

Only voxels that pass a threshold for both FPQ and Nvox are
considered active
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Bullmore et al.(1996b): Continued

I Additional detail
Information regarding the timing of activation can be
extracted from the signs of γ̂ and δ̂:

I Sigh of γ̂ is related to the condition of the experiment to
which the voxel is responding:

+ task
- rest

I Sigh of δ̂ is related to the timing of activation:

+ anticipatory
- delayed
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Locascio et al.(1997)

I Idea
Use traditional time series methods, Autoregressive Moving
Average (ARMA) models for the fMRI time course on a voxel
by voxel basis

I CARMA
Called by authors since the model incorporates both contrast
and ARMA components
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Locascio et al.(1997): Continued

I Model
At t, the signal intensity Yt is modeled as:

Yt = α0 +
∑
αiCit + β1time + β2time2 +

θ(B)

φ(B)
εt ,

I
∑
αiCit : represents contrasts of interest between the

experimental and baseline conditions
I time: counts the order of successive images
I B: the backshift operator BXt = Xt−1

I θ(B): Moving Average Operator
θ(B) = 1− θ1(B)− · · · − θq(B)q for a moving average
component of order q

I φ(B): Autoregressive Operator
φ(B) = 1− φ1(B)− · · · − φp(B)p for an autoregressive
component of order p

I εt : white noise at t
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Locascio et al.(1997): Continued

I Advantages
I Allow for a different model to be fit at each voxel
I Can accommodate arbitrary experimental designs

I Drawbacks
Purely temporal, not clear how one could extend their
procedure to have a spatial component and still keep to the
spirit
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Discrete Fourier Transform

6.1 Temporal Models 105

clear how one could easily extend their procedure to have a spatial component
and still keep to the spirit of the analysis.

Other proposed models for the temporal correlation include AR(p) (Bull-
more et al., 1996a) and AR(1) with added white noise (Purdon and Weisskoff,
1998); estimation then proceeds, as in Locascio et al. (1997), under the as-
sumption that the prespecified model holds.

6.1.2 Frequency Domain Analysis

Now we move to the analysis in the frequency domain, as espoused for instance
by Lange and Zeger (1997) and Marchini and Ripley (2000). Let ωj denote
the Fourier frequencies, ωj = jδ/n, where n is the length of the time course, δ
is the sampling interval, and j = 0, 1, . . . , �n/2	. Then the Fourier transform
of a series w is given by

dw(ωj) =
1

n

n−1∑

k=0

wk exp(−i2πωjδk).

Hence in the frequency domain, the model for the time course can be repre-
sented as

dY (ωj) = dX(ωj)
T β + dZ(ωj).

For large n, the “error terms” dZ(ωj) are approximately uncorrelated (Mar-
chini and Ripley, 2000).

For periodic stimulus designs, such as the standard block design tradition-
ally used in fMRI, analysis in the frequency domain is simpler than that in the
time domain, since the model will simplify considerably, relying only on the
Fourier frequencies that correspond to the period of the block design, the rest
being zero. Therefore, if we take the discrete Fourier transform of each voxel
time series, most of the frequencies will not, in fact, contain information about
the signal. Specifically, Lange and Zeger, and Marchini and Ripley point out
that the fundamental frequency of activation in the spectral domain contains
most of the information relevant for inference; additional information is found
in the harmonics. Parametric (Lange and Zeger, 1997) or nonparametric (Mar-
chini and Ripley, 2000) methods can then concentrate on the estimation of
the few relevant components, as opposed to the entire spectrum. In a simple
two-condition block design consisting of c repetitions of “control-stimulus,”
the relevant Fourier frequencies are Ω = {ωj : j ∈ (c, 2c, . . . , �n/2	)}.

Lange and Zeger (1997) start with the time domain model Y (t, i) =
X(t, θi)βi + Z(t, i) and

X(t, θi) =
∑

0≤s,t−s≤T−1

λ(s, θi)x(t − s),

for location i, time t = 1, . . . , T , λ(·, ·) the two-parameter gamma family
described in Section 5.3.1, and Z(t, i) mean zero random error. Upon ap-
plying the discrete Fourier transform to this model, it becomes dY (ωj , i) =

I ωj : the Fourier frequencies, ωj =
jδ

n
I n: the length of the time course

I δ: the sampling interval

I j = 0, 1, . . . , [
n

2
]

In the frequency domain, the model for the time course:

dY (ωj ) = dX (ωj )
Tβ + dZ (ωj )
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Lange and Zeger (1997)

Procedure
I Start with time domain model Y (t, i) = X (t, θi )βi + Z (t, i),

where
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clear how one could easily extend their procedure to have a spatial component
and still keep to the spirit of the analysis.

Other proposed models for the temporal correlation include AR(p) (Bull-
more et al., 1996a) and AR(1) with added white noise (Purdon and Weisskoff,
1998); estimation then proceeds, as in Locascio et al. (1997), under the as-
sumption that the prespecified model holds.

6.1.2 Frequency Domain Analysis

Now we move to the analysis in the frequency domain, as espoused for instance
by Lange and Zeger (1997) and Marchini and Ripley (2000). Let ωj denote
the Fourier frequencies, ωj = jδ/n, where n is the length of the time course, δ
is the sampling interval, and j = 0, 1, . . . , �n/2	. Then the Fourier transform
of a series w is given by

dw(ωj) =
1

n

n−1∑

k=0

wk exp(−i2πωjδk).

Hence in the frequency domain, the model for the time course can be repre-
sented as

dY (ωj) = dX(ωj)
T β + dZ(ωj).

For large n, the “error terms” dZ(ωj) are approximately uncorrelated (Mar-
chini and Ripley, 2000).

For periodic stimulus designs, such as the standard block design tradition-
ally used in fMRI, analysis in the frequency domain is simpler than that in the
time domain, since the model will simplify considerably, relying only on the
Fourier frequencies that correspond to the period of the block design, the rest
being zero. Therefore, if we take the discrete Fourier transform of each voxel
time series, most of the frequencies will not, in fact, contain information about
the signal. Specifically, Lange and Zeger, and Marchini and Ripley point out
that the fundamental frequency of activation in the spectral domain contains
most of the information relevant for inference; additional information is found
in the harmonics. Parametric (Lange and Zeger, 1997) or nonparametric (Mar-
chini and Ripley, 2000) methods can then concentrate on the estimation of
the few relevant components, as opposed to the entire spectrum. In a simple
two-condition block design consisting of c repetitions of “control-stimulus,”
the relevant Fourier frequencies are Ω = {ωj : j ∈ (c, 2c, . . . , �n/2	)}.

Lange and Zeger (1997) start with the time domain model Y (t, i) =
X(t, θi)βi + Z(t, i) and

X(t, θi) =
∑

0≤s,t−s≤T−1

λ(s, θi)x(t − s),

for location i, time t = 1, . . . , T , λ(·, ·) the two-parameter gamma family
described in Section 5.3.1, and Z(t, i) mean zero random error. Upon ap-
plying the discrete Fourier transform to this model, it becomes dY (ωj , i) =

I λ(·, ·): two-parameter gamma family
I Z (t, i): mean zero random error

I Apply Discrete Fourier Transform to this model, it becomes:

dY (ωj , i) = dX (ωj , θi )
Tβi + dZ (ωj , i)

dX (ωi , θi ) = dλ(ωi , θi )dx (ωj )

I Use an iterative algorithm of Complex Least Squares,
estimates are obtained for the β and θ at each spatial location
separately
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Lange and Zeger (1997): Continued

Drawbacks

I Two-parameter gamma model may not be flexible enough to
capture the behavior of the HRF

I There may in addition be issues of parameter identifiability
and convergence of the complex least squares algorithm

I The approach is only appropriate for periodic experimental
designs
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Marchini and Ripley (2000)

Idea

I Start with the time domain model Yt = Xtβ + Zt

I Assume the time series has been Preprocessed to remove
trends and other confounding factors

I Then the terms dX (ωj ) vanish except at the fundamental
frequency and its harmonics
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Marchini and Ripley (2000): Continued

Model

106 6 Temporal, Spatial, and Spatiotemporal Models

dX(ωj, θi)βi + dZ(ωj , i) and dX(ωj , θi) = dλ(ωj , θi)dx(ωj). Using an iterative
algorithm of complex least squares, estimates are obtained for the β and θ
parameters at each spatial location separately.

As noted by some of the commenters on the paper by Lange and Zeger, the
approach has several technical drawbacks: the two-parameter gamma model
may not be flexible enough to capture the behavior of the hemodynamic re-
sponse function, although it is no doubt more flexible than some of the other
parametric models that have been proposed; there may in addition be is-
sues of parameter identifiability and convergence of the complex least squares
algorithm. Furthermore, their approach is only appropriate for periodic exper-
imental designs. Particularly as more and more researchers are moving to the
use of event-related studies, this is a serious limitation of the spectral domain
analysis.

In spite of the inherent limitations of analysis in the frequency domain,
it has continued to hold attractions for methodological researchers, who have
built on Lange and Zeger (1997) and extended their approach in various
directions.

Marchini and Ripley (2000) start with the time domain model Yt = Xtβ+
Zt, and assume that the time series has also been preprocessed to remove
trends and other confounding factors. Then the terms dX(ωj) vanish except
at the fundamental frequency and its harmonics, thereby reducing the model
to

dY (ωj) =

{
dX(ωj)

T β + dZ(ωj) j ∈ Ω
dZ(ωj) otherwise

The authors note that if one takes the discrete Fourier transform of the
time series at each voxel, most of the frequencies will contain information
only about the underlying correlation structure of the stochastic process
at that voxel. Now, the periodogram at frequency ωj is exactly given by
I(ωj) = n|dY (ωj)|2, and so by studying the periodogram it is possible to
learn about the response to the stimulus at each voxel, or, more precisely,
which frequencies of the signal are evidence of response. Since much of the
variance is explained in the fundamental frequency for active voxels, this is
where Marchini and Ripley focus their inferential efforts. In particular, they
demonstrate that the value of the periodogram at the fundamental frequency
is related to the optimal estimator of β in the model for dY (ωj), and hence
tests for significance of the response to a periodic stimulus are based on this
value.

The test statistic they define is

Rj =
I(ωj)

g(ωj)
,

for ωj = j/δn and g(·) a smoothed version of the periodogram which is used
as an estimator of the spectral density. For periodic designs one need consider
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Marchini and Ripley (2000): Continued

Test statistic defined for significance of the response:

Rj =
I (ωj )

g(ωj )
,

I I (ωj ) = n|dY (ωj )|2: periodogram at frequency ωj

I g(·): a smoothed version of the periodogram, used as an
estimator of the spectral density

For periodic designs, one needs to consider Rj only at the
fundamental frequency and its harmonics
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Muller et al.(2001)

Idea

I Consider a multivariate approach, in hope of teasing out, in
addition to regions of activation, the functional connectivities
among such regions
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Muller et al.(2001): Continued

Under a periodic experimental design and focus on the
fundamental frequency, consider two key parameters:

I Coherence: a measure of linear association between two time
series at a particular frequency, defined as

6.1 Temporal Models 107

Rj only at the fundamental frequency and its harmonics, as described above.
The authors recommend using nonparametric methods such as smoothing
splines to get the estimate g(·) of the spectral density, which is asymptotically
unbiased. Under the null hypothesis of no activation, Rj at the fundamental
frequency is asymptotically standard exponential; in fact this is true at other
frequencies as well, save the edges, and so if inference on some of the harmonics
is also of interest, the same result can be applied.

An interesting aspect of the proposed method stems from the observation
that only at the fundamental and first few harmonic frequencies is there ex-
pected to be any response to the periodic stimulus. Hence, the values of Rj

at the other frequencies can be considered as drawn from the null hypothesis;
these therefore provide a large sample from the null to use as an empirical
distribution against which to compare the values of Rj at the frequencies
most likely to be of interest. This obviates the need to hew to the theoretical
exponential distribution, if, for example, it is not a good fit for a given data
set. The empirical distribution can be used instead for calibration of the test
statistic.

Müller et al. (2001), also working in the spectral domain, consider instead
a multivariate approach, in the hope of teasing out, in addition to regions of
activation, the functional connectivities among such regions. This is a delicate
question in the analysis of fMRI data (see also Sections 4.3.1 and 11.2). As in
Marchini and Ripley (2000), Müller et al. (2001) assume a periodic exper-
imental design and focus on the fundamental frequency. Using multivariate
time series methods in the spectral domain, they estimate two key parame-
ters for understanding the temporal connections between pairs of voxels: the
coherence and the phase lead.

Letting fjk(λ) be the cross-spectral density function at frequency λ, the
coherence is defined to be

ρjk(λ) =
|fjk(λ)|√

fjj(λ)fkk(λ)

and the phase lead is the function νjk(λ) in the expression

fjk(λ) = |fjk(λ)|eiνjk(λ).

Coherence in this context is analogous to correlation, namely it is a measure
of linear association between two time series at a particular frequency. Voxels
that have high coherence with each other are “correlated” in this sense, and the
expectation would be that coactivating voxels would form clusters with high
coherence. After the clusters with high coherence are identified, the method
proposed by Müller and colleagues computes the phase lead, again pairwise
between voxels, again for selected frequencies that are related to the periodic
experimental design. The authors describe the phase lead as a measure of
the amount of temporal displacement in the BOLD response for one region
relative to another. Thus, examination of the phase lead in theory can shed

I Phase lead: a measure of the amount of temporal
displacement in the BOLD response for one region relative to

another, defined as the νjk (λ)
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Rj only at the fundamental frequency and its harmonics, as described above.
The authors recommend using nonparametric methods such as smoothing
splines to get the estimate g(·) of the spectral density, which is asymptotically
unbiased. Under the null hypothesis of no activation, Rj at the fundamental
frequency is asymptotically standard exponential; in fact this is true at other
frequencies as well, save the edges, and so if inference on some of the harmonics
is also of interest, the same result can be applied.

An interesting aspect of the proposed method stems from the observation
that only at the fundamental and first few harmonic frequencies is there ex-
pected to be any response to the periodic stimulus. Hence, the values of Rj

at the other frequencies can be considered as drawn from the null hypothesis;
these therefore provide a large sample from the null to use as an empirical
distribution against which to compare the values of Rj at the frequencies
most likely to be of interest. This obviates the need to hew to the theoretical
exponential distribution, if, for example, it is not a good fit for a given data
set. The empirical distribution can be used instead for calibration of the test
statistic.

Müller et al. (2001), also working in the spectral domain, consider instead
a multivariate approach, in the hope of teasing out, in addition to regions of
activation, the functional connectivities among such regions. This is a delicate
question in the analysis of fMRI data (see also Sections 4.3.1 and 11.2). As in
Marchini and Ripley (2000), Müller et al. (2001) assume a periodic exper-
imental design and focus on the fundamental frequency. Using multivariate
time series methods in the spectral domain, they estimate two key parame-
ters for understanding the temporal connections between pairs of voxels: the
coherence and the phase lead.

Letting fjk(λ) be the cross-spectral density function at frequency λ, the
coherence is defined to be

ρjk(λ) =
|fjk(λ)|√

fjj(λ)fkk(λ)

and the phase lead is the function νjk(λ) in the expression

fjk(λ) = |fjk(λ)|eiνjk(λ).

Coherence in this context is analogous to correlation, namely it is a measure
of linear association between two time series at a particular frequency. Voxels
that have high coherence with each other are “correlated” in this sense, and the
expectation would be that coactivating voxels would form clusters with high
coherence. After the clusters with high coherence are identified, the method
proposed by Müller and colleagues computes the phase lead, again pairwise
between voxels, again for selected frequencies that are related to the periodic
experimental design. The authors describe the phase lead as a measure of
the amount of temporal displacement in the BOLD response for one region
relative to another. Thus, examination of the phase lead in theory can shed

where fjk(λ) is the cross-spectral density function at frequency
λ
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Muller et al.(2001): Continued

Advantages

I Pick out similar regions of activation compared with the
standard general linear model analysis

I Some understanding of the network, via the different lags in
BOLD response for different regions, is obtained

Drawbacks

I It’s still not possible from this approach to infer causality in
the network

I The experimental design needs to be periodic or nearly so
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Gonzalez Andino et al.(2000)

Idea

I Start from the assumption that time series for voxels that are
related to ”signal” should look different from those that are
related to ”noise”

I The time series should be differentiable according to their
complexity, with ”signal” voxels having less complex patterns
made up of a few temporal components
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Gonzalez Andino et al.(2000): Continued

A Basic Measure: TFR
Time frequency representation, a two-dimensional plot showing
how the frequency of a series varies over time

I Time series contain organized signal will have a few ”hot
spots” in the TFR related to ”noise”

I Those are essentially noise will have many such spots
scattered at random

Thus, the number of hot spots in the TFR can be taken as a
measure

Hao, Guanshengrui Temporal, Spatial, and Spatiotemporal Models



Outline
Temporal Models

Spatial Models
Spatiotemporal Models

Bibliography

Time Domain Analysis
Frequency Domain Analysis
Effect of Ignoring Temporal Correlation

Gonzalez Andino et al.(2000): Continued

Formal Measure: Renyi entropy

108 6 Temporal, Spatial, and Spatiotemporal Models

light on some aspects of connectivity, such as which regions activate earlier and
which later in reaction to a particular stimulus. Note that, while this analysis
may describe the temporal sequence in which different regions become active,
it does not indicate causality; simply because voxels in one region activate
before those in another, one cannot of course conclude that activity in the
former leads to activation in the latter.

According to Müller et al. (2001),working with a simple visual task, their
method performs comparably to the standard general linear model analy-
sis, picking out similar regions of activation (in both location and extent).
A purported advantage of their procedure is that some understanding of the
network, via the different lags in BOLD response for different regions, is ob-
tained. As mentioned above, however, it is still not possible from this approach
to infer causality in the network. Also, because the authors assume weak sta-
tionarity, the experimental design needs to be periodic (that is, a block design
experiment) or nearly so. Hence it won’t be an appropriate analysis path for
more advanced or complex experimental designs.

A somewhat different approach to the modeling of the time series is given
by Gonzalez Andino et al. (2000), who start from the assumption that time
series for voxels that are related to “signal” should look different from those
that are related to “noise” (or “nonsignal,” more generally). In particular, the
time series should be differentiable according to their complexity, with “signal”
voxels having less complex patterns made up of a few temporal components
(Gonzalez Andino et al., 2000). The measure they propose to use for the
purpose of distinguishing signal from noise time series is the Renyi entropy,
which makes minimal assumptions about how the signal is generated. There is
no need to assume normality or stationarity, and the HRF is not estimated. It
is only assumed that the characteristics of noise and signal time series differ.

A concept that is basic to their approach is the time frequency represen-
tation, or TFR; this is a two-dimensional plot showing how the frequency of
a series varies over time. Time series that contain organized signal will have
a few “hot spots” in the TFR, whereas those that are essentially noise will
have many such spots scattered at random. Thus the number of hot spots in
the TFR can be taken as a measure of the complexity of the time series, with
the rationale that many components are needed to describe a noise series and
only a few are needed to describe a series with a clear pattern.

To formally measure the complexity of a signal, the authors use the fol-
lowing definition of Renyi entropy:

Hα(Cs) =
1

1 − α
log2

∫ ∫ (
Cs(t, f)dtdf∫ ∫

Cs(t, f)dtdf

)α

,

where α represents the order of the entropy, and Cs(t, f) are the coefficients
of the TFR of the time series s. Based on earlier empirical studies by various
researchers, the value α = 3 is chosen. When the number of components in
the TFR is small (organized signal), this entropy measure will also be small;
for a large number of diffuse components (noise), the entropy will be high.

I α: order of the entropy

I Cs(t, f ): the coefficients of the TFR of the time series s

Based on empirical studies, α = 3 is chosen
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Gonzalez Andino et al.(2000): Continued

Advantages

I There’s no need to estimate the HRF, nor to assume a
reference vector

I It can be applied to event-related experiments of arbitrary
complexity
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Gonzalez Andino et al.(2000): Continued

Drawbacks

I Users need to choose the time frequency representation and
the order α

I It’s not clear how sensitive conclusions are to these choices

I The authors do not offer a formal way of distinguishing
between voxels to be declared active and inactive based on
values of Hα(Cs) when there’s not a natural separation
between the two groups
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Purdon and Weisskoff (1998)

I Study
Reported a simulation study that explores the importance for
precise statistical inference of accounting for the temporal
correlation in the fMRI time series.

I Conclusion
the result shows that if there’re indeed temporal
autocorrelations, ignoring them introduces bias in the
assumed significance levels
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Woolrich et al. (2001)

I Study
examine the effectiveness of several statistical methods for
directly handling autocorrelation in the fMRI time series.

I Conclusion
Among the coloring with a low-pass filter, correcting the
variance and prewhitening, the authors report that
prewhitening is the most efficient method; and among the
parametric or nonparametric techniques or
windowing/tapering methods which are used to estimate the
autocorrelation, they report that a simple windowing works
best.
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Reasons for Lack of Purely Spatial Models

I Physical location alone is not enough to describe the spatial
dependence

I Spatial analysis that ignores temporal element still requires
some prior processing
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Hartvig and Jensen (2000)

Idea

I Their analysis start with the intuitively pleasing idea that
active voxels will tend to cluster together. Thus it makes
sense to consider activation status in clusters or neighborhood
of voxels
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Hartvig and Jensen (2000): Continued

Procedures

I Specify a likelihood for this observed value (get from interim
statistical map), called x , given the activation status A of the
voxel

I prior is specified

I Bayes rule gives the posterior probability of a pattern of
activation and of a particular voxel being acive

Posterior probability for entire pattern of activation:
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slice, with voxel i in the center of the square), or its 26 immediate neighbors
(all those in the same slice, or in the two adjacent slices, again with voxel i
in the middle of the cube); voxels that are in an “active neighborhood” are
themselves more likely to be active.

Denote the activation status of voxel i by A, where A = 1 indicates that
i is active and A = 0 indicates that it is not. Also, the activation statuses
of voxel i’s k neighbors (k = 8 or k = 26 for the two cases described above;
one could of course define neighborhoods with different characteristics, but
these have the advantage of simplicity) are denoted by Hartvig and Jensen
as A1, . . . , Ak. None of these A values are observed; rather the authors take
a Bayesian approach and estimate the posterior probabilities of each being 1,
based on a model for the prior and a likelihood function given the state of
activation.

What is observed in their scenario is the interim statistical map, for ex-
ample, the output from a simple t test performed at each voxel. The first step
is to specify a likelihood for this observed value, called x, given the activation
status A of the voxel. Hartvig and Jensen suggest a normal distribution with
mean zero when A = 0, and either a normal distribution with mean μ �= 0
or a gamma distribution when A = 1. This determination of the likelihood
expresses the mixture nature of the problem. Next, the prior is specified, and
this is the main focus of Hartvig and Jensen (2000). Once these two are de-
termined Bayes rule gives the posterior probability of a pattern of activation
and of a particular voxel being active (regardless of the neighbors). Letting
subscript C denote properties of the cluster configuration (i.e., which voxels
are active), the posterior probability for the entire pattern of activation is
given by

P (AC = aC |xC) ∝ f(xC |aC)P (AC = aC)

and the posterior probability of voxel i being active is

P (A = a|xC) ∝
∑

a1=0,1

· · ·
∑

ak=0,1

P (AC = aC |xC).

Now, in general this latter expression will be hard to calculate, since it
requires summing over all the possible activation patterns of the neighbors of
voxel i, therefore Hartvig and Jensen propose priors that result in a closed
form expression for the posterior probability. All of these priors are applied
to small, local neighborhoods, and aim to capture the notion that truly active
voxels should tend to “clump together.” Let S be the number of 1s in the
cluster under consideration. The three priors are:

1.

P (AC = aC) =

{
q0 S = 0
q1 S > 0

Posterior probability of voxel i being active:
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Hartvig and Jensen (2000): Continued

Main focus: Prior

I Hartvig and Jensen (2000) propose three priors:
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2.

P (AC = aC) =

{
q0 S = 0
αγS−1 S > 0

3.

P (AC = aC) =

⎧
⎨
⎩

q0 S = 0

α1γ
S−1
1 + α2γ

S−k
2 1 ≤ S ≤ k

q1 S = k + 1

The first prior has in effect only one parameter, and is thus particularly
easy to work with. It represents the prior belief that the active clusters are of
intermediate size. Single voxels are not believable, but neither are neighbor-
hoods that are very large.

The parameter γ in the second prior is a measure of correlation among
neighboring voxels. The other free parameter can be rewritten in terms of the
probability of a voxel being activated. The third prior induces symmetry in
the way active and nonactive voxels are treated. It can be written in terms of
the probability of a voxel being activated, plus four parameters that describe
the correlation across voxels.

Based on simulations and a real data analysis of a visual processing task
performed by a single subject, the authors recommend the second of their
three priors, applied to a small neighborhood (3×3 for a slice, or 3×3×3 for
a volume). This combination of model and neighborhood performs the best,
in terms of power and of minimizing classification error. The mixture model
is also comparable to nonparametric spatial smoothing methods (see their
Figure 5) in the appearance of the activation maps, although the latter does
result in somewhat smoother clusters. Note that the procedures described here
are all local; that is, the activation probability of a given voxel depends only on
the behavior of its immediate neighbors. However, since the model is applied
at every voxel, contiguous regions that span the brain, for instance bilaterally,
can be formed. The local fitting reduces the computational burden, as do the
closed form expressions that the authors derive for the posterior probabilities.

A very different Bayesian analysis is implemented by Smith et al. (2003)
(see also Smith and Fahrmeir 2007).Their point of departure is the basic linear
model, as described in the previous chapter. In their analysis the time course
at voxel i is modeled as the sum of a baseline trend (which is not of direct
interest), an “activation profile,” and error. The second term, the activation
profile, is the focus of the analysis. Smith and colleagues assume a latent
variable, γi underlying voxel i, so that γi = 1 if voxel i is active and γi = 0
otherwise. The regression parameter for the activation profile in the linear
model then represents the amplitude of activity, being nonzero only if γi = 1.

In this configuration, the vector γ that summarizes the activation pattern
is the parameter of interest. The authors suggest imposing spatial correlation
and incorporating information (for instance, anatomical) via a prior that has
the Ising form; this is a common prior in spatial statistics (Besag, 1986; Besag
et al., 1991). The Ising prior for γ is
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where S is the number of 1s in the cluster under consideration
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Hartvig and Jensen (2000): Continued

Conclusion:

I The authors recommend the second one, applied to a small
neighborhood, as it performs best in terms of power and of
minimizing classification error and also reduces the
computational burden.
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Direct Modeling

Outline

Though it’s the most natural way to handle functional
neuroimaging data, it’s faced with both computational and
conceptual barriers.

I Computationally, the task of fitting a fully spatiotemporal
model to a fMRI dat is formidable one

I Conceptually, the spatial correlation in particular is difficult to
summarize in a form that admits a simple statistical model

Two school of thought

I Clustering of time series

I Direct modeling
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Clustering fMRI Time Series
Direct Modeling

A few Questions

I What should be clustered — the raw time series or some
function of these?

I What clustering algorithm or family of algorithms should be
used?

I How many clusters are needed and how should this be
decided?
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A few Questions: Continued

What should be clustered?

I Clusters the time series, looking for similarities in behavior,
(Baumgartner et al., 1997;Baumgartner et al., 1998) which is
the dominant approach

I Other authors (Goutte et al., 1998), claim that clustering the
time series is un stable. They recommend clustering instead
on the correlation function of the series with the experimental
paradigm

Also, most researchers in this area recommend doing some sort of
screening first, to eliminate voxels that are clearly no active.
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A few Questions: Continued

Clustering Algorithm

I Most popular algorithms: K means (Balslev et al. 2002) and
fuzzy clustering (Baumgartner et al. 1998; Fadili et al. 2000)

I Hierarchical methods (Stanberry et al., 2003)

I Combination of K means and hierarchical clustering
(Filzmoser et al.1999)
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A few Questions: Continued

Number of Clusters

I Hierarchical clustering methods such as average, single, or
complete linkage do not require prior specification of the
number of clusters, although a clustering threshold must be
picked

I Fuzzy clustering and K means require the number of clusters
be chosen ahead of time

Algorithm to decide the number

I Two-stage approach of Filzmoser et al.(1999)

I Posteriori validation of detected clusters by statistical testing
(Baumgartner et al., 1998)

I Cross-validation (Balslev et al., 2002)
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MST

I Minimal spanning trees (MST) is a multidimensional
generalization of an ordered list, which can be served as a
means of investigating the temporal evolution and
connectivity among groups of spatially clustered voxels.

I The starting point of such an investigation is therefore voxel
time series that have already been clustered by some other
method.
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Baumgartner et al.(2001)

Definitions

I Root node: The root node has depth of zero, and the depths
of the other time courses are defined by their distances from
the root

I Run: A run is a consecutive sequence of voxels from the same
clusters
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Baumgartner et al.(2001): Continued

Total number of runs and the length of the longest run give
information about the separability of the clusters:

I Many short runs: Not separable

I Few long runs: Should be separated

Coactivation is inferred when no such separation results from the
MST ranking of the time courses
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Baumgartner et al.(2001): Continued

One example:

6.3 Spatiotemporal Models 119

interpretation of the clusters as containing voxels with different behaviors is
justified.
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Fig. 6.1. Minimal spanning tree built from voxels belonging to two pre-identified
clusters. The first cluster contains 19 voxels and is thought by the researcher to be
related to the task. The second cluster contains 12 voxels and is believed to be noise.
While the complete separation of the clusters apparent in the tree cannot validate
these claims, it does confirm that the time courses of the voxels in the two clusters
exhibit very different behaviors.

Finally, Figure 6.3 shows the results of applying three hierarchical clus-
tering algorithms – complete linkage, average linkage, and single linkage – to
the combined data set from the two clusters. All methods identify the two
clusters correctly, although they differ slightly in the details of the structure
(which voxels within a cluster are deemed “closest” varies from algorithm to
algorithm).

Stanberry et al. (2003) also use the idea of the minimal spanning tree,
through its connection with the single linkage hierarchical analysis, and “den-
drogram sharpening.” Dendrogram sharpening is a way of reducing the data
that are input to the clustering algorithm in order to produce more dis-
tinct clusters. The data that are discarded during the sharpening stage are
then classified into one of the clusters identified by the single linkage algo-
rithm. Sharpening involves looking at every parent node in an initial dendro-
gram based on all of the data, starting at the root node. Any branch of the
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Baumgartner et al.(2001): Continued

One example (Continued):
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Fig. 6.2. Ordered index plot, based on the minimal spanning tree for the two
clusters. The ordering is based on distances between time courses. The voxels in the
two clusters are completely separated from each other.

dendrogram that has a minimum number of nodes is a candidate for sharpen-
ing; child nodes that are smaller than a preset size are eliminated. Hence the
amount of data reduction is governed by two tuning parameters – the minimal
size of a parent node to be a candidate for sharpening (denoted ncore), and the
maximal size of the child nodes (denoted nfluff). For example, with ncore = 10
and nfluff = 3, all the children of size 3 or smaller will be discarded from every
node of size 10 or more. Size refers to the total number of descendants of a
node. The algorithm proceeds from the root up, discarding as it goes. Addi-
tional data reduction is achieved by a prescreening step; the distance measure
in their algorithm is the correlation between time courses and any voxel that
doesn’t have a high correlation (greater than 0.5) with at least four other
voxels is discarded even prior to the sharpening. In the examples shown by
Stanberry et al., vast reductions in the size of the data set are achieved by
these two tools, and single linkage clustering applied to the time courses of
the survivors often reveals clear structure.

To demonstrate some of the ideas behind this approach, consider a simple
simulated data set made up of n = 15 observations, 8 of which are drawn from
a bivariate normal distribution with mean (0, 0) and covariance matrix I, and
7 from a bivariate normal with mean (1.5, 1.5) and covariance matrix I. Hence
there are two clusters but with some overlap; see Figure 6.4. The dendrogram
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Baumgartner et al.(2001): Continued

One example (Continued):
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Fig. 6.3. Hierarchical clustering applied to the combined data set of n = 31 voxels.
All three methods clearly and correctly identify the two clusters from which the
voxels are drawn.

for this data set based on the single linkage algorithm is in Figure 6.5. There
are two clear clusters identified in the figure, but some of the observations from
the second distribution (observations 9 and 15) are misclassified as coming
from the first.

For this example we set the parameters nfluff = 2 and ncore = 5. The
root node is of size 15, so it will be analyzed. It has two children, the left
of size 10 and the right of size 5. Both are greater than 2, so will be further
considered. The right child is of size not greater than 5, so it will be retained
in its entirety. The left child is subject to sharpening. It has children of size 1
(left) and 9 (right). The left child is of size smaller than 2, so it is discarded.
The right child has children of size 2 (left) and 7 (right), so again the left
child is discarded. The right child is a candidate for additional sharpening.
Its children are of size 3 (left) and 4 (right); both are greater than 2, but less
than 5, and so are kept. The three observations {6, 7, 8} are deleted; these are
denoted in Figure 6.4 as open circles with dots inside of them.

The dendrogram for the sharpened data set is given in Figure 6.6. Although
observations 9 and 15, from the second distribution, are still misclassified as
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Stanberry et al. (2003)

Idea

I Use the idea of the MST, through its connection with the
single linkage hierarchical analysis and ”dendrogram
sharpening”

Dendrogram Sharpening

I A way of reducing the data that are input to the cluster
algorithm in order to produce more distinct clusters
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Stanberry et al. (2003): Continued

I Procedure of Dendrogram Sharpening
1. Looking at every parent node in an initial dendrogram based

on all of the data, starting at the root node
2. Any branch of the dendrogram that has a minimum number of

nodes (ncore) is a candidate for sharpening
3. Child nodes that are smaller that a preset size (nfluff ) are

eliminated

Also, additional data reduction is achieved by a prescreening step
prior to the sharpening
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Stanberry et al. (2003): Continued

One example:
122 6 Temporal, Spatial, and Spatiotemporal Models
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Fig. 6.4. Scatterplot of simulated data; 8 points (open circles) are taken from
the standard bivariate normal and 7 (stars) from the bivariate normal with mean
(1.5, 1.5) and covariance matrix I . Two clusters are discernible in the data, with
some amount of overlap. The three open circles with dots inside of them are points
that are discarded by the sharpening algorithm.

coming from the first cluster (they were not discarded by the sharpening), the
two identified clusters are now more distinct than they were previously.

Goutte et al. (1999) is a good example of clustering on something other
than the time courses themselves. As noted above, these authors suggest that
clustering on the correlation function of the fMRI time series with the ex-
perimental paradigm can yield more meaningful groupings. Let T denote the
length of a time course and let yj be the measured time series at voxel j. Then
the correlation function, which is used by Goutte and colleagues as the metric
for the clustering algorithms that they evaluate, is defined as

xj(t) =
1

T

T∑

s=1

yj(s)p(s − t),

with p(·) the stimulus series (for instance, the boxcar typical of a block design).
This is the usual convolution of the observed series with the stimulus, now
evaluated at each time point instead of being summarized into a correlation
coefficient. The correlation function is also used as the screening device to rid
the data of “clearly inactive” voxels prior to clustering. In this instance the
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Stanberry et al. (2003): Continued

One example (Continued):
6.3 Spatiotemporal Models 123
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Fig. 6.5. Dendrogram for simulated data, using single linkage algorithm. Two clus-
ters are identified; however, not all observations are classified correctly.
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Fig. 6.6. Dendrogram of sharpened data set. The observations are numbered ac-
cording to their original indices.
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Stanberry et al. (2003): Continued

One example (Continued):

6.3 Spatiotemporal Models 123
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Fig. 6.5. Dendrogram for simulated data, using single linkage algorithm. Two clus-
ters are identified; however, not all observations are classified correctly.
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Fig. 6.6. Dendrogram of sharpened data set. The observations are numbered ac-
cording to their original indices.
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Direct Modeling

I From a statistical perspective it is, perhaps, the most
complete and correct. But due to the computational
complexity, it has only become feasible relatively recently.

I Within the rubric of ”direct models” are included models
based on regression and wavelets, and Bayesian models,
among others.
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Purdon et al.(2001)

Idea

I Seek the relationship between the input (a sensory or
cognitive stimulus) and the observed output (the measured
fMRI response to that stimulus)
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Purdon et al.(2001): Continued

Model: comprises three components

I hemodynamic response: follows known or assumed patterns
I noise part, with two components:

I White for the scanner noise
I AR(1) for the low-frequency physiological noise

I drift part: linear in time, accounts for slow drift in the
external field, as well as amounts of motion that were not
corrected in any motion correction step
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Purdon et al.(2001):Continued

At each voxel, noise parameters and signal parameters need to be
estimated. The authors set an overall fitting criterion that is
separable:

J(θ) =
V∑

v=1

Jv (θv );

where θv is the entire vector of parameters at voxel v

Hao, Guanshengrui Temporal, Spatial, and Spatiotemporal Models



Outline
Temporal Models

Spatial Models
Spatiotemporal Models

Bibliography

Outline
Clustering fMRI Time Series
Direct Modeling

Purdon et al.(2001): Continued

The criterion at a given voxel v is a spatially locally weighted
log-likelihood:

Jv (θv ) =
∑

q∈Nv

Kh
v−qLq(θv )

I Lq(θv ): Gaussian log-likelihood based on time series at voxel q

I K : Kernel function

I h: size of neighborhood on which kernel function is
concentrated

I Nv : the neighborhood of voxel v

Finally, estimation proceeds iteratively, alternating between the
noise and signal parameters, thus these are separately spatially
regularized
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Purdon et al.(2001): Continued

Advantages

I On both simulated and real data, local regularization is able
to better estimate both the signal and the noise

I Estimates of noise are smoother under this analysis, while
estimates of the signal aren’t blurred
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McIntosh et al. (2004)

Idea

I Use partial least squares specifically for event-related fMRI
experiments (suitable for block designs as well)

Partial Least Squares

I A multivariate extension of multiple linear regression, where
”partial” refers to computing the best least squares fit but
only to part (here is related to the experimental design or to
subject behavior)of a covariance (correlation matrix)
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McIntosh et al.(2004): Continued

Comparison with other multivariate extensions
Consider a multiple linear regression in general form:

Y = Xβ + ε

Whereas most of other methods (discriminant analysis, principal
components analysis (PCA), canonical correlation analysis (CCA))
extract factors from the Y TY or XTX matrices only, partial least
squares extract factors from Y TYXTX
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McIntosh et al.(2004): Continued

Procedure of ST-PLS
I Rearrange the data array into a matrix to reflect the

multivariate nature of the PLS approach:
I Both spatial and temporal information in the columns
I Information about the experimental design in rows

I Singular value decomposition on the rearranged matrix
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McIntosh et al.(2004): Continued

Two version of ST-PLS

1. Data matrix is mean centered and factors are extracted by
applying a singular value decomposition to this new matrix

2. Original data matrix is transformed by a set of orthonormal
contrasts representing effects of interest. The covariance
matrix of these contrasts is then calculated and the singular
value decomposition is applied to this matrix instead

Hao, Guanshengrui Temporal, Spatial, and Spatiotemporal Models



Outline
Temporal Models

Spatial Models
Spatiotemporal Models

Bibliography

Outline
Clustering fMRI Time Series
Direct Modeling

McIntosh et al.(2004): Continued

Result of singular value decomposition

I A set of factors relate brain activity and experimental design
due to the layout of the rearranged data matrix
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McIntosh et al.(2004): Continued

Validation
Two type of tasks:

I Visual processing

I auditory processing

Two types of ST-PLS:

I Task analysis to detect spatiotemporal patterns in the
stimulus response

I Behavior analysis to examine the spatiotemporal structure of
brain behavior and reaction time on the tasks
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McIntosh et al.(2004): Continued

Validation (Continued)
Two significant factors are found in the first analysis

1. The first is attributed to the main effect of task versus rest

2. The second significant factor yields the interaction between
type of stimulus (auditory or visual) and condition (task
versus baseline)

One significant factor is discovered in the second analysis

I Interpreted as the overall correlation of reaction time with
brain activation in both tasks
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Gössl, C., Auer, D. P., and Fahrmeir, L. (2000). “Dynamic models in fMRI.”
Magnetic Resonance in Medicine, 43, 72–81.

— (2001). “Bayesian spatiotemporal inference in functional magnetic reso-
nance imaging.” Biometrics, 57, 554–562.

Goutte, C., Toft, P., Rostrup, E., Nielsen, F. A., and Hansen, L. K. (1999).
“On clustering fMRI time series.” NeuroImage, 9, 298–310.

Green, P. (1995). “Reversible jump Markov chain Monte Carlo computation
and Bayesian model determination.” Biometrika, 82, 711–732.

Hajnal, J. V., Bydder, G. M., and Young, I. R. (1995). “FMRI: Does corre-
lation imply activation?” NMR in Biomedicine, 8, 97–100.

Hajnal, J. V., Myers, R., Oatridge, A., Schwieso, J. E., Young, I. R., and
Bydder, G. M. (1994). “Artifacts due to stimulus correlated motion in
functional imaging of the brain.” Magnetic Resonance in Medicine, 31,
283–291.

Hampson, M., Peterson, B. S., Skudlarski, P., Gatenby, J. C., and Gore, J. C.
(2002). “Detection of functional connectivity using temporal correlations
in MR images.” Human Brain Mapping, 15, 247–262.

Handwerker, D. A., Ollinger, J. M., and D’Esposito, M. (2004). “Variation of
BOLD hemodynamic responses across subjects and brain regions and their
effects on statistical analyses.” NeuroImage, 21, 1639–1651.

Hansen, L. K. and Larsen, J. (1996). “Unsupervised learning and gener-
alization.” Proceedings of the IEEE International Conference on Neural
Networks , 1, 25–30.

Hansen, L. K., Larsen, J., Nielsen, F. A., Strother, S. C., Rostrup, E., Savoy,
R., Lange, N., Sidtis, J., Svarer, C., and Paulson, O. B. (1999). “General-
izable patterns in neuroimaging: How many principal components?” Neu-
roImage, 9, 534–544.

Harms, M. P. and Melcher, J. R. (2003). “Detection and quantification of a
wide range of fMRI temporal responses using a physiologically-motivated
basis set.” Human Brain Mapping, 20, 168–183.

Harrison, L., Penny, W. D., and Friston, K. (2003). “Multivariate autoregres-
sive modeling of fMRI time series.” NeuroImage, 19, 1477–1491.

Hartigan, J. A. (1975). Clustering Algorithms. New York: John Wiley & Sons.
Hartvig, N. V. (2002). “A stochastic geometry model for functional magnetic

resonance images.” Scandinavian Journal of Statistics , 29, 333–353.

270 References

Gold, S., Christian, B., Arndt, S., Zeien, G., Cizadlo, T., Johnson, D. L.,
Flaum, M., and Andreasen, N. C. (1998). “Functional MRI statistical soft-
ware packages: A comparative analysis.” Human Brain Mapping, 6, 73–84.
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