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1 Introduction

The symmetric wavelet tight frame described in the paper

I. W. Selesnick and A. Farras Abdelnour. Symmetric wavelet tight frames with
two generators. Applied and Computational Harmonic Analysis, 17(2):211-225,
September 2004. (Special Issue: Frames in Harmonic Analysis, Part II.)

has been implemented in MATLAB with symmetric boundary conditions. The implemen-
tation satisfies Parseval’s energy property. These notes describe the implementation of the
transform and verifies its properties.

We call this expansive transform the double-density discrete wavelet transform (DDWT)
because it has exactly twice the number of wavelet coefficients as the critically-sampled
DWT.

We use cell arrays in MATLAB to store the wavelet coefficients because it simplifies the
programs and it also makes it easy to access the wavelet coefficients corresponding to a
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specific scale. A cell array can be used to store a set of vectors, each vector having possibly
different lengths. Because there are a different number of wavelet coefficients at each scale,
a cell array is convenient for organizing the wavelet coefficients.

2 The Filters

The analysis filters are stored as the cell array af, and the synthesis filters are stored as the
cell array sf. Because the frame is a tight frame, the synthesis filters are the time-reversed
versions of the analysis filters. The filter af{1} is the symmetric even-length lowpass filter,
the filter af{2} is the symmetric even-length bandpass filter, and the filter af{3} is the
anti-symmetric even-length highpass filter.

Checking Perfect Reconstruction Conditions

We can check the perfect reconstruction (PR) conditions using the following code fragment.
The perfect reconstruction conditions are equations (3) and (4) in the paper.

% check perfect reconstruction conditons

[af, sf] = filters1;
h0 = [af{1}; 0; 0];
h1 = af{2};
h2 = af{3};

N = length(h0);
n = [0:N-1]’;

g0 = h0(N-n);
g1 = h1(N-n);
g2 = h2(N-n);

Eq3 = conv(h0,g0) + conv(h1,g1) + conv(h2,g2);

s = (-1).^n;
f0 = h0 .* s;
f1 = h1 .* s;
f2 = h2 .* s;

Eq4 = conv(f0,g0) + conv(f1,g1) + conv(f2,g2);

[Eq3 Eq4]
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The result of running this program is the following, which verifies that these filters do satisfy
the PR conditions.

0 0

0 0

0.00000000000000 0.00000000000000

-0.00000000000000 0.00000000000000

-0.00000000000000 -0.00000000000000

-0.00000000000000 -0.00000000000000

0.00000000000001 0.00000000000001

-0.00000000000007 0.00000000000000

-0.00000000000000 0.00000000000001

0.00000000000036 -0.00000000000000

-0.00000000000002 -0.00000000000000

1.99999999999940 0.00000000000000

-0.00000000000002 0.00000000000000

0.00000000000036 -0.00000000000000

-0.00000000000000 -0.00000000000001

-0.00000000000007 0.00000000000000

0.00000000000001 -0.00000000000001

-0.00000000000000 -0.00000000000000

-0.00000000000000 0.00000000000000

-0.00000000000000 0.00000000000000

0.00000000000000 -0.00000000000000

0 0

0 0

We can create the following plots of the impulse responses and frequency responses of the
three filters with the MATLAB code contained in the accompanying file check.m.
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3 Implementing the Analysis and Synthesis Filter Banks

The basic building block of the double-density DWT is the analysis and synthesis filter
banks. The analysis filter bank is implemented with the program afb. The program returns
three subband signals obtained by filtering the input signal with each of three filters and
down-sampling by two. The three subband signals are called lo, hi1, and hi2 in the afb

program.

In the implementation, there are a couple of details that must be taken into account. First,
the symmetric extension at the boundaries of the signal requires that the input signal be
symmetrically extended before the filtering is performed. While periodic extension at the
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boundaries is easier to implement than symmetric extension, periodic extensions give rise to
undesirable artifacts at the boundaries of the reconstructed signal when the wavelet coeffi-
cients are processed. Since our filters are symmetric, we can perform symmetric extension.
(Symmetric extension of the boundaries requires that the filters be symmetric.) It turns out
that symmetric extension for the symmetric double-density DWT filters is not as straight-
forward as it is for the symmetric biorthogonal DWT. That is because the even-length
symmetric biorthogonal filters are symmetric and anti-symmetric about the same point.
However, the filters for the double-density DWT are symmetric about different points. It
turns out that for the double-density DWT with symmetric extension, the bandpass and
highpass subbands will have a different number of samples each. If the input signal x has
length N (with N even) then one would expect that each of the three subband signals will
be of length N/2. When implementing the symmetric extension, the lowpass subband signal
will have length N/2, however, the bandpass subband signal will have length N/2 + 1 and
the highpass subband signal will have length N/2 − 1. So the total number of subband
coefficients is 3 N/2 as expected.

Second, in order to have Parseval’s energy relation, it is necessary that the end-points of the
bandpass subband signal be normalized (divided) by

√
2. In the synthesis filter bank, this

normalization is removed by multiplying those endpoints by
√

2. This normalization is not
needed to have the perfect reconstruction property, it is only needed to satisfy Parseval’s
energy relation exactly. (That the energy of the signal can be computed by the sum of the
energies of the subband signals.).

The synthesis filter bank is implemented with the program sfb.

We can check the perfect reconstruction conditions using the following MATLAB code frag-
ment:

>> [af, sf] = filters1;

>> x = rand(1,64);

>> [lo, hi1, hi2] = afb(x, af);

>> y = sfb(lo, hi1, hi2, sf);

>> err = x - y;

>> max(abs(err))

ans =

2.909894547542535e-13

Parseval’s Energy Relation

We can check Parseval’s energy relation with the following MATLAB code fragment:
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>> x*x’

ans =

20.52511996979790

>> lo*lo’ + hi1*hi1’ + hi2*hi2’

ans =

20.52511996979641

This illustrates that the total energy of the three subband signals equals the energy of the
input signal.

For a simple test signal the following figure illustrates the three subband signals. Notice that
the bandpass and highpass subbands signals equal zero over the constant and ramp segments
of the test signal, except for neighborhoods around the discontinuities. This illustrates the
vanishing moment properties of the filters.
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4 Main Program

The main program for computing the double-density DWT is ddwt. The program is very
simple. It just calls the analysis filter bank program afb iteratively — each time reassigning
the input signal x as the lowpass subband signal and storing the bandpass and highpass
subband signals in a cell array.

To clarify the way in which the wavelet coefficients are organized in the cell array, lets take
a 3-level DDWT of a length 128 signal:

>> [af, sf] = filters1;

>> x = rand(1,128);

>> w = ddwt(x,3,af)

w =

{1x2 cell} {1x2 cell} {1x2 cell} [1x16 double]

The cell w{1} contains the wavelet coefficients coming from the first level.

>> w{1}

ans =

[1x65 double] [1x63 double]

The vector w{1}{1} contains the 65 wavelet coefficients coming from the bandpass subband
at the first level, and w{1}{2} contains the 63 wavelet coefficients coming from the highpass
subband at the first level. Similarly:

>> w{2}

ans =

[1x33 double] [1x31 double]

>> w{3}

ans =
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[1x17 double] [1x15 double]

Parseval’s Energy Relation

We can verify that the energy of the input signal and the total energy of the wavelet coeffi-
cients are equal using the following MATLAB code fragment.

>> [af, sf] = filters1;

>> x = rand(1,128);

>> E1 = x*x’

E1 =

41.3498

>> w = ddwt(x,3,af);

>> E2 = sum(w{4}.^2);

>> for j = 1:3, for i = 1:2, E2 = E2 + sum(w{j}{i}.^2); end, end, E2

E2 =

41.3498

>> E1 - E2

ans =

8.1641e-12

The energy of the signal, E1, and the total energy in the wavelet domain, E2, are the same.

The program for the inverse double-density DWT is ddwti.

Using the program ddwti we can plot the wavelets by setting all the wavelet coefficients
to zero, except for one of them at a time. Then, computing the inverse DDWT gives the
corresponding wavelet.
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WAVELET 1

WAVELET 2

% COMPUTE AND DISPLAY WAVELETS
[af, sf] = filters1;
x = zeros(1,256); % all zero signal
w = ddwt(x,4,af); % all zero wavelet coefficients
w{4}{1}(8) = 1; % set a single wavelet coeff to 1
y1 = ddwti(w,4,sf); % compute the inverse DDWT
w = ddwt(x,4,af); % all zero wavelet coefficients
w{4}{2}(8) = 1; % set a different single wavelet coeff to 1
y2 = ddwti(w,4,sf); % compute the inverse DDWT
figure(1) % display wavelets
clf
subplot(2,1,1)
plot(y1)
axis tight off
title(’WAVELET 1’)
subplot(2,1,2)
plot(y2)
axis tight off
title(’WAVELET 2’)
orient portrait
print -depsc PlotWavelets
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In the program check.m accompanying this document, the wavelets that coincide with the
boundary of the signal are also shown, to illustrate the symmetric extension.

A Simple Test Signal

For a simple 128-point test signal, the following figure illustrates the wavelet coefficients of
a 3-level double-density DWT.

TEST SIGNAL

w{1}{1}

w{1}{2}

w{2}{1}

w{2}{2}

w{3}{1}

w{3}{2}
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For the N = 128 point signal, the total number of wavelet coefficients is

N/2 + N/2︸ ︷︷ ︸
level 1

+ N/4 + N/4︸ ︷︷ ︸
level 2

+ N/8 + N/8︸ ︷︷ ︸
level 3

+ N/8︸︷︷︸
level 3 lowpass

= 15 N/8 = 240
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Program Listing
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filters1.m

function [af, sf] = filters1

% [h0, h1, h2] = filters1

% Symmetric Filters for the Double-Density Wavelet Transform

% Reference:

% I. W. Selesnick and A. Farras Abdelnour.

% Symmetric wavelet tight frames with two generators.

% Applied and Computational Harmonic Analalysis, 17(2), 2004.

af{1} = [

0.00069616789827

-0.02692519074183

-0.04145457368920

0.19056483888763

0.58422553883167

0.58422553883167

0.19056483888763

-0.04145457368920

-0.02692519074183

0.00069616789827

];

af{2} = [

-0.00014203017443

0.00549320005590

0.01098019299363

-0.13644909765612

-0.21696226276259

0.33707999754362

0.33707999754362

-0.21696226276259

-0.13644909765612

0.01098019299363

0.00549320005590

-0.00014203017443

];

af{3} = [

0.00014203017443

-0.00549320005590

14



-0.00927404236573

0.07046152309968

0.13542356651691

-0.64578354990472

0.64578354990472

-0.13542356651691

-0.07046152309968

0.00927404236573

0.00549320005590

-0.00014203017443

];

sf{1} = af{1}(end:-1:1);
sf{2} = af{2}(end:-1:1);
sf{3} = af{3}(end:-1:1);
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afb.m

function [lo, hi1, hi2] = afb(x, af)

% Analysis filter bank

%

% USAGE:

% [lo, hi1, hi2] = afb(x, af)

% INPUT:

% x - N-point vector, with N even

% af - analysis filters

% af{1} - lowpass filter (symmetric even-length)

% af{2} - bandpass filter (symmetric even-length)

% af{3} - highpass filter (antisymmetric even-length)

% OUTPUT:

% lo - lowpass output

% hi1 - bandpass output

% hi2 - highpass output

% EXAMPLE:

% [af, sf] = filters1;

% x = rand(1,64);

% [lo, hi1, hi2] = afb(x, af);

% y = sfb(lo, hi1, hi2, sf);

% err = x - y;

% max(abs(err))

%

% WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY

% http://taco.poly.edu/WaveletSoftware/

% Ivan Selesnick

% selesi@poly.edu

N = length(x);

h0 = af{1};
h1 = af{2};
h2 = af{3};

L0 = length(h0)/2;

L1 = length(h1)/2;

L2 = length(h2)/2;
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% symmetric extension

A = L0;

xe = [x(A:-1:1) x x(N:-1:N-A+1)];

% lowpass filter

lo = conv(xe, h0);

% extract valid part

lo = lo(2*L0-1+2*[1:N/2]);

% symmetric extension

A = L1;

xe = [x(A:-1:1) x x(N:-1:N-A+1)];

% highpass filter 1

hi1 = conv(xe, h1);

% down-sample and extract valid part

hi1 = hi1(2*L1-2+2*[1:N/2+1]);

% normalize

hi1(1) = hi1(1)/sqrt(2);

hi1(N/2+1) = hi1(N/2+1)/sqrt(2);

% symmetric extension

A = L2;

xe = [x(A:-1:1) x x(N:-1:N-A+1)];

% highpass filter 2

hi2 = conv(xe, h2);

% down-sample and extract valid part

hi2 = hi2(2*L1-2+2*[2:N/2]);
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sfb.m

function y = sfb(lo, hi1, hi2, sf)

% Synthesis filter bank

%

% USAGE:

% y = sfb(lo, hi1, hi2, sf)

% INPUT:

% lo - lowpass input

% hi1 - bandpass input

% hi2 - highpass input

% sf - synthesis filters

% OUTPUT:

% y - output signal

% See also afb

%

% WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY

% http://taco.poly.edu/WaveletSoftware/

N = 2*length(lo);

g0 = sf{1};
g1 = sf{2};
g2 = sf{3};

L0 = length(g0);

L1 = length(g1);

L2 = length(g2);

% symmetric extension

A = L0/2;

lo = [lo(A:-1:1) lo lo(N/2:-1:N/2-A)];

% lowpass filter

lo = up(lo, 2);

lo = conv(lo, g0);

% extract valid part

lo = lo(3*L0/2-1+[1:N]);

% normalize

hi1(1) = sqrt(2)*hi1(1);

hi1(N/2+1) = sqrt(2)*hi1(N/2+1);
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% symmetric extension

A = L1/2;

hi1 = [hi1(A:-1:2) hi1 hi1(N/2:-1:N/2-A)];

% highpass filter

hi1 = up(hi1, 2);

hi1 = conv(hi1, g1);

% extract valid part

hi1 = hi1(3*L1/2-2+[1:N]);

% symmetric extension

A = L2/2;

hi2 = [0 hi2 0];

hi2 = [-hi2(A:-1:2) hi2 -hi2(N/2:-1:N/2-A)];

% highpass filter

hi2 = up(hi2, 2);

hi2 = conv(hi2, g2);

% extract valid part

hi2 = hi2(3*L1/2-2+[1:N]);

% add signals

y = lo + hi1 + hi2;
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ddwt.m

function w = ddwt(x, J, af)

% Double-Density Wavelet Transform

%

% USAGE:

% w = ddwt(x, J, af)

% INPUT:

% x - N-point vector with N divisible by 2^J

% J - number of stages

% af - analysis filters (even length)

% af{i} - filter i (i = 1,2)

% OUTPUT:

% w{j}{i} - wavelet coefficients (j = 1..J, i = 1,2)

% w{J+1} - scaling coefficients

% EXAMPLE:

% [af, sf] = filters1;

% x = rand(1,128);

% w = ddwt(x,3,af);

% y = ddwti(w,3,sf);

% err = x - y;

% max(abs(err))

%

% WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY

% http://taco.poly.edu/WaveletSoftware/

% Ivan Selesnick

% selesi@poly.edu

for j = 1:J

[x w{j}{1} w{j}{2}] = afb(x, af);

end

w{J+1} = x;
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ddwti.m

function y = ddwti(w, J, sf)

% Inverse Double-Density Wavelet Transform

%

% USAGE:

% y = ddwti(w, J, sf)

% INPUT:

% w - wavelet coefficients

% J - number of stages

% sf - synthesis filters

% OUTPUT:

% y - output signal

% See also ddwt

%

% WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY

% http://taco.poly.edu/WaveletSoftware/

y = w{J+1};
for j = J:-1:1

y = sfb(y, w{j}{1}, w{j}{2}, sf);

end
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up.m

function y = up(x,M)

% y = up(x,M)

% M-fold up-sampling of a 1-D signal

[r,c] = size(x);

if r > c

y = zeros(M*r,1);

else

y = zeros(1,M*c);

end

y(1:M:end) = x;
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