MATH 449, HOMEWORK 5

DUE OCTOBER 27, 2017

Part I. Theory

Problem 1. Prove the following norm inequalities.
a. For all $v \in \mathbb{R}^{n},\|v\|_{2}^{2} \leq\|v\|_{1}\|v\|_{\infty}$.
b. For any norm $\|\cdot\|$ on \mathbb{R}^{n}, if λ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$, then $\|A\| \geq|\lambda|$ in the induced norm.
Problem 2. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
f\left(x_{1}, x_{2}\right)=\binom{x_{1}^{3}-3 x_{1} x_{2}^{2}-1}{3 x_{1}^{2} x_{2}-x_{2}^{3}} .
$$

Show that $f\left(x_{1}, x_{2}\right)=0$ has three solutions: $(1,0),\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, and $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$. Hint: Start by solving the second equation for x_{2} in terms of x_{1}, and then substitute this into the first equation.

Remark. The function in Problem 2 can be identified with the complex-valued function $z \mapsto z^{3}-1$, whose roots are the three complex cube roots of 1 (or "roots of unity"). Indeed, if $z=x_{1}+i x_{2}$, then we have

$$
\begin{aligned}
\left(x_{1}+i x_{2}\right)^{3}-1 & =x_{1}^{3}+3 x_{1}^{2}\left(i x_{2}\right)+3 x_{1}\left(i x_{2}\right)^{2}+\left(i x_{2}\right)^{3}-1 \\
& =x_{1}^{3}+i 3 x_{1}^{2} x_{2}-3 x_{1} x_{2}^{2}-i x_{2}^{3}-1 \\
& =\left(x_{1}^{3}-3 x_{1} x_{2}^{2}-1\right)+i\left(3 x_{1}^{2} x_{2}-x_{2}^{3}\right)
\end{aligned}
$$

whose real and imaginary parts are precisely the two components of f.

Part II. Programming

Instructions. For the programming portion of this assignment, you will be running and modifying the code in the provided file hw5.py. Hand in a printed copy of the modified file, as well as a printout of the IPython terminal session(s) containing the commands and output you used to get your answers.

Problem 3.

a. Write a function hilbert (n) which returns the $n \times n$ Hilbert matrix,

$$
\left(\begin{array}{cccc}
1 & 1 / 2 & \cdots & 1 / n \\
1 / 2 & 1 / 3 & \cdots & 1 /(n+1) \\
\vdots & \vdots & \ddots & \vdots \\
1 / n & 1 /(n+1) & \cdots & 1 /(2 n-1)
\end{array}\right)
$$

(Hint: You may find it helpful to notice that $\mathrm{H}[\mathrm{i}, \mathrm{j}]=1 /(\mathrm{i}+\mathrm{j}+1)$.) Print the output of hilbert (5).
b. Let A be the 20×20 Hilbert matrix, $x=(1, \ldots, 20)$, and $b=A x$. Find δx by comparing x with the numerical solution solve(A, b) (which uses NumPy's built-in solver), and then find δb by comparing $A(x+\delta x)$ with b. Using either one of the functions norm or 12norm for $\|\cdot\|_{2}$, compute and print the values of $\|\delta b\|_{2} /\|b\|_{2}$ and $\|\delta x\|_{2} /\|x\|_{2}$.

Problem 4. Newton's method does not always converge to the closest root to the starting point - in fact, the behavior can be very complex. In \mathbb{R}^{2}, we can obtain fractal patterns called "Newton fractals" by coloring in the regions that converge to each root. The function newtonFractal in hw5.py does exactly this.
a. The function f from Problem 2 is already coded in hw5.py as $\mathrm{f}(\mathrm{x})$. Create a function Jf(x) which returns the Jacobian matrix $J_{f}(x)$. Produce the corresponding Newton fractal by running newtonFractal(f, Jf), and print the resulting image.
b. Recall, from the remark following Problem 2 , that f gives the real and imaginary components of $\left(x_{1}+i x_{2}\right)^{3}-1$. Now, create a new function $\mathrm{g}(\mathrm{x})$, corresponding to the real and imaginary parts of $\left(x_{1}+i x_{2}\right)^{4}-1$, and its Jacobian matrix function $\mathrm{Jg}(\mathrm{x})$. Run newtonFractal (g, Jg) and print the resulting Newton fractal.

Figure 1. Newton fractal for $\left(x_{1}+i x_{2}\right)^{5}-1$.

