Solutions to the selected problems (Homework 10)

Linear Algebra

Fall 2010

Page 198,7$) \mathcal{B}=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a basis for V. The matrix of D with respect to \mathcal{B} is lower triangular, and all the diagonal entries are zero, so the characteristic polynomial of D is x^{n+1}. So the minimal polynomial of D should be of the form x^{k} for some $1 \leq k \leq n+1$. Since $D^{n}\left(x^{n}\right)=$ $D \circ D \circ \cdots \circ D\left(x^{n}\right)=n(n-1) \ldots 1, D^{n}$ is not the zero linear transformation, so if $p(x)=x^{n}, p(D) \neq 0$, so the minimal polynomial should be x^{n+1}.

Page 205, 3) Since for every $\alpha \in W, T_{W}(\alpha)=T(\alpha)=c \alpha, T_{W}$ is simply c times the identity linear transformation.

Page 205, 4) The characteristic polynomial of A is x^{3}, therefore, Theorem 5 of page 203 shows that A is similar to an upper triangular matrix. The nullspace $\{X \mid A X=0\}$ is 1 -dimensional and it is spanned by the vector $\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$. If A is similar to an upper triangular matrix U, then since the only characteristic value of A is zero, all the entries on the diagonal of U should be zero (since U and A have the same characteristic values). So assume U has the form

$$
\left(\begin{array}{ccc}
0 & c_{1} & c_{2} \\
0 & 0 & c_{3} \\
0 & 0 & 0
\end{array}\right) .
$$

Suppose that U corresponds to the basis $\mathcal{B}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$. Then

$$
A \alpha_{1}=0, A \alpha_{2}=c_{1} \alpha_{1}, A \alpha_{3}=c_{2} \alpha_{1}+c_{3} \alpha_{2} .
$$

Since $\alpha_{1} \in\{X \mid A X=0\}$, we can assume $\alpha_{1}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$. We have $A \alpha_{2}=c_{1} \alpha_{1}$. Since the null space $\{X \mid A X=0\}$ is 1-dimensional, $c_{1} \neq 0$, and $A \frac{\alpha_{2}}{c_{1}}=\alpha_{1}$. Since if $\alpha_{1}, \alpha_{2}, \alpha_{3}$ form a basis for $F^{3 \times 1}$, then $\alpha_{1}, \frac{\alpha_{2}}{c_{1}}, \alpha_{3}$ form a basis as well, we can assume that $c_{1}=1$ from the beginning. So we solve the equation $A X=\alpha_{1}$: we get $X=\left(\begin{array}{c}x_{1} \\ 1 \\ 1-x_{1}\end{array}\right)$. So we can let $\alpha_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$. Now α_{3} could be any vector such that $\alpha_{1}, \alpha_{2}, \alpha_{3}$ is linearly independent. For example, let $\alpha_{3}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$. Then $A \alpha_{3}=\left(\begin{array}{l}0 \\ 2 \\ 2\end{array}\right)=2 \alpha_{2}$, so

$$
U=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

(there are many other possible U.)

Page 205,5$)$ If $p(x)=x(x-1)$, then $p(A)=0$. So $m_{A}(x)$ should divide $p(x)$ (since otherwise the remainder of $p(x)$ by $m_{A}(x)$ would be a polynomial whose degree is smaller than $m_{A}(x)$ and vanishes at $\left.A\right)$. So there are three possibilities for $m_{A}(x): x, x-1$, or $x(x-1)$. If $m_{A}(x)=x$, then $A=0$. If $m_{A}(x)=x-1$, then $A=I$, and if $m_{A}(x)=x(x-1)$, then Theorem 6 of page 204 tells us that A is similar to a diagonal matrix.

Page 213, 2) Suppose that $\operatorname{dim} V=n$. Let $\left\{\alpha_{1}^{1}, \ldots, \alpha_{m_{1}}^{1}\right\}$ be a basis for $W_{1},\left\{\alpha_{1}^{2}, \ldots, \alpha_{m_{2}}^{2}\right\}$ a basis for $W_{2}, \ldots,\left\{\alpha_{1}^{k}, \ldots, \alpha_{m_{k}}^{k}\right\}$ a basis for W_{k}. Then we have $n=m_{1}+\cdots+m_{k}$ by our assumption. Since the n vectors $\alpha_{1}^{1}, \ldots, \alpha_{m_{1}}^{1}, \ldots, \alpha_{m_{k}}^{k}$ span V (Since $V=W_{1}+\cdots+W_{k}$, every vector $\beta \in V$ is of the form $\beta_{1}+\cdots+\beta_{k}$ where $\beta_{i} \in W_{i}$), they should be linearly independent, so they form a basis for V.

Now if we have $\gamma_{1}+\cdots+\gamma_{k}=0$ for some vectors $\gamma_{i} \in W_{i}$, then we can write $\gamma_{1}=c_{1}^{1} \alpha_{1}^{1}+\ldots c_{m_{1}}^{1} \alpha_{m_{1}}^{1}, \ldots, \gamma_{k}=c_{1}^{k} \alpha_{1}^{k}+\cdots+c_{m_{k}}^{k} \alpha_{m_{k}}^{k}$, so we see that a linear combination of the α_{j}^{i} is zero, so all the coefficients should be zero, so $c_{j}^{i}=0$ for every i and j, hence each γ_{i} is zero. Therefore W_{1}, \ldots, W_{k} are independent.

Page 225 1). The characteristic polynomial of the matrix is

$$
x^{3}-2 x^{2}+x-2=(x-2)\left(x^{2}+1\right),
$$

Since $A-2 I \neq 0$ and $A^{2}+I \neq 0$, the minimal polynomial is also $(x-2)\left(x^{2}+\right.$ 1), so $p_{1}=x-2$ and $p_{2}=x^{2}+1$.

The nullspace of $p_{1}(T)$ is the nullspace of $T-2 I$ which is spanned by $\alpha_{1}=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$. The nullspace of $p_{2}(T)$ is the nullspace of

$$
\left(\begin{array}{ccc}
5 & -5 & 0 \\
0 & 0 & 0 \\
10 & -10 & 0
\end{array}\right)
$$

which is spanned by $\alpha_{2}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ and $\alpha_{3}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$. Since $T\left(\alpha_{1}\right)=2 \alpha_{1}$, the matrix of the restriction of T to W_{1} is 1 by 1 and equal to [2]. The matrix of the restriction of T to W_{2} is 2 by 2 . Since $T\left(\alpha_{2}\right)=\left(\begin{array}{l}-2 \\ -2 \\ -3\end{array}\right)=-3 \alpha_{2}-2 \alpha_{3}$, and $T\left(\alpha_{3}\right)=\left(\begin{array}{l}3 \\ 3 \\ 5\end{array}\right)=5 \alpha_{2}+3 \alpha_{3}$, the matrix of the restriction of T to W_{2} with respect to the basis $\left\{\alpha_{2}, \alpha_{3}\right\}$ is

$$
\left(\begin{array}{ll}
-3 & 5 \\
-2 & 3
\end{array}\right)
$$

