Solutions to the selected problems (Homework 11)

Linear Algebra

Fall 2010
noindent Page 275, 2). If $(\alpha \mid \beta)$ and $\langle\alpha, \beta\rangle$ are two inner product, then the sum and the difference of them is linear with respect to the first component, and

$$
(\beta \mid \alpha) \pm\langle\beta| \alpha>=\overline{(\alpha \mid \beta)} \pm \overline{\langle\alpha| \beta>}=\overline{(\alpha \mid \beta) \pm<\alpha \mid \beta>}
$$

So it remain the last property: if $(\alpha \mid \alpha)+\langle\alpha| \alpha>=0$, then since the sum of two non-negative numbers is zero, each should be equal to zero, so $(\alpha \mid \alpha)=0$, so $\alpha=0$. Therefore the sum of two inner products is an inner product. The difference of two inner products is not necessarily an inner product. For example, if $\langle\alpha \mid \alpha\rangle=(\alpha \mid \alpha)$ (so the two inner products are equal), their difference is zero for every pair which clearly does not satisfy the last property of an inner product.

Page 276,8$) f_{A}$ is clearly linear with respect to both X and Y :

$$
\begin{aligned}
f_{A}\left(X, Y_{1}+c Y_{2}\right)=\left(Y_{1}+c Y_{2}\right)^{t} A X=\left(Y_{1}^{t}+c Y_{2}^{t}\right) A X & =Y_{1}^{t} A X+c Y_{2}^{t} A X \\
& =f_{A}\left(X, Y_{1}\right)+c f_{A}\left(X, Y_{2}\right) .
\end{aligned}
$$

A similar argument shows that f_{A} is linear with respect to X.
If f_{A} is an inner product, we should have $f_{A}(X, Y)=f_{A}(Y, X)$ and $f_{A}(X, X)>0$. Suppose that

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Let

$$
\epsilon_{1}=\binom{1}{0}, \epsilon_{2}=\binom{0}{1} .
$$

Then we have $f_{A}\left(\epsilon_{1}, \epsilon_{2}\right)=c$ and $f_{A}\left(\epsilon_{2}, \epsilon_{1}\right)=b$, so $b=c$. Also $f_{A}\left(\epsilon_{1}, \epsilon_{1}\right)=a$, $f_{A}\left(\epsilon_{2}, \epsilon_{2}\right)=d$, so $a, d>0$. Let $a^{\prime}=\sqrt{a}$. Now for $0 \neq X=\binom{x}{y}$, we have

$$
0<f_{A}(X, X)=a x^{2}+2 b x y+d y^{2}=\left(a^{\prime} x+\frac{b}{a^{\prime}} y\right)^{2}+\left(d-\frac{b^{2}}{a}\right) y^{2} .
$$

If we let $x=-\frac{b}{\left(a^{\prime}\right)^{2}}, y=1$, then

$$
f_{A}(X, X)=d-\frac{b^{2}}{a}
$$

which should be positive, so $\operatorname{det} A>0$.
Conversely, if $A=\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)$ is symmetric, and $a, d, \operatorname{det} A>0$, then for $0 \neq X=\binom{x}{y}$,

$$
f_{A}(X, X)=a x^{2}+2 b x y+d y^{2}=\left(a^{\prime} x+\frac{b}{a^{\prime}} y\right)^{2}+\left(d-\frac{b^{2}}{a}\right) y^{2} .
$$

This is zero only if $y=0, x=-\frac{b}{\left(a^{\prime}\right)^{2}} y=0$. Therefore f_{A} is an inner product.

Page 289, 5) One direction is clear. For the other direction, if $(\alpha, \gamma)=(\beta \mid \gamma)$ for every γ, then $(\alpha-\beta \mid \gamma)=0$ for every γ, in particular,

$$
(\alpha-\beta \mid \alpha-\beta)=0 .
$$

Hence $\alpha-\beta=0$.

Page 289, 9) (a) We are looking for polynomials $f(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ such that $(c \mid f)=\int_{0}^{1} c f(x) d x=0$ for every real number c. So $c\left(\frac{a_{3}}{4}+\frac{a_{2}}{3}+\frac{a_{1}}{2}+\right.$ $\left.a_{0}\right)=0$ for every c. Therefore $\frac{a_{3}}{4}+\frac{a_{2}}{3}+\frac{a_{1}}{2}+a_{0}=0$. So $3 a_{3}+4 a_{2}+6 a_{1}+12 a_{0}=$ 0 . A basis for this subspace is $\left\{-4 x^{3}+1,-3 x^{2}+1,-2 x+1\right\}$.
(b) We have

- $\alpha_{1}=1$.
- $\left\|\alpha_{1}\right\|=1,\left(x \mid \alpha_{1}\right)=\int_{0}^{1} x d x=\frac{1}{2}$, so

$$
\alpha_{2}=x-\frac{1}{2} .
$$

- $\left(x^{2} \mid \alpha_{1}\right)=\frac{1}{3},\left(x^{2} \mid \alpha_{2}\right)=\int_{0}^{1} x^{3}-\frac{x^{2}}{2} d x=\frac{1}{12},\left\|\alpha_{2}\right\|^{2}=\left(\alpha_{2} \mid \alpha_{2}\right)=$ $\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x=\frac{1}{12}$. Therefore,

$$
\alpha_{3}=x^{2}-\frac{1}{3}-\alpha_{2}=x^{2}-x+\frac{1}{6} .
$$

- $\left(x^{3} \mid 1\right)=\frac{1}{4},\left(x^{3} \mid \alpha_{2}\right)=\frac{3}{40},\left(x^{3} \mid \alpha_{3}\right)=\frac{1}{120},\left(\alpha_{3} \mid \alpha_{3}\right)=\int_{0}^{1}\left(x^{2}-x+\frac{1}{6}\right)^{2} d x=$ $\frac{1}{180}$. Therefore

$$
\begin{aligned}
\alpha_{4} & =x^{3}-\frac{1}{4}-\frac{9}{10}\left(x-\frac{1}{2}\right)-\frac{3}{2}\left(x^{2}-x+\frac{1}{6}\right) \\
& =x^{3}-\frac{3}{2} x^{2}+\frac{3}{5} x-\frac{1}{20} .
\end{aligned}
$$

