Solutions to the selected problems (Homework 12)

Linear Algebra

Fall 2010

Page 289, 6) (a) Let $\alpha = (3, 4)$. By Theorem 4 of page 284, $E(\beta)$ which is the same as the best approximation to β in W, is given by $E(\beta) = \frac{(\beta|\alpha)}{||\alpha||^2} \alpha$. Since $||\alpha|| = 5$, if $\beta = (x_1, x_2)$, we have

$$E(\beta) = E(x_1, x_2) = \frac{3x_1 + 4x_2}{25}(3, 4).$$

(b) Since $E(1,0) = \frac{3}{25}(3,4) = (\frac{9}{25},\frac{12}{25})$, and $E(0,1) = \frac{4}{25}(3,4) = (\frac{12}{25},\frac{16}{25})$, the matrix is

$$\frac{1}{25} \begin{pmatrix} 9 & 12\\ 12 & 16 \end{pmatrix}.$$

(c) W^{\perp} is 1-dimensional and is spanned by any vector orthogonal to (3, 4), so W^{\perp} is spanned by (-4, 3).

(d) We are looking for orthonormal vectors β_1, β_2 such that $E(\beta_1) = \beta_1$, and $E(\beta_2) = 0$, so $\beta_1 \in W$ and $\beta_2 \in W^{\perp}$. Since the norms of β_1 and β_2 are both 1, we have $\beta_1 = \frac{(3,4)}{||(3,4)||} = (\frac{3}{5}, \frac{4}{5}), \ \beta_2 = \frac{(-4,3)}{||(-4,3)||} = (\frac{-4}{5}, \frac{3}{5})$. (we could also choose β_1 and/or $-\beta_2$.)

Page 290, 12) If we write α as $\alpha = \alpha_1 + \alpha_2$ and $\beta = \beta_1 + \beta_2$ where $\alpha_1, \beta_1 \in W$, $\alpha_2, \beta_2 \in W^{\perp}$, then $E(\alpha) = \alpha_1$ and $E(\beta) = \beta_1$. Therefore,

$$(E(\alpha)|\beta) = (\alpha_1|\beta_1 + \beta_2)$$

= $(\alpha_1|\beta_1) + (\alpha_1|\beta_2)$
= $(\alpha_1|\beta_1)$
= $(\alpha_1 + \alpha_2|\beta_1)$ since $\beta_1 \in W, \alpha_2 \in W^{\perp}, (\alpha_2|\beta_1) = 0$
= $(\alpha|\beta_1)$
= $(\alpha|E(\beta)).$

Page 290, 13) Note that if W is the subspace spanned by S, then $W^{\perp} = S^{\perp}$. The reason is that since $S \subset W$, $W^{\perp} \subset S^{\perp}$, and on the other hand if $\alpha \in S^{\perp}$ and $\beta \in W$, then β can be written as

$$\beta = c_1\beta_1 + \dots + c_m\beta_m$$

where $\beta_1, \ldots, \beta_m \in S$ and c_1, \ldots, c_m are scalars. So

$$(\alpha|\beta) = c_1(\alpha|\beta_1) + \dots + c_m(\alpha|\beta_m) = 0,$$

thus $\alpha \in W^{\perp}$. So $S^{\perp} \subset W^{\perp}$, therefore $S^{\perp} = W^{\perp}$.

If $\alpha \in S$, then for every $\beta \in S^{\perp}$, $(\alpha|\beta) = 0$, so by definition, $\alpha \in (S^{\perp})^{\perp}$. Now suppose that V is of dimension n, and W is of dimension m. Then $W^{\perp} = S^{\perp}$ by the above argument, and therefore $(W^{\perp})^{\perp} = (S^{\perp})^{\perp}$. We have

$$V = W \oplus W^{\perp}$$

therefore dim $W^{\perp} = \dim V - \dim W = n - m$. We also have

$$V = (W^{\perp}) + (W^{\perp})^{\perp},$$

therefore $\dim(W^{\perp})^{\perp} = \dim V - \dim W^{\perp} = n - (n - m) = m$. We have shown that $W \subset (W^{\perp})^{\perp}$ for every subset W of V, and since $\dim W = \dim(W^{\perp})^{\perp}$, we get $W = (W^{\perp})^{\perp} = (S^{\perp})^{\perp}$.