Solutions to the selected problems (Homework 12)

Linear Algebra

Fall 2010

Page 289,6) (a) Let $\alpha=(3,4)$. By Theorem 4 of page $284, E(\beta)$ which is the same as the best approximation to β in W, is given by $E(\beta)=\frac{(\beta \mid \alpha)}{\|\alpha\|^{2}} \alpha$. Since $\|\alpha\|=5$, if $\beta=\left(x_{1}, x_{2}\right)$, we have

$$
E(\beta)=E\left(x_{1}, x_{2}\right)=\frac{\left.3 x_{1}+4 x_{2}\right)}{25}(3,4) .
$$

(b) Since $E(1,0)=\frac{3}{25}(3,4)=\left(\frac{9}{25}, \frac{12}{25}\right)$, and $E(0,1)=\frac{4}{25}(3,4)=\left(\frac{12}{25}, \frac{16}{25}\right)$, the matrix is

$$
\frac{1}{25}\left(\begin{array}{cc}
9 & 12 \\
12 & 16
\end{array}\right)
$$

(c) W^{\perp} is 1 -dimensional and is spanned by any vector orthogonal to $(3,4)$, so W^{\perp} is spanned by $(-4,3)$.
(d) We are looking for orthonormal vectors β_{1}, β_{2} such that $E\left(\beta_{1}\right)=\beta_{1}$, and $E\left(\beta_{2}\right)=0$, so $\beta_{1} \in W$ and $\beta_{2} \in W^{\perp}$. Since the norms of β_{1} and β_{2} are both 1, we have $\beta_{1}=\frac{(3,4)}{\|(3,4)\|}=\left(\frac{3}{5}, \frac{4}{5}\right), \beta_{2}=\frac{(-4,3)}{\|(-4,3)\|}=\left(\frac{-4}{5}, \frac{3}{5}\right)$. (we could also choose β_{1} and $/$ or $-\beta_{2}$.)

Page 290, 12) If we write α as $\alpha=\alpha_{1}+\alpha_{2}$ and $\beta=\beta_{1}+\beta_{2}$ where $\alpha_{1}, \beta_{1} \in W$, $\alpha_{2}, \beta_{2} \in W^{\perp}$, then $E(\alpha)=\alpha_{1}$ and $E(\beta)=\beta_{1}$. Therefore,

$$
\begin{aligned}
(E(\alpha) \mid \beta) & =\left(\alpha_{1} \mid \beta_{1}+\beta_{2}\right) \\
& =\left(\alpha_{1} \mid \beta_{1}\right)+\left(\alpha_{1} \mid \beta_{2}\right) \\
& =\left(\alpha_{1} \mid \beta_{1}\right) \\
& =\left(\alpha_{1}+\alpha_{2} \mid \beta_{1}\right) \quad \text { since } \beta_{1} \in W, \alpha_{2} \in W^{\perp},\left(\alpha_{2} \mid \beta_{1}\right)=0 \\
& =\left(\alpha \mid \beta_{1}\right) \\
& =(\alpha \mid E(\beta)) .
\end{aligned}
$$

Page 290,13) Note that if W is the subspace spanned by S, then $W^{\perp}=S^{\perp}$. The reason is that since $S \subset W, W^{\perp} \subset S^{\perp}$, and on the other hand if $\alpha \in S^{\perp}$ and $\beta \in W$, then β can be written as

$$
\beta=c_{1} \beta_{1}+\cdots+c_{m} \beta_{m}
$$

where $\beta_{1}, \ldots, \beta_{m} \in S$ and c_{1}, \ldots, c_{m} are scalars. So

$$
(\alpha \mid \beta)=c_{1}\left(\alpha \mid \beta_{1}\right)+\cdots+c_{m}\left(\alpha \mid \beta_{m}\right)=0
$$

thus $\alpha \in W^{\perp}$. So $S^{\perp} \subset W^{\perp}$, therefore $S^{\perp}=W^{\perp}$.
If $\alpha \in S$, then for every $\beta \in S^{\perp},(\alpha \mid \beta)=0$, so by definition, $\alpha \in\left(S^{\perp}\right)^{\perp}$. Now suppose that V is of dimension n, and W is of dimension m. Then $W^{\perp}=S^{\perp}$ by the above argument, and therefore $\left(W^{\perp}\right)^{\perp}=\left(S^{\perp}\right)^{\perp}$. We have

$$
V=W \oplus W^{\perp}
$$

therefore $\operatorname{dim} W^{\perp}=\operatorname{dim} V-\operatorname{dim} W=n-m$. We also have

$$
V=\left(W^{\perp}\right)+\left(W^{\perp}\right)^{\perp}
$$

therefore $\operatorname{dim}\left(W^{\perp}\right)^{\perp}=\operatorname{dim} V-\operatorname{dim} W^{\perp}=n-(n-m)=m$. We have shown that $W \subset\left(W^{\perp}\right)^{\perp}$ for every subset W of V, and since $\operatorname{dim} W=\operatorname{dim}\left(W^{\perp}\right)^{\perp}$, we get $W=\left(W^{\perp}\right)^{\perp}=\left(S^{\perp}\right)^{\perp}$.

