# MATH 429, LINEAR ALGEBRA 

FALL 2010

1. Show that if $A$ is a matrix, and $p(x)$ is a polynomial such that $p(A)=0$, the the minimal polynomial of $A$ divides $p(x)$.
2. Let $V$ be an $n$-dimensional vector space, and let $T: V \rightarrow V$ be a linear transformation. Show that the characteristic and minimal polynomials of $T$ have the same roots.
3. Let $V$ be a finite dimensional vector space. Let $W_{1}, \ldots, W_{k}$ be subspaces of $V$ and let $W=W_{1}+\cdots+W_{k}$. Show that the following are equivalent:
(1) $W_{1}, \ldots, W_{k}$ are independent.
(2) For each $j, 2 \leq j \leq k$, we have

$$
W_{j} \cap\left(W_{1}+\cdots+W_{j-1}\right)=0 .
$$

(3) If $\mathcal{B}_{i}$ is an ordered basis for $W_{i}$, then $\mathcal{B}=\left(\mathcal{B}_{1}, \ldots, \mathcal{B}_{k}\right)$ is an ordered basis for $W$.
(4) $\operatorname{dim} V=\operatorname{dim} W_{1}+\ldots \operatorname{dim} W_{k}$.
4. (The Gram-Schmidt Process) Let $V$ be an inner product space, and let $\beta_{1}, \ldots, \beta_{m}$ be linearly independent vectors in $V$. Show that there are orthogonal vectors $\alpha_{1}, \ldots, \alpha_{m}$ in $V$ such that

$$
\operatorname{Span}\left\{\alpha_{1}, \ldots, \alpha_{j}\right\}=\operatorname{Span}\left\{\beta_{1}, \ldots, \beta_{j}\right\}
$$

for every $1 \leq j \leq m$.
5. Show that if $V$ is a finite dimensional inner space, and if $W$ is a subspace of $V$,

$$
V=W \oplus W^{\perp} .
$$

