MATH 429, LINEAR ALGEBRA

FALL 2010

- 1. Show that if A is a matrix, and p(x) is a polynomial such that p(A) = 0, the the minimal polynomial of A divides p(x).
- 2. Let V be an n-dimensional vector space, and let $T:V\to V$ be a linear transformation. Show that the characteristic and minimal polynomials of T have the same roots.
- 3. Let V be a finite dimensional vector space. Let W_1, \ldots, W_k be subspaces of V and let $W = W_1 + \cdots + W_k$. Show that the following are equivalent:
 - (1) W_1, \ldots, W_k are independent.
 - (2) For each j, $2 \le j \le k$, we have

$$W_i \cap (W_1 + \dots + W_{i-1}) = 0.$$

- (3) If \mathcal{B}_i is an ordered basis for W_i , then $\mathcal{B} = (\mathcal{B}_1, \dots, \mathcal{B}_k)$ is an ordered basis for W.
- (4) $\dim V = \dim W_1 + \ldots \dim W_k$.
- 4. (The Gram-Schmidt Process) Let V be an inner product space, and let β_1, \ldots, β_m be linearly independent vectors in V. Show that there are orthogonal vectors $\alpha_1, \ldots, \alpha_m$ in V such that

$$\operatorname{Span}\{\alpha_1,\ldots,\alpha_i\} = \operatorname{Span}\{\beta_1,\ldots,\beta_i\}$$

for every $1 \leq j \leq m$.

5. Show that if V is a finite dimensional inner space, and if W is a subspace of V,

$$V = W \oplus W^{\perp}$$
.

1