MATH 429, LINEAR ALGEBRA

FALL 2010

1. Suppose that V is a vector space of dimension n and $\mathcal{B}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is a basis for V. If $T, U: V \rightarrow V$ are linear transformations, show that

$$
[T \circ U]_{\mathcal{B}}=[T]_{\mathcal{B}}[U]_{\mathcal{B}} .
$$

2. If W is a subspace of a vector space V, then

$$
\operatorname{dim} W+\operatorname{dim} W^{0}=\operatorname{dim} V .
$$

3. Show that $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$ for any two $n \times n$ matrices A and B.
4. Show that $(\operatorname{adj} A) A=(\operatorname{det} A) I$ for any $n \times n$ matrix A.
5. Show that $\operatorname{det} A=\operatorname{det} A^{t}$.
