MATH 429, LINEAR ALGEBRA

FALL 2010

1. Suppose that V is a vector space of dimension n and $\mathcal{B} = \{\alpha_1, \ldots, \alpha_n\}$ is a basis for V. If $T, U: V \to V$ are linear transformations, show that

$$[T \circ U]_{\mathcal{B}} = [T]_{\mathcal{B}} [U]_{\mathcal{B}}.$$

- 2. If W is a subspace of a vector space V, then $\dim W + \dim W^0 = \dim V.$
- 3. Show that $\det(AB) = (\det A)(\det B)$ for any two $n \times n$ matrices A and B.
- 4. Show that $(\operatorname{adj} A)A = (\det A)I$ for any $n \times n$ matrix A.
- 5. Show that $\det A = \det A^t$.