Complex Analysis, Fall 2017

Problem Set 1

Due: September 12 in class

1. Find $\arg \left(\frac{i}{-2-2 i}\right)$.
2. Find all the points at which $f(z)=\bar{z}^{2}+z$ is complex differentiable.
3. Find the following roots.
(i) All the fourth roots of $-1-\sqrt{3} i$. Express the roots in rectangular coordinates and exhibit them as vertices of a certain square.
(ii) The square roots of $8 i$.
4. If $z_{1}, z_{2} \in \mathbf{C}$, then show that $z_{1} \overline{z_{2}}=-1$ if and only if the pre-image of z_{1} and z_{2} under the stereographic projection correspond to diametrically opposite points on the Riemann sphere.
5. Let U_{1} and U_{2} be open subset of \mathbf{C} and $f: U_{1} \rightarrow U_{2}$ and $g: U_{2} \rightarrow \mathbf{C}$ functions which are real differentiable. Prove the following chain rule:

$$
\frac{\partial(f \circ g)}{\partial z}=\frac{\partial f}{\partial z} \frac{\partial g}{\partial z}+\frac{\partial f}{\partial \bar{z}} \frac{\partial \bar{g}}{\partial z} .
$$

(If $f=u+i v$, then $\bar{f}=u-i v$). Similarly

$$
\frac{\partial(f \circ g)}{\partial \bar{z}}=\frac{\partial f}{\partial z} \frac{\partial g}{\partial \bar{z}}+\frac{\partial f}{\partial \bar{z}} \frac{\partial \bar{g}}{\partial \bar{z}} .
$$

(You don't need to prove the second identity.)
6. Let $U \subset \mathbf{C}$ be a connected open subset and $f: U \rightarrow \mathbf{C}$ a holomorphic function.
(a) Show that if $\operatorname{Re}(f)$ is constant on U, then f is constant on U.
(b) Show that if $|f|$ is constant on U, then f is constant on U. (Hint: compute $\frac{\partial(f \bar{f})}{\partial z}$.)
7. Assume f is a polynomial with complex coefficients. Prove that if a root of f^{\prime} belongs to the boundary of $\Delta(f)$, then either f has a repeated root on that boundary or all the zeros of f lie on a line. (a root z_{0} of f is called a repeated root if $\left(z-z_{0}\right)^{2}$ is a factor of f.)
8. Let $\left\{z_{n}\right\}$ be a sequence of complex numbers and $\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n}+1}\right|=B$ (B could be $\infty)$. Show that the radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ is B.

