Complex Analysis, Fall 2017

Problem Set 1

Due: September 12 in class

- 1. Find $\arg(\frac{i}{-2-2i})$.
- 2. Find all the points at which $f(z) = \overline{z}^2 + z$ is complex differentiable.
- 3. Find the following roots.
 - (i) All the fourth roots of $-1 \sqrt{3} i$. Express the roots in rectangular coordinates and exhibit them as vertices of a certain square.
 - (ii) The square roots of 8i.

4. If $z_1, z_2 \in \mathbf{C}$, then show that $z_1 \overline{z_2} = -1$ if and only if the pre-image of z_1 and z_2 under the stereographic projection correspond to diametrically opposite points on the Riemann sphere.

5. Let U_1 and U_2 be open subset of **C** and $f: U_1 \to U_2$ and $g: U_2 \to \mathbf{C}$ functions which are real differentiable. Prove the following chain rule:

$$\frac{\partial (f \circ g)}{\partial z} = \frac{\partial f}{\partial z} \frac{\partial g}{\partial z} + \frac{\partial f}{\partial \bar{z}} \frac{\partial \bar{g}}{\partial z}.$$

(If f = u + iv, then $\overline{f} = u - iv$). Similarly

$$\frac{\partial (f \circ g)}{\partial \bar{z}} = \frac{\partial f}{\partial z} \frac{\partial g}{\partial \bar{z}} + \frac{\partial f}{\partial \bar{z}} \frac{\partial \bar{g}}{\partial \bar{z}}.$$

(You don't need to prove the second identity.)

- 6. Let $U \subset \mathbf{C}$ be a connected open subset and $f: U \to \mathbf{C}$ a holomorphic function.
 - (a) Show that if Re(f) is constant on U, then f is constant on U.

(b) Show that if |f| is constant on U, then f is constant on U. (Hint: compute $\frac{\partial(f\bar{f})}{\partial z}$.)

7. Assume f is a polynomial with complex coefficients. Prove that if a root of f' belongs to the boundary of $\Delta(f)$, then either f has a repeated root on that boundary or all the zeros of f lie on a line. (a root z_0 of f is called a repeated root if $(z - z_0)^2$ is a factor of f.)

8. Let $\{z_n\}$ be a sequence of complex numbers and $\lim_{n\to\infty} |\frac{a_n}{a_{n+1}}| = B$ (*B* could be ∞). Show that the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n(z-a)^n$ is *B*.