Complex Analysis, Fall 2017

Problem Set 10

Due: December 8

- 1. Let **D** be the unit disk and S^1 the unit circle.
 - (a) Show that if $g: \overline{\mathbf{D}} \to \mathbf{C}$ is a continuous function and $g_r: S^1 \to \mathbf{C}$ is defined by $g_r(z) = g(rz)$, then $g_r(z) \to g(z)$ uniformly for $z \in S^1$ as $r \to 1^-$.
 - (b) If $f: S^1 \to \mathbf{C}$ is a continuous function, define $\tilde{f}: \overline{\mathbf{D}} \to \mathbf{C}$ by $\tilde{f}(z) = f(z)$ for $z \in S^1$ and

$$\tilde{f}(re^{i\phi}) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) P_r(\theta - \phi) \, d\theta.$$

(So the real and imaginary parts of \tilde{f} are harmonic in **D**.). Define $\tilde{f}_r: S^1 \to \mathbf{C}$ by $\tilde{f}_r(z) = \tilde{f}(rz)$. Show that for each r < 1, there is a sequence $p_n(z, \bar{z})$ of polynomials in z and \bar{z} such that $p_n(z, \bar{z}) \to \tilde{f}_r(z)$ uniformly for $z \in S^1$. (use Problem 7 of Homework 9.)

(c) Weierstrass approximation theorem for S^1 . If $f: S^1 \to \mathbb{C}$ is a continuous function, then there is a sequence $p_n(z, \bar{z})$ of polynomials in z and \bar{z} such that $p_n(z, \bar{z}) \to f(z)$ uniformly for $z \in S^1$.

2. Find a harmonic function on

- (a) the unit disk which has boundary values 0 on the lower semicircle and 1 on the upper semicircle.
- (b) the first quadrant which has boundary values 0 on [0, 1] and 1 on $[1, \infty]$ and $[0, i\infty]$.

3. Use Fourier coefficients to solve the Dirichlet problem in the unit disk for the function on $[0, 2\pi]$: $f(\theta) = -1$ if $\pi/2 < \theta < 3\pi/2$ and 1 otherwise.

4. Suppose that f is an entire function which sends the real line to the real line and the imaginary line to the imaginary line. Prove that f is an odd function, i.e. f(z) = -f(-z). (Hint: We showed that if f sends real line to real line, then $f(z) = \overline{f(\overline{z})}$. Use a similar argument to show that if f sends the imaginary line to the imaginary line the f sends points symmetric with respect to the imaginary axis to points symmetric with respect to imaginary axis.)

5. Suppose that f(z) is holomorphic on $|z| \leq 1$ and satisfies |f(z)| = 1 if |z| = 1. Show that f(z) is a rational function.