Complex Analysis, Fall 2017

Problem Set 10

Due: December 8

1. Let \mathbf{D} be the unit disk and S^{1} the unit circle.
(a) Show that if $g: \overline{\mathbf{D}} \rightarrow \mathbf{C}$ is a continuous function and $g_{r}: S^{1} \rightarrow \mathbf{C}$ is defined by $g_{r}(z)=g(r z)$, then $g_{r}(z) \rightarrow g(z)$ uniformly for $z \in S^{1}$ as $r \rightarrow 1^{-}$.
(b) If $f: S^{1} \rightarrow \mathbf{C}$ is a continuous function, define $\tilde{f}: \overline{\mathbf{D}} \rightarrow \mathbf{C}$ by $\tilde{f}(z)=f(z)$ for $z \in S^{1}$ and

$$
\tilde{f}\left(r e^{i \phi}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) P_{r}(\theta-\phi) d \theta .
$$

(So the real and imaginary parts of \tilde{f} are harmonic in D.). Define $\tilde{f}_{r}: S^{1} \rightarrow \mathbf{C}$ by $\tilde{f}_{r}(z)=\tilde{f}(r z)$. Show that for each $r<1$, there is a sequence $p_{n}(z, \bar{z})$ of polynomials in z and \bar{z} such that $p_{n}(z, \bar{z}) \rightarrow \tilde{f}_{r}(z)$ uniformly for $z \in S^{1}$. (use Problem 7 of Homework 9.)
(c) Weierstrass approximation theorem for S^{1}. If $f: S^{1} \rightarrow \mathbf{C}$ is a continuous function, then there is a sequence $p_{n}(z, \bar{z})$ of polynomials in z and \bar{z} such that $p_{n}(z, \bar{z}) \rightarrow f(z)$ uniformly for $z \in S^{1}$.
2. Find a harmonic function on
(a) the unit disk which has boundary values 0 on the lower semicircle and 1 on the upper semcircle.
(b) the first quadrant which has boundary values 0 on $[0,1]$ and 1 on $[1, \infty]$ and $[0, i \infty]$.
3. Use Fourier coefficients to solve the Dirichlet problem in the unit disk for the function on $[0,2 \pi]: f(\theta)=-1$ if $\pi / 2<\theta<3 \pi / 2$ and 1 otherwise.
4. Suppose that f is an entire function which sends the real line to the real line and the imaginary line to the imaginary line. Prove that f is an odd function, i.e. $f(z)=-f(-z)$. (Hint: We showed that if f sends real line to real line, then $f(z)=\overline{f(\bar{z})}$. Use a similar argument to show that if f sends the imaginary line to the imaginary line the f sends points symmetric with respect to the imaginary axis to points symmetric with respect to imaginary axis.)
5. Suppose that $f(z)$ is holomorphic on $|z| \leq 1$ and satisfies $|f(z)|=1$ if $|z|=1$. Show that $f(z)$ is a rational function.

