Complex Analysis, Fall 2017

Problem Set 3

Due: September 26 in class

1. Find the linear fractional transformation which maps $1,-1,0$ to $0, i,-i$.
2. Show that the union of two open connected subsets of \mathbf{C} is open and connected if and only if their intersection is non-empty.
3. Let $H=\{z, \operatorname{Im}(z)>0\}$ be the upper half plane. Assume $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in$ $\mathrm{GL}_{2}(\mathbf{R})$ is such that $a d-b c>0$, and let f_{M} be the corresponding linear fractional transformation. Show that f_{M} maps H onto H.
4. Assume $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\lambda$. What are all the values in terms of λ of cross ratios that we get if we consider all the 24 permutations of $z_{1}, z_{2}, z_{3}, z_{4}$? Justify your answer.
5. Let $f=u+i v: U \rightarrow \mathbf{C}$ be a function such that the partial derivatives of u and v exist and are continuous on U. Assume f preserves the magnitude of angles at $z_{0} \in U$. Show that either f is holomorphic at z_{0} with $f^{\prime}\left(z_{0}\right) \neq 0$, or \bar{f} is holomorphic at z_{0} and $\bar{f}^{\prime}\left(z_{0}\right) \neq 0$.
6. Let \mathbf{D} be the unit disk: $\mathbf{D}=\{z| | z \mid<1\}$.
(a) Show that a linear fractional transformation of the of form

$$
f(z)=e^{-i \theta} \frac{z-\alpha}{-\bar{\alpha} z+1}, \quad \alpha \in \mathbf{D}, \theta \in \mathbf{R}
$$

sends \mathbf{D} to \mathbf{D}.
(b) Conversely show that a linear transformation which sends \mathbf{D} to \mathbf{D} is of the above form. (Hint: Assume α and β are such that $f(0)=\beta$ and $f(\alpha)=0$. Find $f(\infty)$ and $f^{-1}(\infty)$.)

