Complex Analysis, Fall 2017

Problem Set 4

Due: October 3 in class

1. Find the linear fractional transformation which sends the circle $|z|=2$ to the circle $|z+1|=1$, the point -2 to 0 and the point 0 to i.
2. Compute $\int_{\gamma} x d z$ where γ is the line segment from 0 to $1+i$.
3. Find an open set over which $\sqrt{1+z}+\sqrt{1-z}$ is holomorphic.
4. Express arctan in terms of log. What is an open set over which arctan is holomorphic? Justify your answer.
5. (a) Show that if f is a linear fractional transformation which sends the real axis to the imaginary axis and 1 to ∞, then f sends every circle which passes through 1 and has a real number as it center to a line parallel to the real axis.
(b) Use the previous part to construct a conformal holomorphic bijection from the region between the two circles $|z|=1$ and $\left|z-\frac{1}{2}\right|=\frac{1}{2}$ onto the strip $0<y<i, x \in \mathbf{R}$.
6. (a) Show that the function $f(z)=\frac{1}{2}\left(z+\frac{1}{z}\right)$ is a conformal holomorphic bijection from outside the unit circle onto the plane from which the segment $[-1,1]$ is removed.
(b) Use part (a) and write $\sin z=\frac{e^{i z}-e^{-i z}}{2 i}$ as the composition of various functions to show that $\sin z$ maps the stip $0<x<\frac{\pi}{2}$, $y<0$ bijectively to the first quadrant $x>0, y<0$.
