Complex Analysis, Fall 2017

Problem Set 5

Due: October 12 in class

1. Compute the following integrals: (a) $\int_{|z|=1} \frac{\cos \left(z^{2}\right)}{z} d z$ (b) $\int_{|z|=2} \frac{1}{z^{2}+1} d z$ $\int_{|z|=1} e^{z} z^{-n} d z$. (You can only use the facts that we have proved in class.)
2. Let z_{0} be a complex number and γ the vertical line segment parametrized by $z(t)=z_{0}+i t,-1 \leq t \leq 1$. Let $\alpha=z_{0}+x$ and $\alpha^{\prime}=z_{0}-x$ for positive real number x. Find

$$
\lim _{x \rightarrow 0^{+}} \int_{\gamma}\left(\frac{1}{z-\alpha}-\frac{1}{z-\alpha^{\prime}}\right) d z
$$

3. Prove the following generalization of Liouville's Theorem: an entire function f which satisfies $|f(z)|<M|z|^{n}$ for every z with $|z| \geq R_{0}$ is a polynomial of degree at most n.
4. Assume $f(z)$ is holomorphic on $|z|<1$ and $|f(z)| \leq \frac{1}{1-|z|}$ on the unit disk. Find the best estimate for $\left|f^{(n)}(0)\right|$ that we can get from Cauchy's theorem.
5. Let C be the upper unit semicircle oriented counter clockwise. Compute $\int_{\gamma} \sqrt{z} d z$ in two different ways: using the definition, and using a primitive function.
6. Show that if f is a non-constant entire function, then $f(\mathbf{C})$ is dense in \mathbf{C}.
7. A subset $S \subset \mathbf{C}$ is called star-shaped if there is a point $z_{0} \in S$ such that for every $z \in S$, the line segment joining z_{0} and z is in S. Show that a star-shaped region is simply connected.
8. Let U be a bounded region and $\left\{f_{n}\right\}$ a sequence of functions which are holomorphic on U and continuous on the closure of U. Assume that $\left\{f_{n}\right\}$ converges uniformly on the boundary of U. Prove that $\left\{f_{n}\right\}$ converges uniformly on U.
