Complex Analysis, Fall 2017

Problem Set 6
Due: October 19 in class

1. Compute $\int_{C} \frac{2 z+1}{z^{2}+z+1} d z$ where C is the circle $|z|=2$ positively oriented.
2. a) Give an example to show that holomorphic functions do not always map simply connected regions to simply connected regions. b) Suppose that U a simply connected region, and $f(z)$ a nowhere vanishing holomorphic function on U. Prove that there is a holomorphic function g on U such that $e^{g(z)}=f(z)$.
3. Show that if 0 is an isolated singular point of f and $|f(z)| \leq \frac{1}{|z|^{1 / 2}}$ near 0 , then 0 is a removable singular point of f.
4. Prove that an isolated singularity of $f(z)$ is removable if $\operatorname{Re} f(z)$ is bounded above or below. (Hint: show that an isolated singularity of $f(z)$ cannot be a pole of $e^{f(z)}$.)
5. Suppose U is a region and f is holomorphic on U. Let $z_{0} \in U$ and $f^{\prime}\left(z_{0}\right) \neq 0$. Prove that

$$
\frac{2 \pi i}{f^{\prime}\left(z_{0}\right)}=\int_{C} \frac{1}{f(z)-f\left(z_{0}\right)} d z
$$

where C is a small circle around z_{0}.
6. Let $U=\{z:|z|>R\}$ for a fixed positive number R. We say the function $f: U \rightarrow \mathbf{C}$ has a removable singularity, pole, or essential singularity at infinity if $f(1 / z)$ has a removable, a pole, or essential singularity at 0 .
(a) Prove that an entire function has a removable singularity at infinity if and only if it is a constant.
(b) Prove that an entire function has a pole of order m at infinity if and only if it is a polynomial of degree m.
(c) Show that $\sin z$ and $\cos z$ have essential singularities at infinity.

