Complex Analysis, Fall 2017

Problem Set 7

Due: November 9 in class

1. Show that every automorphism f of the upper half plane \mathbf{H} is a linear fractional transformation of the form $f=f_{M}$, where $M \in \mathrm{SL}_{2}(\mathbf{R})$. We proved this in class for the case $f(i)=i$. If f is arbitrary prove the statement by showing that there is $N \in \mathrm{SL}_{2}(\mathbf{R})$ such that if $g=f_{N} \circ f \in \operatorname{Aut}(\mathbf{H})$ and $g(i)=i$. (Assume $f(i)=z$ and show that it is possible to compose a translation by a real number b and a multiplication by a positive real number r to send z to i.)
2. Find the Laurent series of $f(z)=\frac{1}{(z-1)^{2}(z+1)^{2}}$ for $1<|z|<2$.
3. Let f be holomorphic in the plane except for isolated singularities at z_{1}, \ldots, z_{n}. We define the residue of f at infinity to be

$$
\operatorname{Res}_{z=\infty}(f)=-\frac{1}{2 \pi i} \int_{C} f(z) d z
$$

where C is a circle of radius R positively oriented around the origin for large R.
(a) Show that $\operatorname{Res}_{z=\infty}(f)=-\sum_{j=1}^{n} \operatorname{Res}_{z=z_{j}}(f)$
(b) Show that $\operatorname{Res}_{z=\infty}(f)$ is equal to $\operatorname{Res}_{z=0}\left(-\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right)$.
4. Prove the following generalization of Schwarz lemma: If $\mathbf{D}=\{z:|z|<1\}$, and $f: \mathbf{D} \rightarrow \mathbf{D}$ is a holomorphic map, then

$$
\left|\frac{f(z)-f(0)}{1-\overline{f(0)} f(z)}\right| \leq|z| .
$$

5. Suppose that f is a injective holomorphic function from \mathbf{D} onto a square with center 0 with $f(0)=0$, and assume f is conformal (so $f^{\prime}(z) \neq 0$ for every $z \in \mathbf{D}$.). Use Schwarz lemma to show that $f(i z)=i f(z)$ for all $z \in \mathbf{D}$. (Hint: let $g(z)=$ $f^{-1}(i f(z))$.)
