Complex Analysis, Fall 2017

Problem Set 8

Due: November 17 in class

1. Find the following residues.
(a) $\operatorname{Res}_{z=1}\left(\frac{\left(z^{3}-1\right)(z+2)}{\left(z^{4}-1\right)^{2}}\right)$
(b) $\operatorname{Res}_{z=0}\left(\frac{\sin z}{z^{6}}\right)$
(c) $\operatorname{Res}_{z=1}\left(\frac{1}{z^{n}-1}\right)$
2. Show that for $n \geq 1$

$$
\int_{-\infty}^{\infty} \frac{1}{\left(1+x^{2}\right)^{n+1}} d x=\frac{1 \times 3 \times \cdots \times(2 n-1)}{2 \times 4 \times \cdots \times(2 n)} \pi .
$$

3. Compute the following integrals over $C=\{|z|=8\}$ positively oriented.
(a) $\int_{C} \frac{1}{1-\cos z} d z$
(b) $\int_{C} \frac{1+z}{1-e^{z}} d z$
4. Using residues, compute

$$
\int_{0}^{\infty} \frac{\log x}{\left(x^{2}+1\right)^{2}} d x
$$

(Hint: look at $f(z)=\frac{\log z}{\left(z^{2}+1\right)^{2}}$ where the branch of logarithm is given by deleting the negative imaginary axis, so the angle is $-\pi / 2<\theta<3 \pi / 2$. Use the closed path which is the boundary of the upper semicircle of radius R with a bump of radius r avoiding the origin.)
5. Evaluate the integral

$$
\int_{0}^{\pi} \frac{1}{(a+\cos \theta)^{2}} d \theta \quad(a>1)
$$

6. Suppose that a is a real number which is not an integer. Evaluating the integral $\int_{C_{R}} \frac{\pi \cos \pi z}{(a+z)^{2} \sin \pi z} d z$ over the circle C_{R} of radius $R=N+\frac{1}{2}, N \in \mathbf{Z}$, around the origin when $N \rightarrow \infty$, show that

$$
\sum_{n=-\infty}^{\infty} \frac{1}{(a+n)^{2}}=\frac{\pi^{2}}{(\sin \pi a)^{2}}
$$

Conclude that

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}=\frac{\pi^{2}}{8}
$$

