Complex Analysis, Fall 2017

Problem Set 9

Due: November 28 in class

1. (a) Show that if f has a simple pole at z_{0}, then $\operatorname{Res}_{z=z_{0}}(f)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)$ (the limit can be computed by l'Hopital's rule.)
(b) Let $R=\{x+i y \mid-1 \leq x \leq 1-\epsilon, 0 \leq y \leq 1\} \subset \mathbf{C}$ where ϵ is a small positive number, and let γ be the boundary of R. Compute

$$
\int_{\gamma} \frac{1}{z^{5}-1} d z
$$

2. Determine the number of zero of the polynomial

$$
2 z^{5}-6 z^{2}+z+1
$$

in the annulus $1 \leq|z| \leq 2$.
3. Let f be holomorphic on the closed unit disk $\overline{\mathbf{D}}$. Assume that $|f(z)|=1$ if $|z|=1$, and f is not constant. Use Rouche's theorem to show that
(a) f has a zero in \mathbf{D}.
(b) The image of f contains \mathbf{D}.
4. Let $f=u+i v$. Show that u and v are both harmonic if and only if $\frac{\partial f}{\partial z}$ is holomorphic.
5. Prove that a harmonic function is an open map.
6. Let $\alpha \in \mathbf{D}$, and $\alpha=r e^{i \phi}$.
(a) Show that

$$
\operatorname{Re}\left(\frac{e^{i \theta}+\alpha}{e^{i \theta}-\alpha}\right)=\frac{1-r^{2}}{1-2 r \cos (\theta-\phi)+r^{2}} .
$$

(b) Show that if u is harmonic on \mathbf{D} and continuous on $\overline{\mathbf{D}}$, then

$$
u(\alpha)=\frac{1}{2 \pi} \int_{0}^{2 \pi} P_{r}(\theta-\phi) u\left(e^{i \theta}\right) d \theta .
$$

where P_{r} is the Poisson kernel given by

$$
P_{r}(\eta)=\frac{1-r^{2}}{1-2 r \cos \eta+r^{2}}
$$

7. Show that if P_{r} is as in Problem 7, then for $0 \leq r<1$ and $\theta \in \mathbf{R}$,

$$
P_{r}(\theta)=\sum_{n=-\infty}^{\infty} r^{|n|} e^{i n \theta}
$$

