Math 5021, Fall 2017

Solutions to Midterm exam

1. Show that the function $f=u+i v$,

$$
u(x, y)=x^{2}-y^{2}-2 x y, \quad v(x, y)=x^{2}-y^{2}+2 x y
$$

is everywhere holomorphic. Compute $f^{\prime}(i)$.
Solution: $\quad u_{x}=2 x-2 y=v_{y}$ and $u_{y}=-2 y-2 x=-v_{x}$, so f is everywhere holomorphic. We have $f^{\prime}=u_{x}+i v_{x}$, so $f^{\prime}(i)=-2+2 i$.
2. Find the radius of convergence of the series

$$
\sum_{n=1}^{\infty} \frac{n^{2} 3^{n}}{(2 n)!} z^{2 n}
$$

Solution: The radius of convergence is ∞ since if we let $a_{n}=\frac{n^{2} 3^{n}}{(2 n)!}$, then

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=\lim _{n \rightarrow \infty} \frac{n^{2}(2 n+2)(2 n+1)}{3(n+1)^{2}}=\infty
$$

3. (a) Find the linear fractional transformation that sends ∞ to 1 and fixes i and $-i$.
(b) What is the image of the half plane $\operatorname{Re} z>0$ under the map in part (a)?

Solution: (a). If $f=\frac{a z+b}{c z+d}$, then $f(\infty)=1$ implies $a=c$. We can divide by a, b, c, d by a, and assume $a=c=1$. Then $f(i)=i$, so $i+b=-1+d i$, and $f(-i)=-i$ so $-i+b=-1-d i$. Solving these, we get $b=-1$ and $d=1$.
(b) The imaginary line $\operatorname{Re} z=0$ is mapped to a line or a circle. We know the image of three points on this line: $f(\infty)=1, f(i)=i, f(-i)=-i$. So The image of the imaginary line is the unit circle around the origin. Since $f(1)=0$, the half plane $\operatorname{Re} z>0$ is mapped to the inside of the unit circle, the unit disk.
4. Compute $\int_{C} \sqrt{z-1} d z$ where C is the unit half circle that joints $1+i$ to $1-i$ clockwise. The principal branch of the square root is used here, so for a complex number $w, \sqrt{w}=e^{\frac{1}{2} \log w}$.

Solution: $-C$ is parametrized by $z(t):[-\pi / 2, \pi / 2], z(t)=1+e^{i t}$, so

$$
\int_{C} \sqrt{z-1} d z=-\int_{-\pi / 2}^{\pi / 2} i e^{i t} e^{\frac{i t}{2}} d t=-\left.i \frac{2}{3 i} e^{\frac{3 i t}{2}}\right|_{-\pi / 2} ^{\pi / 2}=-\frac{2}{3}\left(e^{3 \pi i / 4}-e^{-3 \pi i / 4}\right)=-\frac{2}{3} \sqrt{2}
$$

5. Suppose that f is an entire function such that $\operatorname{Re} f(z) \leq \frac{2}{|z|}$ for all z such that $|z| \geq 1$. Prove that f is a constant function.

Solution 1: Since $\operatorname{Re} f(z) \leq \frac{2}{|z|} \leq 2$ for $|z| \geq 1$, and since f maps the compact set $\{|z| \leq 1\}$ to a compact set, the image of f is the union of a compact set and $\operatorname{Re} f(z) \leq 2$ which is not dence in \mathbf{C}, so by one of the homework problems (HW5) f has to be constant.

Solution 2: Let $g=e^{f}$. Then g is an entire function and for $|z| \geq 1,\left|e^{g(z)}\right|=$ $e^{\operatorname{Re} f(z)} \leq e^{\frac{2}{|z|}} \leq e^{2}$. Also, over $\{|z| \leq 1\},|g(z)|$ obtains its maximum value on the boundary, so for every $z \in \mathbf{C},\left|e^{g(z)}\right| \leq e^{2}$. So by Liouville's Theorem g is constant, and hence f is constant.
6. Suppose that $f(z)$ is holomorphic on the disk $|z|<2$, and $|f(z)|<1$ for every z such that $|z|<1$. Show that if $\left|\omega_{1}\right|,\left|\omega_{2}\right|<\frac{1}{2}$, then

$$
\left|f\left(\omega_{1}\right)-f\left(\omega_{2}\right)\right| \leq 4\left|\omega_{1}-\omega_{2}\right|
$$

Solution: Using the Cauchy's integral formula for the unit circle C positively oriented, we get

$$
\begin{aligned}
\left|f\left(\omega_{1}\right)-f\left(\omega_{2}\right)\right| & =\left|\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-\omega_{1}}-\frac{f(z)}{z-\omega_{2}} d z\right|=\left|\frac{1}{2 \pi i} \int_{C} \frac{\omega_{1}-\omega_{2}}{\left(z-\omega_{1}\right)\left(z-\omega_{2}\right)} d z\right| \\
& \leq \frac{\left|\omega_{1}-\omega_{2}\right|}{2 \pi} 2 \pi \max _{z \in C} \frac{1}{\left.\mid\left(z-\omega_{1}\right)\left(z-\omega_{2}\right)\right) \mid}=4\left|\omega_{1}-\omega_{2}\right|
\end{aligned}
$$

7. (a) Define a removable singularity, a pole, and an essential singularity.
(b) Suppose that f has an isolated singularity at z_{0}, and $f(z) \notin(-\infty, 0]$ for any z near z_{0}. Show that z_{0} is a removable singularity of f.

Solution: (b) Since the image of f near z_{0} does not intersect $(-\infty, 0]$, it is possible to define a single valued holomorphic function $g=f^{1 / m}$ for every $m \geq 2$ in such a way that the image of g near z_{0} is in $\{z:-\pi / m<\arg z<\pi / m\}$. If z_{0} is a pole (essential singularity) of f, then z_{0} would be a pole (essential singularity) of g by definition. This immediately shows z_{0} cannot be an essential singularity of f since the image of g is not dense in \mathbf{C}. Also since $f=g^{m}$, if z_{0} is a pole of order n for g, it would be a pole of order $m n$ for f. So if we assume z_{0} is a pole of order k for f, and we pick $m>k$, we get a contradiction.

